
CryptoVerif
Computationally Sound, Automatic
Cryptographic Protocol Verifier

User Manual

Bruno Blanchet and David Cadé
INRIA Paris, France

December 16, 2019

Contents
1 Introduction 1

2 Command Line 2

3 channels Front-end 2

4 oracles Front-end 27

5 Summary of the Main Differences between the two Front-ends 28

6 Predefined cryptographic primitives 29

7 Interactive Mode 52

8 Output of the system 60

9 Implementation 60
9.1 Restrictions on the processes for implementation . 62
9.2 Defining modules . 62
9.3 Implementation options . 63

10 Additional programs 64
10.1 test . 64
10.2 analyze . 65
10.3 addexpectedtags . 65

1 Introduction
This manual describes the input syntax and output of our cryptographic protocol verifier. It does not
describe the internal algorithms used in the system. These algorithms have been described in research
papers [3, 2, 4, 5] that can be downloaded at

http://prosecco.inria.fr/personal/bblanche/publications/index.html.
The goal of our protocol verifier is to prove security properties of protocols in the computational

model. The input file describes the considered security protocol, the hypotheses on the cryptographic
primitives used in the protocol, and security properties to prove.

1

2 Command Line
The syntax of the command line is as follows:

./cryptoverif [options] 〈filename〉

where 〈filename〉 is the name of the input file. The options can be:

• -in 〈frontend〉: Chooses the frontend to use by CryptoVerif. 〈frontend〉 can be either channels
(the default) or oracles. The channels frontend uses a calculus inspired by the pi calculus,
described in Section 3 and in [3, 2]. The oracles frontend uses a calculus closer to cryptographic
games, described in Section 4 and in [4, 5]. By default, CryptoVerif uses the oracles frontend
when the input 〈filename〉 ends with .ocv, and otherwise it uses the channels frontend.

• -lib 〈filename〉: Sets the name of the library file which is loaded by the system before reading the
input file. In the channels front-end, the loaded file is 〈filename〉.cvl; in the oracles front-end, it
is 〈filename〉.ocvl. (The extension .cvl or .ocvl may also be included in 〈filename〉.) The library
file typically contains default declarations useful for all protocols. When the -lib option is absent,
CryptoVerif loads the default library, default.cvl in the channels front-end, default.ocvl in
the oracles front-en. The default library is searched in the current directory, then in the directory
that contains the executable cryptoverif.

• -oproof 〈filename〉: Output the proof in the given file name, instead of displaying it on the
standard output.

• -tex 〈filename〉: Activates TeX output, and sets the output file name. In this mode, CryptoVerif
outputs a TeX version of the proof, in the given file.

• -impl: Instead of proving the protocol, generate an implementation in OCaml corresponding to
the modules defined in the input file.

• -o 〈directory〉: Outputs the files generated by out_game, out_state, and out_facts in the given
directory. If the -impl option is given, outputs the implementation files in the given directory.

Input files with a name that ends in .pcv are meant to be analyzed by both CryptoVerif and ProVerif.
When CryptoVerif analyzes such a file, it first preprocesses it with m4 with CryptoVerif defined. Sim-
ilarly, when ProVerif analyzes such a file, it first preprocesses it with m4 with ProVerif defined. That
allows you to conditionally include parts of the file depending on whether CryptoVerif or ProVerif ana-
lyzes it.

3 channels Front-end
Comments can be included in input files. Comments are surrounded by (* and *). Nested comments
are not supported.

Identifiers begin with a letter (uppercase or lowercase) and contain any number of letters, digits,
the underscore character (_), the quote character (’), as well as accented letters of the ISO Latin 1
character set. Case is significant. Keywords cannot be used as ordinary identifiers. The keywords are:
builtin, channel, collision, const, def, defined, do, else, eps_find, eps_rand, equation, equiv,
equivalence, event, event_abort, expand, find, forall, foreach, fun, get, if, implementation,
in, inj-event, insert, length, let, letfun, max, maxlength, new, newChannel, orfind, out, param,
Pcoll1rand, Pcoll2rand, proba, process, proof, public_vars, query, query_equiv, return, secret,
set, suchthat, table, then, time, type, yield

In case of syntax error, the system indicates the character position of the error (line and column
numbers). Please use your text editor to find the position of the error. (The error messages can be
interpreted by emacs.)

The input file may consist of a list of declarations followed by a process:

〈declaration〉∗ process 〈iprocess〉

2

• [M] means that M is optional; (M)∗ means that M occurs 0 or any number of times.

• seq〈X〉 is a sequence of X: seq〈X〉 = [(〈X〉,)∗〈X〉] = 〈X〉, . . . ,〈X〉. (The sequence can be empty, it
can be one element 〈X〉, or it can be several elements 〈X〉 separated by commas.)

• seq+〈X〉 is a non-empty sequence of X: seq+〈X〉 = (〈X〉,)∗〈X〉 = 〈X〉, . . . ,〈X〉. (It can be one or
several elements of 〈X〉 separated by commas.)

Figure 1: Grammar notations

The process describes the considered security protocol; the declarations specify in particular hypotheses
on the cryptographic primitives and the security properties to prove.

Alternatively, the input may also consist of a list of declarations followed by an equivalence query:

〈declaration〉∗ equivalence 〈iprocess〉 〈iprocess〉 [public_vars seq〈ident〉]

The query equivalence Q1 Q2 tells CryptoVerif to show that the processes (games) Q1 and Q2 are
computationally indistinguishable. When it is present, the indication public_vars x1, . . . , xn means
that the adversary has read access to the variables x1, . . . , xn.

Finally, the input may also be:

〈declaration〉∗ query_equiv[(〈ident〉[(〈ident〉)])]
〈omode〉 [| . . . |〈omode〉] <=(?)=> [[n]] [[seq+〈option〉]] 〈ogroup〉 [| . . . |〈ogroup〉]

The keyword query_equiv is followed by an indistinguishability property specified in the same syntax
as assumptions on security primitives (see the declaration equiv), except that the probability of distin-
guishing the two sides is replaced with ?. CryptoVerif is going to bound this probability, so we do not
need to give it.

• When the option [computational] is absent, CryptoVerif then converts this assumption into an
equivalence between two processes and tries to prove it.

• When the option [computational] is present, CryptoVerif then converts this assumption into the
unreachability of an event triggered when the oracles on the two sides return different results.
The unreachability of this event implies that both sides are indistinguishable. In this case, the
random values marked [unchanged] are shared between both sides, while the others are considered
independent. In principle, any mapping from the random values of the left-hand side to the random
values of the right-hand side could allow us to prove the desired indistinguishability property, as
long as it preserves the probability distributions; however, CryptoVerif only supports the case in
which some random values are equal on both sides and others are independent.

The goal of this query is to build modular proofs: we can prove a property using this query, and then
use it as assumption in a subsequent proof by just copy-pasting it.

A library file (specified on the command-line by the -lib option) consists of a list of declarations.
Notations are summarized in Figure 1 and various syntactic elements are described in Figures 2, 3, and 4.

Processes are described in a process calculus. In this calculus, terms represent computations on
bitstrings. Simple terms consist of the following constructs:

• A term between parentheses (M) allows to disambiguate syntactic expressions.

• An identifier can be either a constant symbol f (declared by const or fun without argument) or
a variable identifier.

• The function application f(M1, . . . ,Mn) applies function f to the result of M1, . . . ,Mn.

• The tuple application (M1, . . . ,Mn) builds a tuple from M1, . . . ,Mn (corresponds to the con-
catenation of M1, . . . ,Mn with length and type indications so that M1, . . . ,Mn can be recovered
without ambiguity). This is allowed only for n 6= 1, so that it is distinguished from parenthesing.

3

〈identbound〉 ::= [〈ident〉 =] 〈ident〉 <= 〈ident〉
〈vartype〉 ::= 〈ident〉:〈ident〉
〈vartypeb〉 ::= 〈ident〉:〈ident〉

| 〈ident〉 <= 〈ident〉
〈simpleterm〉 ::= 〈ident〉

| 〈ident〉(seq〈simpleterm〉)
| (seq〈simpleterm〉)
| 〈ident〉[seq〈simpleterm〉]
| 〈simpleterm〉 = 〈simpleterm〉
| 〈simpleterm〉 <> 〈simpleterm〉
| 〈simpleterm〉 || 〈simpleterm〉
| 〈simpleterm〉 && 〈simpleterm〉

〈term〉 ::= . . . (as in 〈simpleterm〉 with 〈term〉 instead of 〈simpleterm〉)
| new 〈vartype〉;〈term〉
| 〈ident〉 <-R 〈ident〉;〈term〉
| 〈ident〉[:〈ident〉] <- 〈term〉
| let 〈pattern〉 = 〈term〉 in 〈term〉 [else 〈term〉]
| if 〈cond〉 then 〈term〉 else 〈term〉
| find[[unique]] 〈tfindbranch〉 (orfind 〈tfindbranch〉)∗ else 〈term〉
| event 〈ident〉[(seq〈term〉)]; 〈term〉
| event_abort 〈ident〉
| insert 〈ident〉(seq〈term〉); 〈term〉
| get 〈ident〉(seq〈pattern〉) [suchthat 〈term〉] in 〈term〉 else 〈term〉

〈varref〉 ::= 〈ident〉[seq〈simpleterm〉]
| 〈ident〉

〈cond〉 ::= defined(seq+〈varref〉) [&& 〈term〉]
| 〈term〉

〈tfindbranch〉 ::= seq〈identbound〉 suchthat 〈cond〉 then 〈term〉
〈pattern〉 ::= 〈ident〉

| 〈vartypeb〉
| 〈ident〉(seq〈pattern〉)
| (seq〈pattern〉)
| =〈term〉

〈event〉 ::= event(〈ident〉[(seq〈simpleterm〉))]
| inj-event(〈ident〉[(seq〈simpleterm〉))]

〈queryterm〉 ::= 〈queryterm〉 && 〈queryterm〉
| 〈queryterm〉 || 〈queryterm〉
| 〈event〉
| 〈simpleterm〉

〈query〉 ::= secret 〈ident〉 [public_vars seq〈ident〉] [[onesession]]
| 〈event〉 (&& 〈event〉)∗ ==> 〈queryterm〉 [public_vars seq〈ident〉]
| 〈event〉 (&& 〈event〉)∗ [public_vars seq〈ident〉]

Figure 2: Grammar for terms, patterns, and queries

4

〈proba〉 ::= (〈proba〉) | time(〈ident〉[, seq+〈proba〉])
| 〈proba〉 + 〈proba〉 | time(let 〈ident〉[, seq+〈proba〉])
| 〈proba〉 - 〈proba〉 | time((seq〈ident〉)[, seq+〈proba〉])
| 〈proba〉 * 〈proba〉 | time(let (seq〈ident〉)[, seq+〈proba〉])
| 〈proba〉 / 〈proba〉 | time(= 〈ident〉[, seq+〈proba〉])
| max(seq+〈proba〉) | time(!)
| 〈ident〉[(seq〈proba〉)] | time(foreach)
| |〈ident〉| | time([n])
| maxlength(〈simpleterm〉) | time(&&)
| length(〈ident〉[, seq+〈proba〉]) | time(||)
| length((seq〈ident〉)[, seq+〈proba〉]) | time(new 〈ident〉)
| n | time(<-R 〈ident〉)
| #〈ident〉 | time(newChannel)
| eps_find | time(if)
| eps_rand(T) | time(find n)

| Pcoll1rand(T) | time(out [[seq+〈ident〉]]〈ident〉[, seq+〈proba〉])
| Pcoll2rand(T) | time(in n)

| time

〈repl〉 ::= ![〈ident〉 <=] 〈ident〉
| foreach 〈ident〉 <= 〈ident〉 do

〈res〉 ::= new 〈vartype〉;
| 〈ident〉 <-R 〈ident〉;

〈obody_equiv〉 ::= (〈obody_equiv〉)
| event_abort 〈ident〉
| new 〈vartype〉; 〈obody_equiv〉
| 〈ident〉 <-R 〈ident〉; 〈obody_equiv〉
| 〈ident〉[:〈ident〉] <- 〈term〉; 〈obody_equiv〉
| let 〈pattern〉 = 〈term〉 in 〈obody_equiv〉 else 〈obody_equiv〉
| if 〈cond〉 then 〈obody_equiv〉 else 〈obody_equiv〉
| find[[unique]] 〈ffindbranch〉 (orfind 〈ffindbranch〉)∗ else 〈obody_equiv〉
| return(〈term〉)

〈ffindbranch〉 ::= seq〈identbound〉 suchthat 〈cond〉 then 〈obody_equiv〉
〈ogroup〉 ::= 〈ident〉(seq〈vartypeb〉) [[n]] [[useful_change]] := 〈obody_equiv〉

| [〈repl〉] 〈res〉∗ 〈ogroup〉
| [〈repl〉] 〈res〉∗ (〈ogroup〉 | . . . | 〈ogroup〉)

〈omode〉 ::= 〈ogroup〉 [[exist]]
| 〈ogroup〉 [all]

Figure 3: Grammar for probabilities and equivalences

5

〈channel〉 ::= 〈ident〉[[seq〈ident〉]]
〈oprocess〉 ::= 〈ident〉[(seq〈term〉)]

| (〈oprocess〉)
| yield
| event 〈ident〉[(seq〈term〉)] [; 〈oprocess〉]
| event_abort 〈ident〉
| new 〈vartype〉[; 〈oprocess〉]
| 〈ident〉 <-R 〈ident〉[; 〈oprocess〉]
| 〈ident〉[:〈ident〉] <- 〈term〉[; 〈oprocess〉]
| let 〈pattern〉 = 〈term〉 [in 〈oprocess〉 [else 〈oprocess〉]]
| if 〈cond〉 then 〈oprocess〉 [else 〈oprocess〉]
| find[[unique]] 〈findbranch〉 (orfind 〈findbranch〉)∗ [else 〈oprocess〉]
| insert 〈ident〉(seq〈term〉) [; 〈oprocess〉]
| get 〈ident〉(seq〈pattern〉) [suchthat 〈term〉] in 〈oprocess〉 [else 〈oprocess〉]
| out(〈channel〉, 〈term〉)[; 〈iprocess〉]

〈findbranch〉 ::= seq〈identbound〉 suchthat 〈cond〉 then 〈oprocess〉
〈iprocess〉 ::= 〈ident〉[(seq〈term〉)]

| (〈iprocess〉)
| 0
| 〈iprocess〉 | 〈iprocess〉
| ![〈ident〉 <=] 〈ident〉 〈iprocess〉
| foreach 〈ident〉 <= 〈ident〉 do 〈iprocess〉
| in(〈channel〉,〈pattern〉)[; 〈oprocess〉]

Figure 4: Grammar for processes (channels front-end)

6

• The array access x[M1, . . . ,Mn] returns the cell of indices M1, . . . ,Mn of array x.

• =, <>, ||, && are function symbols that represent equality and inequality tests, disjunction and
conjunction. They use the infix notation, but are otherwise considered as ordinary function sym-
bols.

Terms contain further constructs <-R, <-, event, event_abort, if, find, let, new, insert, and get
which are similar to the corresponding constructs of output processes but return a bitstring instead of
executing a process. They are not allowed to occur in defined conditions of find. The constructs <-R,
new, event, event_abort, and insert are not allowed to occur in conditions of find or get. We refer
the reader to the description of processes below for a fully detailed explanation.

• new x:T;M chooses a new random number in type T , stores it in x, and returns the result of M .

x <-R T;M is equivalent to new x:T;M .

• let p = M in M ′ else M ′′ tries to decompose the term M according to pattern p. In case of
success, returns the result of M ′, otherwise the result of M ′′.

The pattern p can be:

– x[:T] variable, possibly with its type. Matches any bitstring (in type T), and stores it in x.

– f(p1, . . . , pn) where the function symbol f is declared [data]. Matches bitstringsM equal to
f(M1, . . . ,Mn) for some M1, . . . ,Mn that match p1, . . . , pn. (The poly-injectivity of f allows
us to compute possible values M1, . . . ,Mn of its arguments from the value of M , and to check
whether M is equal to the resulting value of f(M1, . . . ,Mn).)

– (p1, . . . , pn) tuples, which are particular [data] functions encoding unambiguously the values
of p1, . . . , pn and their type.

– =M ′ matches a bitstring equal to M ′.

When p is a variable, the else branch can be omitted (it cannot be executed).

• x[: T] <- M;M ′ stores the result of M in x and returns the result of M ′. This is equivalent to
the construct let x[: T] = M in M ′.

• if cond thenM elseM ′ is syntactic sugar for find suchthat cond thenM elseM ′. It returns
the result of M if the condition cond evaluates to true and of M ′ if cond evaluates to false.

• find FB1 orfind . . . orfind FBm else M where FBj = uj1 = ij1 <= nj1, . . . , ujmj = ijmj <=
njmj

suchthat condj then Mj evaluates the conditions condj for each j and each value of
ij1, . . . , ijmj

in [1, nj1] × . . . × [1, njmj
]. If none of these conditions is true, it returns the re-

sult of M . Otherwise, it chooses randomly with (almost) uniform probability one j and one value
of ij1, . . . , ijmj

such that the corresponding condition is true, stores it in uj1, . . . , ujmj
and returns

the result of Mj . See the explanation of the find process below for more details.

• event e(M1, . . . ,Mn);P executes the event e(M1, . . . ,Mn), then executes P . Events serve in
recording the execution of certain parts of the program for using them in queries. The symbol e
must have been declared by an event declaration.

• event_abort e executes event e and aborts the game. It is intended to be used in the right-hand
side of the definitions of some cryptographic primitives. (See also the equiv declaration; events in
the right-hand side can be used when the simulation of left-hand side by the right-hand side fails.
CryptoVerif is going to find a bound for the probability that the event is executed and include it
in the probability of success of an attack.)

• insert tbl(M1, . . . ,Mn);M inserts the tuples (M1, . . . ,Mn) in the table tbl , then returns the
result of M . The table tbl must have been declared with the appropriate types using the table
declaration.

7

• get tbl(p1, . . . , pn) suchthat M in M ′ else M ′′ tries to find an element of the table tbl that
matches the patterns p1, . . . , pn and such that M is true. If it succeeds, it returns the result of M ′
with the variables of p1, . . . , pn bound to that element of the table. If several elements match, one
of them is chosen randomly with (almost) uniform probability. If no element matches, it returns
the result of M ′′.

When suchthat M is omitted, it is equivalent to suchthat true. Internally, get is converted into
find by CryptoVerif.

The calculus distinguishes two kinds of processes: input processes 〈iprocess〉 are ready to receive a
message on a channel; output processes 〈oprocess〉 output a message on a channel after executing some
internal computations. When an input or output process is an identifier, it is substituted with its value
defined by a let declaration. Processes allow parenthesing for disambiguation.

Let us first describe input processes:

• proc(M1, . . . ,Mn) is replaced with P{M1/x1, . . . ,Mn/xn} when proc is declared by let proc(x1 :
T1, . . . , xn : Tn) = P. where P is an input process. The terms M1, . . . ,Mn must contain only
variables, replication indices, and function applications.

• 0 does nothing.

• Q | Q′ is the parallel composition of Q and Q′.

• !i <= N Q represents N copies of Q in parallel each with a different value of i ∈ [1, N]. The
identifier N must have been declared by param N . The identifier i cannot be referred to explicitly
in the process; it is used only implicitly as array index of variables defined under the replication
!i <= N . The replication !i <= N can be abbreviated !N .

When a program point is under replications !i1 <= N1, . . . , !in <= Nn, the current replication
indices at that point are i1, . . . , in.

foreach i <= N do Q is equivalent to !i <= N Q.

• The semantics of the input in(〈channel〉,〈pattern〉);〈oprocess〉 will be explained below together
with the semantics of the output.

Note that the construct newChannel c;Q used in research papers is absent from the implementation:
this construct is useful in the proof of soundness of CryptoVerif, but not essential for encoding games
that CryptoVerif manipulates.

Let us now describe output processes:

• proc(M1, . . . ,Mn) is replaced with let x1 = M1 in . . . let xn = Mn in P when proc is declared
by let proc(x1 : T1, . . . , xn : Tn) = P. where P is an output process.

• yield yields control to another process, by outputting an empty message on channel yield. It can
be understood as an abbreviation for out(yield,());0.

• event e(M1, . . . ,Mn);P executes the event e(M1, . . . ,Mn), then executes P . Events serve in
recording the execution of certain parts of the program for using them in queries. The symbol e
must have been declared by an event declaration.

• event_abort e executes event e and terminates the game. (Nothing can be executed after this
instruction, neither by the protocol nor by the adversary.) The symbol e must have been declared
by an event declaration, without any argument.

• new x:T;P or x <-R T;P chooses a new random number in type T , stores it in x, and executes
P . T must be declared with option fixed, bounded, or nonuniform. Each such type T comes
with an associated default probability distribution DT ; the random number is chosen according
to that distribution. The time for generated random numbers in that distribution is bounded by
time(new T) or equivalently time(<-R T).

8

– When the type T is nonuniform, the default probability distribution DT for type T may
be non-uniform. It is left unspecified. (Notice that random bitstrings with non-uniform
distributions can also be obtained by applying a function to a random bitstring choosen
uniformly among a finite set of bitstrings, chosen in another type.)

– When the type T is fixed, it consists of the set of all bitstrings of a certain length n. Prob-
abilistic Turing machines can return uniformly distributed random numbers in such types, in
bounded time. If T is not marked nonuniform, the default probability distribution DT for T
is the uniform distribution.

– For other bounded types T , probabilistic bounded-time Turing machines can choose random
numbers with a distribution as close as we wish to uniform, but may not be able to produce
exactly a uniform distribution. If T is not marked nonuniform, the default probability distri-
bution DT is such that its distance to the uniform distribution is at most eps_rand(T). The
distance between two probability distributions D1 and D2 for type T is

d(D1, D2) =
∑
a∈T
|Pr[X1 = a]− Pr[X2 = a]|

where Xi (i = 1, 2) is a random variable of distribution Di.
For example, a possible algorithm to obtain a random integer in [0,m−1] is to choose a random
integer x′ uniformly among [0, 2k − 1] for a certain k large enough and return x′ mod m. By
euclidian division, we have 2k = qm+ r with r ∈ [0,m− 1]. With this algorithm

Pr[x = a] =

{
q+1
2k

if a ∈ [0, r − 1]
q
2k

if a ∈ [r,m− 1]

so ∣∣∣∣Pr[x = a]− 1

m

∣∣∣∣ =
{

q+1
2k
− 1

m if a ∈ [0, r − 1]
1
m −

q
2k

if a ∈ [r,m− 1]

Therefore

d(DT , uniform) =
∑
a∈T

∣∣∣∣Pr[x = a]− 1

m

∣∣∣∣ = r

(
q + 1

2k
− 1

m

)
− (m− r)

(
1

m
− q

2k

)
=

2r(m− r)
m.2k

≤ m

2k

so we can take eps_rand(T) = m
2k
. A given precision of eps_rand(T) = 1

2k′ can be obtained
by choosing k = k′ + number of bits of m random bits.
When ignoreSmallTimes is set to a value greater than 0 (which is the default), the time for
random number generations and the probability eps_rand(T) are ignored, to make probability
formulas more readable.

• let p = M in P else P ′ tries to decompose the term M according to pattern p. In case of
success, executes P , otherwise executes P ′.

The pattern p can be:

– x[:T] variable, possibly with its type. Matches any bitstring (in type T), and stores it in x.

– f(p1, . . . , pn) where the function symbol f is declared [data]. Matches bitstringsM equal to
f(M1, . . . ,Mn) for some M1, . . . ,Mn that match p1, . . . , pn. (The poly-injectivity of f allows
us to compute possible values M1, . . . ,Mn of its arguments from the value of M , and to check
whether M is equal to the resulting value of f(M1, . . . ,Mn).)

– (p1, . . . , pn) tuples, which are particular [data] functions encoding unambiguously the values
of p1, . . . , pn and their type.

– =M ′ matches a bitstring equal to M ′.

9

The else clause is never executed when the pattern is simply a variable. When else P ′ is omitted,
it is equivalent to else yield. Similarly, when in P is omitted, it is equivalent to in yield.

• x[:T] <- M;P stores the result of term M in x and executes P . M must be of type T when T is
mentioned. This is equivalent to the construct let x[:T] = M in P .

• if cond then P else P ′ is syntactic sugar for find suchthat cond then P else P ′. It executes
P if the condition cond evaluates to true and P ′ if cond evaluates to false. When the else clause
is omitted, it is implicitly else yield. (else 0 would not be syntactically correct.)

• Next, we explain the process find FB1 orfind . . . orfind FBm else P where each branch
FBj is FBj = uj1 = ij1 <= nj1, . . . , ujmj = ijmj <= njmj suchthat condj then Pj .

A simple example is the following: find u = i <= n suchthat defined(x[i]) && x[i] = a then P ′

else P tries to find an index i such that x[i] is defined and x[i] = a, and when such an i is found,
it stores that i in u and executes P ′; otherwise, it executes P . In other words, this find construct
looks for the value a in the array x, and when a is found, it stores in u an index such that x[u] = a.
Therefore, the find construct allows us to access arrays, which is key for our purpose.

More generally, find u1 = i1 <= n1, . . . , um = im <= nm suchthat defined(M1, . . . ,Ml) && M
then P ′ else P tries to find values of i1, . . . , im for which M1, . . . ,Ml are defined and M is true.
In case of success, it stores the values of i1, . . . , im in u1, . . . , um executes P ′. In case of failure, it
executes P .

This is further generalized to m branches: find FB1 orfind . . . orfind FBm else P where
FBj = uj1 = ij1 <= nj1, . . . , ujmj = ijmj <= njmj suchthat defined(Mj1, . . . ,Mjlj) && Mj then
Pj tries to find a branch j in [1,m] such that there are values of ij1, . . . , ijmj for whichMj1, . . . ,Mjlj

are defined and Mj is true. In case of success, it stores the value of ij1, . . . , ijmj
in uj1, . . . , ujmj

and executes Pj . In case of failure for all branches, it executes P . More formally, it evaluates the
conditions condj = defined(Mj1, . . . ,Mjlj) && Mj for each j and each value of ij1, . . . , ijmj

in
[1, nj1] × . . . × [1, njmj]. If none of these conditions is true, it executes P . Otherwise, it chooses
randomly with almost uniform probability1 one j and one value of ij1, . . . , ijmj such that the
corresponding condition is true, stores that value in uj1, . . . , iujmj

and executes Pj .

In the general case, the conditions condj are of the form defined(M1, . . . ,Ml) [&& M] or simply
M . The condition defined(M1, . . . ,Ml) means that M1, . . . ,Ml are defined. At least one of the
two conditions defined orM must be present. Omitted defined conditions are considered empty;
when M is omitted, it is considered true.

The variables ij1, . . . , ijmj
are considered as replication indices, and are used in the defined con-

dition and in Mj : they are temporary variables that are used as loop indices to look for in-
dices that satisfy the desired conditions. Once suitable indices are found, their value is stored in
uj1, . . . , ujmj

and the then branch is executed using these variables. It is possible to make array
accesses to uj1, . . . , ujmj (such as uj1[M1, . . . ,Mk]) elsewhere in the game, which is not possible
for ij1, . . . , ijmj .

As an abbreviation, one may write FBj = uj1 <= nj1, . . . , ujmj
<= njmj

suchthat defined(Mj1,
. . . ,Mjlj) && Mj then Pj . In this case, the same identifier ujk is used for both the variable and
the associated replication index ijk.

A variant of find is find[unique]. Consider the process find[unique] FB1 orfind . . . orfind
FBm else P where FBj = uj1 = ij1 <= nj1, . . . , ujmj = ijmj <= njmj suchthat defined(Mj1, . . . ,
Mjlj) && Mj then Pj . When there are several values of j, ij1, . . . , ijmj

for which Mj1, . . . ,Mjlj are
defined andMj is true, this process executes an event NonUnique and aborts the game. In all other
cases, it behaves as find. Intuitively, find[unique] should be used when there is a negligible
probability of finding several suitable values of j, ij1, . . . , ijmj . The construct find[unique] is
typically not used in the initial game. (One would have to prove manually that there is indeed
a negligible probabibility of finding several suitable values of j, ij1, . . . , ijmj

. CryptoVerif displays

1Precisely, the distance between the distribution actually used for choosing j, ij1, . . . , ijmj and the uniform distribution
is at most eps_find. See the explanation of new x:T for details on how to achieve this.

10

a warning if find[unique] occurs in the initial game.) However, find[unique] is used in the
specification of cryptographic primitives, in the right-hand of equivalences specified by equiv.

• insert tbl(M1, . . . ,Mn);P inserts the tuples (M1, . . . ,Mn) in the table tbl , then executes P . The
table tbl must have been declared with the appropriate types using the table declaration.

• get tbl(p1, . . . , pn) suchthatM in P else P ′ tries to find an element of the table tbl that matches
the patterns p1, . . . , pn and such that M is true. If it succeeds, it executes P with the variables
of p1, . . . , pn bound to that element of the table. If several elements match, one of them is chosen
randomly with (almost) uniform probability. If no element matches, it executes P ′.

When else P ′ is omitted, it is equivalent to else yield. When suchthat M is omitted, it is
equivalent to suchthat true. Internally, get is converted into find by CryptoVerif.

• Finally, let us explain the output out(c[M1, . . . ,Ml],N);Q. A channel c[M1, . . . ,Ml] consists
of both a channel name c (declared by channel c) and a tuple of terms M1, . . . ,Ml. Terms
M1, . . . ,Ml are intuitively analogous to IP addresses and ports which are numbers that the adver-
sary may guess. Two channels are equal when they have the same channel name and terms that
evaluate to the same bitstrings. A semantic configuration always consists of a single output pro-
cess (the process currently being executed) and several input processes. When the output process
executes out(c[M1, . . . ,Ml],N);Q, one looks for an input on the same channel in the available
input processes. If no such input process is found, the process blocks. Otherwise, one such in-
put process in(c[M ′1, . . . ,M ′l],p);P is chosen randomly with (almost) uniform probability. The
communication is then executed: the output message N is evaluated, its result is truncated to the
maximum length of bitstrings on channel c, the obtained bitstring is matched against pattern p.
Finally, the output process P that follows the input is executed. The input process Q that follows
the output is stored in the available input processes for future execution.

Patterns p are as in the let process, except that variables in p that are not under a function symbol
f(. . .) must be declared with their type.

In the game as given to CryptoVerif, the channel can be either c[i1, . . . , in] where i1, . . . , in are
the current replication indices at the considered input or output, or just a channel name c, as an
abbreviation for c[i1, . . . , in]. It is recommended to use as channel a different channel name for each
input and output. Then the adversary has full control over the network: it can decide precisely
from which copy of which input it receives a message and to which copy of which output it sends
a message, by using the appropriate channel name and value of the replication indices.

Note that the syntax requires an output to be followed by an input process, as in [8]. If one needs to
output several messages consecutively, one can simply insert fictitious inputs between the outputs.
The adversary can then schedule the outputs by sending messages to these inputs.

In this calculus, all variables are implicitly arrays. When a variable x is defined (by new, <-R, <-,
let, find, in) under replications !i1 <= N1, . . . , !in <= Nn, x has implicitly indices i1, . . . , in: x stands
for x[i1, . . . , in]. Arrays allow us to have full access to the state of the process. Arrays can be read using
find. Similarly, when x is used with k < n indices the missing n − k indices are implicit: x[u1, . . . , uk]
stands for x[i1, . . . , in−k, u1, . . . , uk] where i1, . . . , in−k must be the n − k first replication indices both
at the creation of x and at the usage x[u1, . . . , uk]. (So the usage and creation of x must be under the
same n− k top-most replications.)

In the initial game, several variables may be defined with the same name, but they are immediately
renamed to different names, so that after renaming, each variable is defined once. When several variables
are defined with the same name, they can be referenced only under their definition without explicit array
indices, because for other references, we would not know which variable to reference after renaming.

In subsequent games created by CryptoVerif, a variable may be defined at several occurrences, but
these occurrences must be in different branches of if, find, or let, so that they cannot be executed
with the same value of the array indices. This constraint guarantees that each array cell is defined at
most once.

Each usage of x must be either:

11

• x without array index syntactically under its definition. (Then x is implicitly considered to have
as indices the current replication indices at its definition.)

• x possibly with array indices inside the defined condition of a find.

• x[M1, . . . ,Mn] in M in a find branch . . . suchthat defined(M ′1, . . . ,M
′
l) && M then . . ., such

that x[M1, . . . ,Mn] is a subterm of M ′1, . . . ,M ′l .

• x[M1, . . . ,Mn] in P in a find branch u1 = i1 <= n1, . . . , um = im <= nm suchthat defined(M ′1,
. . . ,M ′l) && . . . then P , such that x[M1, . . . ,Mn] = M{u1/i1, . . . , um/im} and M is a subterm of
M ′1, . . . ,M

′
l .

• x[M1, . . . ,Mn] in M ′′ in a find branch u1 = i1 <= n1, . . . , um = im <= nm suchthat defined(M ′1,
. . . ,M ′l) && . . . then M ′′, such that x[M1, . . . ,Mn] = M{u1/i1, . . . , um/im} and M is a subterm
of M ′1, . . . ,M ′l .

These syntactic constraints guarantee that a variable is accessed only when it is defined. Moreover, the
variables defined in conditions of find or in patterns or conditions of get must not have array accesses
(that is, accesses corresponding to the last four cases above).

Finally, the calculus is equipped with a type system. To be able to use variables outside their scope
(by find), the type checking algorithm works in two passes.

In the first pass, it collects the type of each variable: when a variable x is defined with type T under
replications !N1, . . . , !Nn, x has type [1, N1]× . . .× [1, Nn]→ T . When the type of x is not explicitly
given in its declaration (in <- or in patterns in let or in), its type is left undefined in this pass, and x
cannot be used outside its scope.

In the second pass, the type system checks the following requirements: In x[M1, . . . ,Mm],M1, . . . ,Mm

must be of the suitable interval type, that is, a suffix of the types of replication indices at the definition
of x. In f(M1, . . . ,Mm), if f has been declared by fun f(T1, . . . , Tm):T , Mj must be of type Tj , and
f(M1, . . . ,Mm) is then of type T . In (M1, . . . ,Mn), Mj can be of any bitstring type (that is, not an
index type [1, N]), and the result is of type bitstring. In M1 = M2 and M1 <> M2, M1 and M2

must be of the same type, and the result is of type bool. In M1 || M2 and M1 && M2, M1 and M2

must be of type bool and the result is of type bool. The type system requires each subterm to be
well-typed. Furthermore, in event e(M1, . . . ,Mn), if e has been declared by event e(T1, . . . , Tn), Mj

must be of type Tj . In new x:T or x <-R T , T must be declared with option bounded (or fixed). In
if M then . . . else . . ., M must be of type bool. Similarly, for

find . . . orfind . . . suchthat defined(. . .) && M then . . .

M must be of type bool. In let p = M in . . ., M and p must be of the same type. For function
application and tuple patterns, the typing rule is the same as for the corresponding terms. The pattern
x : T is of type T ; the pattern x can be of any bitstring type, determined by the usage of x (when the
pattern x is used as argument of a tuple pattern, its type is bitstring); the pattern =M is of the type
of M . In out(c[M1, . . . ,Mn],M), M must be of a bitstring type.

A declaration can be:

• set 〈parameter〉 = 〈value〉.
This declaration sets the value of configuration parameters. The following parameters and values
are supported:

– set allowUndefinedVar = false.
set allowUndefinedVar = true.
By default (allowUndefinedVar = false), variables in defined conditions must be defined
somewhere in the game. The setting allowUndefinedVar = true allows defined conditions
with variables that are defined nowhere. The corresponding branch of find is then removed
immediately, since the defined condition does not hold. This setting is useful to parse inter-
mediate games generated by CryptoVerif, because such impossible defined conditions may
occur in these games.

12

– set diffConstants = true.
set diffConstants = false.
When true, different constant symbols are assumed to have a different value. When false,
CryptoVerif does not make this assumption.

– set constantsNotTuple = true.
set constantsNotTuple = false.
When true, constant symbols are assumed to be different from the result of applying a tuple
function to any argument. When false, CryptoVerif does not make this assumption.

– set expandAssignXY = true.
set expandAssignXY = false.
When true, CryptoVerif automatically removes assignments let x = y or x <- y where x
and y are variables by substituting y for x (in the transformation remove_assign useless)
When false, this transformation is not performed as part of remove_assign useless.

– set minimalSimplifications = true.
set minimalSimplifications = false.
When true, simplification replaces a term with a rewritten term only when the rewriting has
used at least one rewriting rule given by the user, not when only equalities that come from
let definitions and other instructions in the game have been used. When false, a term is
replaced with its rewritten form in all cases. The latter configuration often leads to replacing
a term with a more complex one, in particular expanding let definitions, thus duplicating
their contents.

– set autoMergeBranches = true.
set autoMergeBranches = false.
When true, the transformation merge_branches is applied after simplification, to merge
branches of if, let, and find when all branches execute the same code. This is useful in
order to remove the test, which can remove a use of a secret. When false, this transformation
is not performed. This is useful in particular when the test has been manually introduced in
order to force CryptoVerif to distinguish cases.

– set autoMergeArrays = true.
set autoMergeArrays = false.
When true, merge_branches advises merge_arrays commands to make the merging of
branches of if, find, let succeed more often. When false, this advice is not automatically
given and the user should use the manual command merge_arrays (defined in Section 7) to
perform the merging.

– set uniqueBranch = true.
set uniqueBranch = false.
When uniqueBranch = true, the following transformation is enabled as part of simplify:
if a branch of a find[unique] is proved to succeed, then simplification removes all other
branches of that find. When uniqueBranch = false, this transformation is not performed.

– set uniqueBranchReorganize = true.
set uniqueBranchReorganize = false.
When uniqueBranchReorganize = true, the following transformations are enabled as part
of simplify:
∗ If a find[unique] occurs in the then branch of a find[unique], we reorganize them.
∗ If a find[unique] occurs in the condition of a find, we reorganize them.

When uniqueBranchReorganize = false, these transformations are not performed.
– set inferUnique = false.

set inferUnique = true.
When inferUnique = true, CryptoVerif tries to infer that a find that is not explicitly tagged
[unique] is in fact unique, by showing that having several solutions for this find leads to a
contradiction. When this proof succeeds, the find becomes find[unique].

13

When inferUnique = false, CryptoVerif does not try to make such proofs and just exploits
explicit [unique] tags.

– set autoSARename = true.
set autoSARename = false.
When true, and a variable is defined several times and used only in the scope of its defini-
tion with the current replication indices at that definition, each definition of this variable is
renamed to a different name, and the uses are renamed accordingly, by the transformation
remove_assign. When false, such a renaming is not done automatically, but in manual
proofs, it can be requested specifically for each variable by SArename x, where x is the name
of the variable.

– set autoRemoveAssignFindCond = true.
set autoRemoveAssignFindCond = false.
When true, the default removal of assignments performed by CryptoVerif removes assign-
ments on variables x defined by let x = M in ... inside a condition of find. When false,
the removal of this assignments is not performed automatically, but in manual proofs, it can
be requested by the command remove_assign findcond.

– set autoRemoveIfFindCond = true.
set autoRemoveIfFindCond = false.
When true, simplification removes if in defined conditions of find by transforming them
into logical formulae. When false, this removal is not performed.

– set autoMove = true.
set autoMove = false.
When true, the transformation move all is automatically executed after each cryptographic
transformation. This transformation moves random number generations (new or <-R) down-
wards as much as possible, duplicating them when crossing a if, let, or find. (A future
SArename transformation may then enable us to distinguish cases depending on which of the
duplicated random number generations a variable comes from.) It also moves assignments
down in the syntax tree but without duplicating them, when the assignment can be moved
under a if, let, or find, in which the assigned variable is used only in one branch. (In this
case, the assigned term is computed in fewer cases thanks to this transformation.)
When false, the transformation move all is never automatically executed.

– set autoExpand = true.
set autoExpand = false.
When true, the transformation expand is automatically executed after transformations that
result in a game containing if, let, find, event, event_abort, or new terms. The transfor-
mation expand expands these terms into processes. That leads to distinguishing the branches
until the end of the process, which may help the proof by distinguishing more cases, but
may lead to very large games. This is also needed because some game transformations of
CryptoVerif do not support non-expanded games (global_dep_anal, insert, merge_arrays,
merge_branches, move; furthermore, simplify is weaker when it is applied to a non-expanded
game, and success fails to prove equivalence queries in non-expanded games and correspon-
dence queries when the arguments of the considered events contain if, let, find, event,
event_abort, or new).
When false, the transformation expand is never automatically executed.

– set optimizeVars = false.
set optimizeVars = true.
When true, CryptoVerif tries to reduce the number of different intermediate variables intro-
duced in cryptographic transformations. This can lead to distinguishing fewer cases, which un-
fortunately often leads to a failure of the proof. When false, different intermediate varaibles
are used for each occurrence of the transformed expression.

– set interactiveMode = false.
set interactiveMode = true.

14

When false, CryptoVerif runs automatically. When true, CryptoVerif waits for instructions
of the user on how to perform the proof. (See Section 7 for details on these instructions.)
This setting is ignored when proof instructions are included in the input file using the proof
command. In this case, the instructions given in the proof command are executed, without
user interaction.

– set autoAdvice = true.
set autoAdvice = false.
In interactive mode, when autoAdvice = true, execute the advised transformations automat-
ically. When autoAdvice = false, display the advised transformations, but do not execute
them. The user may then give them as instructions if he wishes.

– set noAdviceCrypto = false.
set noAdviceCrypto = true.
When noAdviceCrypto = true, prevents the cryptographic transformations from generating
advice. Useful mainly for debugging the proof strategy.

– set noAdviceGlobalDepAnal = false.
set noAdviceGlobalDepAnal = true.
When noAdviceGlobalDepAnal = true, prevents the global dependency analysis from gen-
erating advice. Useful when the global dependency analysis generates bad advice.

– set simplifyAfterSARename = true.
set simplifyAfterSARename = false.
When simplifyAfterSARename = true, apply simplification after each execution of the SAre-
name transformation. This slows down the system, but enables it to succeed more often.

– set backtrackOnCrypto = false.
set backtrackOnCrypto = true.
When backtrackOnCrypto = true, use backtracking when the proof fails, to try other cryp-
tographic transformations. This slows down the system considerably (so it is false by default),
but enables it to succeed more often, in particular for public-key protocols that mix several
primitives. One usage is to try first with the default setting and, if the proof fails although
the property is believed to hold, try again with backtracking.

– set useKnownEqualitiesInCryptoTransform = true.
set useKnownEqualitiesInCryptoTransform = false.
When useKnownEqualitiesInCryptoTransform = true, CryptoVerif relies on known equal-
ities between terms to replace variables with their values in the cryptographic transformations.
When it is false, CryptoVerif just uses the variables as their appear in the game, and relies
only on advice to replace variables with their values.

– set priorityEventUnchangedRand = n. (default: 5)
During the cryptographic transformation, variables that occur in event and are mapped to
random variables marked [unchanged] in the equivalence can be left unchanged.
Sometimes, it is also possible to transform the term that contains them using one of the oracles
of the equivalence.
This settings determines which option is chosen: CryptoVerif prefers leaving the variable
unchanged rather than using an oracle with priority at least n. It prefers using an oracle with
priority less than n rather than leaving the variable unchanged.

– set casesInCorresp = true.
set casesInCorresp = false.
When casesInCorresp = true, CryptoVerif distinguishes cases depending on the definition
point of variables, to infer more facts in order to prove correspondence properties. However,
this can be slow in complex cases. Using set casesInCorresp = false disables this case
distinction and speeds up the proof of correspondences.

– set elsefindFactsInReplace = true.
set elsefindFactsInReplace = false.

15

When elsefindFactsInReplace = true, CryptoVerif will try to infer more facts when doing
a replace operation: when it encounters a find branch in the process, it considers a variable
x[M1, . . . ,Ml], which is guaranteed to be defined by this find. If x is defined in the else
part of another find construct, then at the definition of x, we know that the conditions of
the then branches of this find are not satisfied:

∀u1, . . . , uk, not(defined(y1[M11, . . . ,M1l1], . . . , yk[Mk1, . . . ,Mklk]) ∧ t)

We try to infer not(t) from this fact.
∗ if each variable yj [Mj1, . . . ,Mjlj] is defined before x[M1, . . . ,Ml], then not(t) indeed holds

by the fact above;
∗ for each yj [Mj1, . . . ,Mjlj], we assume that yj [Mj1, . . . ,Mjlj] is defined after or at the

same time as x[M1, . . . ,Ml] and try to prove not(t).
It this proof succeeds, we can infer that not(t) holds at the current program point.

– set elsefindFactsInSimplify = true.
set elsefindFactsInSimplify = false.
Similar to elsefindFactsInReplace, but applies in simplify operations.

– set elsefindFactsInSuccess = true.
set elsefindFactsInSuccess = false.
Similar to elsefindFactsInReplace, but applies in success operations.

– set elsefindFactsInSuccessSimplify = true.
set elsefindFactsInSuccessSimplify = false.
Similar to elsefindFactsInReplace, but applies in the elimination of useless code in success
simplify operations.

– set elsefindAdditionalDisjunct = true.
set elsefindAdditionalDisjunct = false.
When elsefindAdditionalDisjunct = true, the procedure that infers facts from false con-
ditions of find (see set elsefindFactsInReplace) is enriched: in case yj [Mj1, . . . ,Mjlj]
may be defined at the same time as x[M1, . . . ,Ml], we additionally assume that they have
different indices, that is, (Mj1, . . . ,Mjlj) 6= (M1, . . . ,Ml) to eliminate this case. There-
fore, we infer (Mj1, . . . ,Mjlj) 6= (M1, . . . ,Ml) ⇒ not(t) or equivalently (Mj1, . . . ,Mjlj) =
(M1, . . . ,Ml) ∨ not(t). This is typically more costly and more precise than the basic proce-
dure that just infers not(t) when possible.

– set improvedFactCollection = false.
set improvedFactCollection = true.
When improvedFactCollection = true, and CryptoVerif collects the facts that hold at each
program point, it also takes into account variables that cannot be defined at a certain program
point, variables that cannot be simultaneously defined, and elsefind facts, in order to prove
more facts.
It is a bit costly, so it is disabled by default (improvedFactCollection = false).

– set useEqualitiesInSimplifyingFacts = false.
set useEqualitiesInSimplifyingFacts = true.
When useEqualitiesInSimplifyingFacts = true, CryptoVerif uses known equalities be-
tween terms to determine whether a fact is equal to another fact.
It is a bit costly, so it is disabled by default (useEqualitiesInSimplifyingFacts = false).

– set useKnownEqualitiesWithFunctionsInMatching = false.
set useKnownEqualitiesWithFunctionsInMatching = true.
When useKnownEqualitiesWithFunctionsInMatching = true, CryptoVerif uses known equal-
itiesM1 =M2 where the root ofM1 is a function application to normalize terms before testing
whether they match an equation or collision statement or an oracle in a cryptographic trans-
formation. That can allow to apply these statements or transformations more often.
It is a bit costly, so it is disabled by default (useKnownEqualitiesWithFunctionsInMatching
= false).

16

– set ignoreSmallTimes = 〈n〉. (default 3)
When 0, the evaluation of the runtime is very precise, but the formulas are often too compli-
cated to read.
When 1, the system ignores many small values when computing the runtime of the games. It
considers only function applications and pattern matching.
When 2, the system ignores even more details, including application of boolean operations
(&&, ||, not), constants generated by the system, () and matching on (). It ignores the
creation and decomposition of tuples in inputs and outputs.
When 3, the system additionally ignores the time of equality tests between values of bounded
length, as well as the time of all constants.

– set maxIterSimplif = 〈n〉. (default 2)
Sets the maximum number of repetitions of the simplification transformation for each simplify
instruction. A greater value slows down the system but may enable it to obtain simpler games,
and therefore increase its chances of success. When n ≤ 0, repeats simplification until a fix-
point is reached.

– set maxAddFactDepth = 〈n〉. (default 1000)
Sets the maximum depth of recursion in the addition and simplification of known facts. When
n ≤ 0, puts no limit on this depth of recursion. Putting a limit avoids an infinite loop in some
rare cases.

– set maxTryNoVarDepth = 〈n〉. (default 20)
Sets the maximum depth of recursion in the replacement of variables with their values. When
n ≤ 0, puts no limit on this depth of recursion. Putting a limit avoids an infinite loop in some
rare cases.

– set maxReplaceDepth = n. (default 20)
Sets the maximum number of rewriting steps that are allowed to prove that the new term is
equal to the old one in a replace transformation.

– set maxIterRemoveUselessAssign = 〈n〉. (default 10)
Sets the maximum number of repetitions of the removal of useless assignments for each
remove_assign useless instruction. A greater value slows down the system but may en-
able it to obtain simpler games, and therefore increase its chances of success. When n ≤ 0,
repeats removal of useless assignments until a fixpoint is reached.

– set maxAdvicePossibilitiesBeginning = n1. (default 50)
set maxAdvicePossibilitiesEnd = n2. (default 10)
In cryptographic transformations, when CryptoVerif can transform many terms in several
ways of different priority, these various ways combine, yielding a very large number of advice
possibilities. These two options allow to limit the number of considered advice possibilities
by keeping the n1 first possibilities (with highest priority) and the n2 last possibilities (with
lowest priority but fewer advised transformations). When n1 or n2 are not positive, all advice
possibilities are kept, but that may yield a very slow execution.

– set minAutoCollElim = 〈s〉. (default pest80)
Sets the maximum probability for which elimination of collisions is possible automatically
(which corresponds to a minimum cardinal for the type, when the probability distribution is
uniform). The argument 〈s〉 can be large (probability 2−160), password (probability 2−20),
or pestn (probability 2−n; see also the type declaration).

– set forgetOldGames = false.
set forgetOldGames = true.
When forgetOldGames = true, old games are removed from memory after each crypto-
graphic transformation or each interactive command. That allows to save some memory,
but prevents undo. The display of the games is saved into a temporary file to allow displaying
the games at the end of the proof.

17

The default value is the first mentioned, except when explicitly specified. In most cases, the default
values should be left as they are, except for interactiveMode, which allows to perform interactive
proofs.

• param seq+〈ident〉 [[noninteractive] | [passive] | [default] | [small] | [sizen]].
param n1, . . . , nm. declares parameters n1, . . . , nm. Parameters are used to represent the number of
copies of replicated processes (that is, the maximum number of calls to each query). In asymptotic
analyses, they are polynomial in the security parameter. In exact security analyses, they appear
in the formulas that express the probability of an attack.

The options [noninteractive], [passive], [default], [small], or [sizen] indicate to Cryp-
toVerif an order of magnitude of the parameter. The option [sizen] (where n is a constant integer)
indicates the parameter is at most 2n. CryptoVerif uses this information to optimize the computed
probability bounds: when several bounds are correct, it chooses the smallest one. It also uses it to
estimate the probability of collisions, and decide whether to eliminate the collision or not.

The option [noninteractive] means that the queries bounded by the considered parameters can
be made by the adversary without interacting with the tested protocol, so the number of such
queries is likely to be large. Parameters with option [noninteractive] are typically used for
bounding the number of calls to random oracles. [noninteractive] is equivalent to [size80].

The absence of option, the option [default], and the option [passive] correspond to adversary
interacting with the tested protocol without any limitation on the number of sessions. This can
correspond to two situations:

– The protocol can start new sessions without limit even if it could detect that an active attack
happened in previous sessions.

– The adversary listens passively to sessions of the protocol that run as expected (hence the
word [passive]). Therefore, for such runs, the adversary is undetected.

No option, [default], and [passive] are equivalent to [size30].

The option [small] should be used for sessions in which the adversary actively interacts with the
honest participants and mounts detectable attacks, when these participants stop after a certain
number of failed attempts (e.g. credit cards are blocked after 3 incorrect PINs). [small] is
equivalent to [size2].

• proba 〈ident〉 [[〈pest〉]].
proba p. declares a probability p. (Probabilities may be used as functions of other arguments,
without explicit checking of these arguments.) When [〈pest〉] (probability estimate) is present,
it gives an estimate of the value of the probability: pestn, where n is an integer, means that the
probability is at most 2−n; password is equivalent to pest20, i.e. probability at most 2−20; large is
equivalent to pest160, i.e. probability at most 2−160. When [〈pest〉] is absent, large is the default.
When the probability p appears in a collision statement and the command allowed_collisions
pestn′ has been issued, CryptoVerif applies the collision statement only when the probability
of collision (taking into account how many times it is applied) is less than 2−n

′
. The estimate

is only used to decide whether to eliminate collisions or not. The probability formula output by
CryptoVerif at the end of the proof remains correct even if the estimates are incorrect. However,
incorrect estimates may have the consequence that, when evaluating this probability, its value is
larger than desired.

• type 〈ident〉 [[seq+〈option〉]].
type T. declares a type T . Types correspond to sets of bitstrings or a special symbol ⊥ (used for
failed decryptions, for instance). Optionally, the declaration of a type may be followed by options
between brackets. These options can be:

– bounded means that the type is a set of bitstrings of bounded length or perhaps ⊥. In other
words, the type is a finite subset of bitstrings plus ⊥.

18

– fixed means that the type is the set of all bitstrings of a certain length n. In particular, the
type is a finite set, so fixed implies bounded.

– nonuniform means that random numbers may be chosen in the type with a non-uniform
distribution. (When nonuniform is absent, random numbers are chosen using a uniform
distribution for fixed types, an almost uniform distribution for bounded types, and random
values cannot be chosen among other types. Note that fixed, nonuniform and bounded,
nonuniform are also allowed to have a non-uniform distribution on a fixed or bounded type.)

– sizen indicates the order of magnitude of the cardinal of the type: sizen means that its
cardinal is |T | = 2n, where n is an integer (like the set of bitstrings of length n).
sizemin_max means that 2min ≤ |T | ≤ 2max , where min and max are integers.

– pcolln (probability of collision) means that Pcoll1rand(T) ≤ 2−n, where n is an integer.
(Pcoll1rand(T) is the probability of collision between a random element chosen according to
the default probability distribution DT for the considered type T , and an independent element
of type T .)
When the default distribution is uniform or almost uniform (fixed and bounded types),
Pcoll1rand(T) = 1

|T | , so CryptoVerif estimates the probability of collision from the cardinal
of the type and conversely, so mentioning one of sizen or pcolln is sufficient.
CryptoVerif uses this information to determine whether collisions with random elements of
the considered type T should be eliminated. For collisions to be eliminated, two conditions
must be satisfied:
1. Pcoll1rand(T) ≤ 2−n

′
, that is, T has option pcolln with n ≥ n′, where n′ is set by

set minAutoCollElim = pestn′ (the default is n′ = 80), or elimination of collisions on
this data has been manually requested by the command simplify coll_elim(. . .) or
global_dep_anal x coll_elim(. . .).

2. the probability of collision satisfies the conditions specified by the command
allowed_collisions (used inside a proof environment). By default, collisions are elim-
inated when
∗ either Pcoll1rand(T) ≤ 2−160 (T has option pcolln with n ≥ 160 or option large)
∗ or Pcoll1rand(T) ≤ 2−20 (T has option pcolln with n ≥ 20 or option password),

the collision is repeated at most N times, and N is a parameter of size at most 2.
See the command allowed_collisions for more details.

– large is equivalent to size160_1000000000, pcoll160, that is, |T | ≥ 2160 and Pcoll1rand(T) ≤
2−160. By default, large means that the type T is large enough so that all collisions with ran-
dom elements of T can be eliminated. (In asymptotic analyses, Pcoll1rand(T) is negligible.
In exact security analyses, the probability of a collision is correctly expressed by the system.)

– password is equivalent to size20_40, pcoll20, that is, 220 ≤ |T | ≤ 240 and Pcoll1rand(T) ≤
2−20. password is intended for passwords in password-based security protocols. These pass-
words are taken in a dictionary whose size is much smaller than the size of a nonce for instance,
so the probability of collisions among passwords is larger than among data of large types.
CryptoVerif assumes that passwords are taken in a dictionary of between about one million
(220) and about one trillion (240) elements.

• fun 〈ident〉(seq〈ident〉):〈ident〉 [[seq+〈option〉]].
fun f(T1, . . . , Tn):T. declares a function that takes n arguments, of types T1, . . . , Tn, and returns
a result of type T . Optionally, the declaration of a function may be followed by options between
brackets. These options can be:

– [data] means that f is injective and that its inverses can be computed in polynomial time:
f(x1, . . . , xm) = y implies for i ∈ {1, . . . ,m}, xi = f−1i (y) for some functions f−1i . (In the
vocabulary of [2], f is poly-injective.) f can then be used for pattern matching.

– [projection] means that f is an inverse of a poly-injective function. f must be unary.
(Thanks to the pattern matching construct, one can in general avoid completely the declaration
of projection functions, by just declaring the corresponding poly-injective function data.)

19

– [uniform] means that f maps the default distribution of its argument into the default dis-
tribution of its result. f must be unary; the argument and the result of f must be of types
marked fixed, bounded, or nonuniform.

• letfun 〈ident〉[(seq〈vartypeb〉)]=〈term〉.
letfun f(x1:T1, . . . , xn:Tn)=M. declares a function f that takes n arguments named x1, . . . , xn
of types T1, . . . , Tn, respectively. The subsequent calls to this function are replaced by the term M
in which we replace x1, . . . , xn with the arguments given by the caller. (We use xi<=Ni instead of
xi:Ti when xi is of type [1, Ni], where Ni is a parameter, declared by param Ni.)

Variables defined inside letfun can be used in array references and in queries, provided the process
after expansion of letfun satisfies the required conditions for that.

• const seq+〈ident〉:〈ident〉.
const c1, . . . , cn:T. declares constants c1, . . . , cn of type T . Different constants are assumed to
correspond to different bitstrings (except when the instruction set diffConstants = false. is
given).

• table 〈ident〉(seq+〈ident〉).
table tbl(T1, . . . , Tn). declares the table tbl , whose elements are tuples of type T1, . . . , Tn. Types
Ti may be replaced with parameters Ni, to declare a table that contains a replication index of type
[1, Ni]. Elements can be inserted in the table by insert tbl(M1, . . . ,Mn) and the table can be
read using get.

• channel seq+〈ident〉.
channel c1, . . . , cn. declares communication channels c1, . . . , cn.

• event 〈ident〉[(seq〈ident〉)].
event e(T1, . . . , Tn). declares an event e that takes arguments of types T1, . . . , Tn. When there
are no arguments, we can simply declare event e. Types Ti may be replaced with parameters Ni,
to declare an event that takes as argument a replication index of type [1, Ni].

• let 〈ident〉[(seq〈vartypeb〉)] = 〈oprocess〉.
let 〈ident〉[(seq〈vartypeb〉)] = 〈iprocess〉.
let proc(x1 : T1, . . . , xn : Tn) = P. says that proc takes n arguments, x1 of type T1, . . . , xn of
type Tn, and is equal to the process P . (We use xi<=Ni instead of xi:Ti when xi is of type [1, Ni],
where Ni is a parameter, declared by param Ni.) When parsing a process, proc(M1, . . . ,Mn)
will be replaced with P{M1/x1, . . . ,Mn/xn} when P is an input process. In this case, the terms
M1, . . . ,Mn must contain only variables, replication indices, and function applications and the
variables x1, . . . , xn cannot have array accesses. The process proc(M1, . . . ,Mn) will be replaced
with let x1 =M1 in . . . let xn =Mn in P when P is an output process.

• equation [forall seq〈vartype〉;]〈simpleterm〉 [if 〈simpleterm〉].
equation forall x1 : T1, . . . , xn : Tn;M. says that for all values of x1, . . . , xn in types T1, . . . , Tn
respectively, M is true. The term M must be a simple term without array accesses. All bound
variables x1, . . . , xn must occur in M . When M is an equality M1 = M2, CryptoVerif uses this
information for rewriting M1 into M2, so one must be careful of the orientation of the equality, in
particular for termination. In this case, all bound variables x1, . . . , xn must occur in M1, so that
the target term M2 is entirely determined knowing the instance of M1. When M is an inequality,
M1<>M2, CryptoVerif rewrites M1 = M2 to false and M1<>M2 to true. Otherwise, it rewrites M
to true.

equation forall x1 : T1, . . . , xn : Tn;M if M ′. says that for all values of x1, . . . , xn in types
T1, . . . , Tn respectively such that M ′ is true, we have that M is true. The terms M and M ′ must
be simple terms without array accesses. CryptoVerif tries to prove the precondition M ′, and in
case of success, rewrites terms as explained above.

20

• equation builtin 〈eq_name〉(seq+〈ident〉).
This declaration declares the equational theories satisfied by function symbols. The following
equational theories are supported:

– equation builtin commut(f). indicates that the function f is commutative, that is, f(x, y) =
f(y, x) for all x, y. In this case, the function f must be a binary function with both arguments
of the same type. (The equation f(x, y) = f(y, x) cannot be given by the forall declara-
tion because CryptoVerif interprets such declarations as rewrite rules, and the rewrite rule
f(x, y)→ f(y, x) does not terminate.)

– equation builtin assoc(f). indicates that the function f is associative, that is, f(x, f(y, z)) =
f(f(x, y), z) for all x, y, z. In this case, the function f must be a binary function with both
arguments and the result of the same type.

– equation builtin AC(f). indicates that the function f is associative and commutative. In
this case, the function f must be a binary function with both arguments and the result of the
same type.

– equation builtin assocU(f, n). indicates that the function f is associative, and that n
is a neutral element for f , that f(x, n) = f(n, x) = x for all x. In this case, the function f
must be a binary function with both arguments and the result of the same type as the type
of the constant n.

– equation builtin ACU(f, n). indicates that the function f is associative and commutative,
and that n is a neutral element for f . In this case, the function f must be a binary function
with both arguments and the result of the same type as the type of the constant n.

– equation builtin ACUN(f, n). indicates that the function f is associative and commuta-
tive, that n is a neutral element for f , and that f satisfies the cancellation equation f(x, x) = n.
In this case, the function f must be a binary function with both arguments and the result of
the same type as the type of the constant n.

– equation builtin group(f, inv, n). indicates that f forms group with inverse inv and
neutral element n, that is, the function f is associative, n is a neutral element for f , and
inv(x) is the inverse of x, that is, f(inv(x), x) = f(x, inv(x)) = n. In this case, the function f
must be a binary function with both arguments and the result of the same type T , inv must
be a unary function that takes and returns a value of type T , and n must be a constant of
type T .

– equation builtin commut_group(f, inv, n). indicates that f forma commutative group
with inverse inv and neutral element n, that is, the function f is associative and commutative,
n is a neutral element for f , and inv(x) is the inverse of x. In this case, the function f must
be a binary function with both arguments and the result of the same type T , inv must be a
unary function that takes and returns a value of type T , and n must be a constant of type T .

• collision 〈res〉∗[[random_choices_may_be_equal]][forall seq〈vartype〉;]
return(〈simpleterm〉) <=(〈proba〉)=> return(〈simpleterm〉)[if 〈cond〉].

where

〈cond〉 ::= 〈simpleterm〉
| 〈ident〉 independent-of 〈ident〉
| 〈cond〉 && 〈cond〉
| 〈cond〉 || 〈cond〉

collision new x1:T1; . . . new xn:Tn;forall y1 : T ′1, . . . , ym : T ′m;
return(M1) <=(p)=> return(M2).

means that when x1, . . . , xn are chosen randomly and independently in T1, . . . , Tn respectively (with
the default probability distributions for these types), a Turing machine running in time time has
probability at most p of finding y1, . . . , ym in T ′1, . . . , T ′m such that M1 6= M2. The terms M1 and
M2 must be simple terms without array accesses. See below for the syntax of probability formulas.

21

This allows CryptoVerif to rewrite M1 into M2 with probability loss p, when x1, . . . , xn are created
by independent random number generations of types T1, . . . , Tn respectively. One should be careful
of the orientation of the equivalence, in particular for termination.

collision new x1:T1; . . . new xn:Tn;forall y1 : T ′1, . . . , ym : T ′m;
return(M1) <=(p)=> return(M2) if c.

means that the previous property holds when the condition c is true, where c is built by conjunc-
tions or disjunctions of simple terms and independence conditions “yi independent-of xj”, where
yi is bound by forall and xj is bound by new. (However, disjunctions cannot mix terms and
independence conditions.)

The option [random_choices_may_be_equal], when it is present, allows several random number
generations among x1, . . . , xn to be the same, instead of being independent. One can then group, in
a single collision statement, situations in which x1, . . . , xn are the same or they are independent.
The indices of the variables corresponding to x1, . . . , xn in the game are still made independent of
x1, . . . , xn. Hence, there are two cases: either xi is the same as xj , or xi and xj are independent of
each other. With the option [random_choices_may_be_equal], the independence conditions can
also be “xi independent-of xj”, where xi and xj are both bound by new. This condition then
means xi and xj are different random choices, so xj is also independent of xi.

• equiv[(〈ident〉[(〈ident〉)])]
〈omode〉 [| . . . |〈omode〉] <=(〈proba〉)=> [[n]] [[seq+〈option〉]] 〈ogroup〉 [| . . . |〈ogroup〉].
equiv(name) L <=(p)=> R. means that the probability that a probabilistic Turing machine that
runs in time time distinguishes L from R is at most p. The name name is used to designate the
equivalence in the crypto command used in manual proofs (see Section 7). This name can be
either an identifier id , or id(f), where id is an identifier and f a second identifier. Names of the
form id(f) are most useful when the equivalence is defined inside a macro definition (def). In this
case, the identifier id is kept unchanged and the identifier f is renamed during macro expansion;
if f is a parameter of the macro, it is then replaced with its value at macro expansion, so that
one can always designate precisely the desired equivalence even when a macro is expanded several
times. The name may be omitted.

L and R define sets of oracles. (They can be translated into processes as explained in [2].)

– O(x1 : T1, . . . , xn : Tn) := FP represents an oracle O that takes arguments x1, . . . , xn of
types T1, . . . , Tn respectively, and returns the result computed by FP . The oracle body FP
is similar to term, but terminates with a return as shown in the grammar of 〈obody_equiv〉
(Figure 3).

– Optionally, in the left-hand side, an integer between brackets [n] (n ≥ 0) can be added in
the definition of an oracle, which becomes O(x1 : T1, . . . , xn : Tn) [n] := FP . This integer
does not change the semantics of the oracle, but is used for the proof strategy: CryptoVerif
uses preferably the oracles with the smallest integers n when several oracles can be used for
representing the same expression. When no integer is mentioned, n = 0 is assumed, so the
oracle has the highest priority.

– Optionally, in the left-hand side, the indication [useful_change] can also be added in the
definition of an oracle, which becomes O(x1 : T1, . . . , xn : Tn) [useful_change] := FP .
This indication is also used for the proof strategy: if at least one [useful_change] indication
is present, CryptoVerif applies the transformation defined by the equivalence only when at
least one [useful_change] function is called in the game.

– !i <= N new y1:T ′1; . . . new ym:T ′m;(FG1| . . . |FGn) represents N copies of a process that
picks fresh random numbers y1, . . . , ym of types T ′1, . . . , T ′m respectively, and makes available
the functions described in FG1, . . . , FGn. Each copy has a different value of i ∈ [1, N]. The
identifier i cannot be referred to explicitly in the process; it is used only implicitly as array
index of variables defined under !i <= N . The replication !i <= N can be abbreviated !N .
The replication !i <= N can be omitted only at the root of the equivalence, when it contains a
single 〈omode〉 on the left-hand side, and a single 〈ogroup〉 on the right-hand side. CryptoVerif
then automatically adds a replication internally, and adjusts the probability accordingly.

22

CryptoVerif uses such equivalences to transform processes that call oracles of L into processes that
call oracles of R.

L may contain mode indications to guide the rewriting: the mode [all] means that all occurrences
of the root function symbol of oracles in the considered group must be transformed; the mode
[exist] means that at least one occurrence of an oracle in this group must be transformed.
([exist] is the default; there must be at most one oracle group with mode [exist]; when an
oracle group contains no random number generation, it must be in mode [all].)

Optionally, an integer between brackets [n] (n ≥ 0) can be added in an equivalence. This integer
does not change the semantics of the equivalence, but is used for the proof strategy: CryptoVerif
uses preferably the equivalences with the smallest integers n when several equivalences can be used.
When no integer is mentioned, n = 0 is assumed, so the equivalence has the highest priority.

Two options can specified for an equivalence, in [seq+〈option〉]:

– The manual option, when it is present in the equivalence, prevents the automatic application
of the transformation. The transformation is then applied only using the manual crypto
command.

– The computational option, when it is present in the equivalence, means that the transfor-
mation relies on a computational assumption (by opposition to decisional assumptions). This
indication allows one to mark some random number generations of the right-hand side of the
equivalence with [unchanged], which means that the random value is preserved by the trans-
formation. The transformation is then allowed even if the random value occurs as argument
of events. (This argument will be unchanged.) The mark [unchanged] is forbidden when the
equivalence is not marked [computational]. Indeed, decisional assumptions may alter any
random values.

L and R must satisfy certain syntactic constraints:

– L and R must be well-typed, satisfy the constraints on array accesses (see the description of
processes above), and the type of the results of corresponding oracles in L and R must be the
same.

– All oracle definitions in L are of the form O(. . .) := return(M) where M is a simple term.
Oracle definitions in R are of the form O(. . .) := 〈obody_equiv〉.

– L and R must have the same structure: same replications, same number of oracles, same oracle
names in the same order, same number of arguments with the same types for each oracle.

– Under a replication with no random number generation in L, one can have only a single oracle.

– Replications in L (resp. R) must have pairwise distinct bounds. Oracles in L (resp. R) must
have pairwise distinct names.

– Finds in R are of the form

find[[unique]] . . .

orfind u1 <= N1, . . . , um <= Nm suchthat defined(z1[ũ1], . . . , zl[ũl]) && M then FP

. . . else FP ′

where ũk is a non-empty prefix of u1, . . . , um, at least one ũk for 1 ≤ k ≤ l is the whole
sequence u1, . . . , um, and the implicit prefix of the current array indices is the same for all
z1, . . . , zl. (When z is defined under replications !N1, . . . , !Nn, z is always an array with n
dimensions, so it expects n indices, but the first n′ < n indices are left implicit when they are
equal to the current indices of the top-most n′ replications above the usage of z—which must
also be the top-most n′ replications above the definition of z. We require the implicit indices
to be the same for all variables z1, . . . , zl.) Furthermore, there must exist k ∈ {1, . . . , lj} such
that for all k′ 6= k, zk′ is defined syntactically above all definitions of zk and ũk′ is a prefix of
ũk. Finally, variables zk must not be defined by a find in R.

23

This is the key declaration for defining the security properties of cryptographic primitives. Since
such declarations are delicate to design, we recommend using predefined primitives listed in Sec-
tion 6, or copy-pasting declarations from examples.

• query [seq〈vartypeb〉;]〈query〉(;〈query〉)∗.
The query declaration indicates which security properties we would like to prove. It is of the form
query x1:T1, . . . ,xn:Tn;Q1; . . . ;Qn. First, we declare the types of all variables x1, . . . , xn that
occur in correspondence queries that follow. (We use xi<=Ni instead of xi:Ti when xi is of type
[1, Ni], where Ni is a parameter, declared by param Ni.) Second, we give the queries themselves.
The available queries Qi are as follows:

– secret x [public_vars l]: show that the array x is indistinguishable from an array of inde-
pendent random numbers (by several test queries), even when the variables in l are public.
The list l is considered empty when it is omitted. In the vocabulary of [2], this is secrecy.

– secret x [public_vars l] [cv_onesession]: show that any element of the array x cannot
be distinguished from a random number (by a single test query), even when the variables in
l are public. The list l is considered empty when it is omitted. In the vocabulary of [2], this
is one-session secrecy.
In addition to the option cv_onesession, the options real_or_random, cv_real_or_random
and all options starting with pv_ are also allowed, but ignored. Real-or-random secrecy is the
default for CryptoVerif and the options starting with pv_ are for ProVerif.

– M ==> M ′. The system shows that, for all values of variables that occur in M , if M is true
then there exist values of variables of M ′ that do not occur in M such that M ′ is true.
M must be a conjunction of terms event(e), inj-event(e), event(e(M1, . . . ,Mn)), or
inj-event(e(M1, . . . ,Mn)) where e is an event declared by event and the Mi are simple
terms without array accesses (not containing events).
M ′ must be formed by conjunctions and disjunctions of terms event(e), inj-event(e),
event(e(M1, . . . ,Mn)), inj-event(e(M1, . . . ,Mn)), or simple terms without array accesses
(not containing events).
When inj-event is present, the system proves an injective correspondence, that is, it shows
that several different events marked inj-event before ==> imply the execution of several dif-
ferent events marked inj-event after ==>. More precisely, inj-event(e1(M11, . . . ,M1m1

))
&& . . . && inj-event(en(Mn1, . . . ,Mnmn

)) && . . . ==> M ′ means that for each tuple of exe-
cuted events e1(M11, . . . ,M1m1) (executed N1 times), . . . , en(Mn1, . . . ,Mnmn) (executed Nn

times), M ′ holds, considering that an event inj-event(e′(M1, . . . ,Mm)) in M ′ holds when
it has been executed at least N1 × . . . × Nn times. The inj-event marker must occur ei-
ther both before and after ==> or not at all. (Otherwise, the query would be equivalent to a
non-injective correspondence.)

– M . This query is an abbreviation for M ==> false.

• proof {〈command〉; . . . ;〈command〉}
Allows the user to include in the CryptoVerif input file the commands that must be executed by
CryptoVerif in order to prove the protocol. The allowed commands are those described in Section 7,
except that help and ? are not allowed and that the crypto command must be fully specified (so
that no user interaction is required). If the command contains a string that is not a valid identifier,
*, or ., then this string must be put between quotes ". This is useful in particular for variable
names introduced internally by CryptoVerif and that contain @ (so that they cannot be confused
with variables introduced by the user), for example "@2_r1".

• def 〈ident〉(seq〈ident〉) {seq〈decl〉}
def m(x1, . . . , xn) {d1, . . . , dk} defines a macro named m, with arguments x1, . . . , xn. This macro
expands to the declarations d1, . . . , dk, which can be any of the declarations listed in this manual,
except def itself. The macro is expanded by the expand declaration described below. When the
expand declaration appears inside a def declaration, the expanded macro must have been defined

24

before the def declaration (which prevents recursive macros, whose expansion would loop). Macros
are used in particular to define a library of standard cryptographic primitives that can be reused
by the user without entering their full definition. These primitives are presented in Section 6.

• expand 〈ident〉(seq〈ident〉).
expand m(y1, . . . , yn). expands the macro m by applying it to the arguments y1, . . . , yn. If the
definition of the macro m is def m(x1, . . . , xn) {d1, . . . , dk}, then it generates d1, . . . , dk in which
y1, . . . , yn are substituted for x1, . . . , xn and the other identifiers that were not already defined at
the def declaration are renamed to fresh identifiers.

The following identifiers are predefined:

• The type bitstring is the type of all bitstrings.

• The type bitstringbot is the type that contains all bitstrings and ⊥.

• The type bool is the type of boolean values, which consists of two constant bitstrings true and
false. It is declared fixed.

• The function not is the boolean negation, from bool to bool.

• The constant bottom represents ⊥. (The special element of bitstringbot that is not a bitstring.)

The syntax of probability formulas allows parenthesing and the usual algebraic operations +, -, *, /.
(* and / have higher priority than + and -, as usual.), as well as the maximum, denoted max(p1, . . . ,pn).
They may also contain

• P or P (p1, . . . , pn) where P has been declared by proba P and p1, . . . , pn are probability formulas;
this formula represents an unspecified probability depending on p1, . . . , pn.

• N , where N has been declared by param N , designates the number of copies of a replication.

• #O, where O is an oracle, designates the number of different calls to the oracle O.

• |T |, where T has been declared by type T and is fixed or bounded, designates the cardinal of T .

• maxlength(M) is the maximum length of termM (M must be a simple term without array access,
and must be of a non-bounded type).

• length(f, p1, . . . , pn) designates the maximal length of the result of a call to f , where p1, . . . , pn
represent the maximum length of the non-bounded arguments of f (pi must be built from max,
maxlength(M), and length(f ′, . . .), whereM is a term of the type of the corresponding argument
of f and the result of f ′ is of the type of the corresponding argument of f).

• length(T) designates the maximal length of a bitstring of type T , where T is a bounded type.

• length((T1, . . . , Tn), p1, . . . , pn) designates the maximal length of the result of the tuple function
from T1 × . . . × Tm to bitstring, where p1, . . . , pn represent the maximum length of the non-
bounded arguments of this function.

• n is an integer constant.

• eps_find is the maximum distance between the uniform probability distribution and the proba-
bility distribution used for choosing elements in find.

• eps_rand(T) is the maximum distance between the uniform probability distribution and the de-
fault probability distribution DT for type T (when T is bounded).

25

• Pcoll1rand(T) is the maximum probability of collision between a random value X of type T
chosen according to the default distribution DT for type T and an element of type T that does
not depend on it (when T is nonuniform). This is also the maximum probability of choosing any
given element of T in the default distribution for that type:

Pcoll1rand(T) = max
a∈T

Pr[X = a]

where X is chosen according to distribution DT .

• Pcoll2rand(T) is the maximum probability of collision between two independent random values
of type T chosen according to the default distribution DT for type T (when T is nonuniform). We
have

1

|T |
≤ Pcoll2rand(T) =

∑
a∈T

Pr[X = a]2 ≤ Pcoll1rand(T)

where X is chosen according to the default distribution DT .

• time designates the runtime of the environment (attacker).

Finally, time(. . .) designates the runtime time of each elementary action of a game:

• time(f, p1, . . . , pn) designates the maximal runtime of one call to function symbol f , where p1, . . . ,
pn represent the maximum length of the non-bounded arguments of f .

• time(let f, p1, . . . , pn) designates the maximal runtime of one pattern matching operation with
function symbol f , where p1, . . . , pn represent the maximum length of the non-bounded arguments
of f .

• time((T1, . . . , Tm), p1, . . . , pn) designates the maximal runtime of one call to the tuple function
from T1 × . . . × Tm to bitstring, where p1, . . . , pn represent the maximum length of the non-
bounded arguments of this function.

• time(let(T1, . . . , Tm), p1, . . . , pn) designates the maximal runtime of one pattern matching with
the tuple function from T1 × . . . × Tm to bitstring, where p1, . . . , pn represent the maximum
length of the non-bounded arguments of this function.

• time(=T [, p1, p2]) designates the maximal runtime of one call to bitstring comparison function for
bitstrings of type T , where p1, p2 represent the maximum length of the arguments of this function
when T is non-bounded.

• time(!) or time(foreach) is the maximum time of an access to a replication index.

• time([n]) is the maximum time of an array access with n indices.

• time(&&) is the maximum time of a boolean and.

• time(||) is the maximum time of a boolean or.

• time(new T) or time(<-R T) is the maximum time needed to choose a random number of type
T according to the default distribution for type T .

• time(newChannel) is the maximum time to create a new private channel.

• time(if) is the maximum time to perform a boolean test.

• time(find n) is the maximum time to perform one condition test of a find with n indices to
choose. (Essentially, the time to store the values of the indices in a list and part of the time needed
to randomly choose an element of that list.)

• time(out [T1, . . . , Tm]T, p1, . . . , pn) represents the time of an output in which the channel indices
are of types T1, . . . , Tm, the output bitstring is of type T , and the maximum length of the channel
indices and the output bitstring is represented by p1, . . . , pn when they are non-bounded.

• time(in n) is the maximum time to store an input in which the channel has n indices in the list
of available inputs.

CryptoVerif checks the dimension of probability formulas.

26

〈obody〉 ::= run 〈ident〉[(seq〈term〉)]
| (〈obody〉)
| yield
| event 〈ident〉[(seq〈term〉)] [; 〈obody〉]
| event_abort 〈ident〉
| new 〈vartype〉[; 〈obody〉]
| 〈ident〉 <-R 〈ident〉[; 〈obody〉]
| 〈ident〉[:〈ident〉] <- 〈term〉[; 〈obody〉]
| let 〈pattern〉 = 〈term〉 [in 〈obody〉 [else 〈obody〉]]
| if 〈cond〉 then 〈obody〉 [else 〈obody〉]
| find[[unique]] 〈findbranch〉 (orfind 〈findbranch〉)∗ [else 〈obody〉]
| insert 〈ident〉(seq〈term〉) [; 〈obody〉]
| get 〈ident〉(seq〈pattern〉) [suchthat 〈term〉] in 〈obody〉 [else 〈obody〉]
| return(seq〈term〉)[; 〈odef〉]

〈findbranch〉 ::= seq〈identbound〉 suchthat 〈cond〉 then 〈obody〉
〈odef〉 ::= run 〈ident〉[(seq〈term〉)]

| (〈odef〉)
| 0
| 〈odef〉 | 〈odef〉
| ![〈ident〉 <=] 〈ident〉 〈odef〉
| foreach 〈ident〉 <= 〈ident〉 do 〈odef〉
| 〈ident〉(seq〈pattern〉) := 〈obody〉

Figure 5: Grammar for processes (oracles front-end)

4 oracles Front-end
The oracles front-end is similar to the channels with the following differences. The keyword newChannel
is replaced with newOracle, run is a keyword, and channel and out are not keywords.

The input file consists of a list of declarations followed by an oracle definition or an equivalence query:

〈declaration〉∗ process 〈odef〉

〈declaration〉∗ equivalence 〈odef〉 〈odef〉 [public_vars seq〈ident〉]

〈declaration〉∗ query_equiv[(〈ident〉[(〈ident〉)])]
〈omode〉 [| . . . |〈omode〉] <=(?)=> [[n]] [[seq+〈option〉]] 〈ogroup〉 [| . . . |〈ogroup〉]

The syntax of processes is given in Figure 5. The calculus distinguishes two kinds of processes: oracle
definitions 〈odef〉 define new oracles; oracle bodies 〈obody〉 return a result after executing some internal
computations. When a process (oracle definition or oracle body) is an identifier, it is substituted with
its value defined by a let declaration.

The oracle definition run proc(M1, . . . ,Mn) is replaced with P{M1/x1, . . . ,Mn/xn} when proc is
declared by let proc(x1 : T1, . . . , xn : Tn) = P. where P is an oracle definition. The terms M1, . . . ,Mn

must contain only variables, replication indices, and function applications.
The oracle definition O(p1, . . . , pn) := P defines an oracle O taking arguments p1, . . . , pn, and re-

turning the result of the oracle body P . The patterns p1, . . . , pn are as in the let construct above, except
that variables in p that are not under a function symbol f(. . .) must be declared with their type. The
other oracle definitions are similar to input processes in the channels front-end.

27

When an oracle O is defined under foreach i1<=N1, . . . , foreach in<=Nn, it also implicitly defines
O[i1, . . . , in].

Note that the construct newOracle c;Q used in research papers is absent from the implementation:
this construct is useful in the proof of soundness of CryptoVerif, but not essential for encoding games
that CryptoVerif manipulates.

Let us now describe oracle bodies:

• run proc(M1, . . . ,Mn) is replaced with let x1 = M1 in . . . let xn = Mn in P when proc is
declared by let proc(x1 : T1, . . . , xn : Tn) = P. where P is an oracle body.

• yield terminates the oracle, returning control to the caller.

• return(N1, . . . , Nl);Q terminates the oracle, returning the result of the terms N1, . . . , Nl. Then,
it makes available the oracles defined in Q.

• The other oracle bodies are similar to output processes in the channels front-end.

In return(M1, . . . ,Mn), Mj must be of a bitstring type Tj for all j ≤ n and that return instruction
is said to be of type T1 × . . . × Tn. All return instructions in an oracle body P (excluding return
instructions that occur in oracle definitions Q in processes of the form return(M1, . . . ,Mn);Q) must
be of the same type, and that type is said to be the type of the oracle body P . For each oracle definition
O(p1, . . . , pm) := P under foreach i1<=N1, . . . , foreach in<=Nn, the oracle O is said to be of type
[1, N1] × . . . × [1, Nn] → T ′1 × . . . × T ′m → T1 × . . . × Tn where pj is of type T ′j for all j ≤ m and P is
of type T1 × . . . × Tn. When an oracle has several definitions, it must be of the same type for all its
definitions. Furthermore, definitions of the same oracle O must not occur on both sides of a parallel
composition Q|Q′ (so that several definitions of the same oracle cannot be simultaneously available).
The other constructs are typed as in the channels front-end.

The channel seq+〈ident〉. declaration is removed, since channels do not exist in the oracles front-
end.

In probability formulas (Figure 3), time(out . . .) and time(in n) are removed and time(newChannel)
is replaced with time(newOracle). time(newOracle) is the maximum time to create a new private or-
acle.

5 Summary of the Main Differences between the two Front-ends
The main difference between the two front-ends is that the oracles front-end uses oracles while the
channels front-end uses channels. So we have essentially the following correspondence:

channels oracles
input process oracle definition
output process oracle body
newChannel c newOracle O
in(c, (x1 : T1, . . . , xl : Tl));P O(x1 : T1, . . . , xl : Tl) := P
out(c, (M1, . . . ,Ml));Q return(M1, . . . ,Ml);Q

The newChannel or newOracle instruction does not appear in processes, but appears in the evaluation
time of contexts. In the channels front-end, channels must be declared by a channel declaration. There
is no such declaration in the oracles front-end.

Finally, both front-ends accept two syntaxes for replication, generation of random numbers, and
assignments. However, the default syntax for the display differs:

display in channels display in oracles
!i<=N Q foreach i<=N do Q
new x:T; P x <-R T; P
let x:T = M in P x:T <- M; P

The assignment x:T <- M can be used only for assigning a variable; when a pattern occurs instead of
the variable x, one has to use the let instruction.

28

6 Predefined cryptographic primitives
A number of standard cryptographic primitives are predefined in CryptoVerif. The definitions of these
primitives are given as macros in the library file default.cvl (or default.ocvl for the oracles front-
end) that is automatically loaded at startup. The user does not need to redefine these primitives, he can
just expand the corresponding macro. The examples contained in the library can be used as a basis in
order to build definitions of new primitives, by copying and modifying them as desired. Here is a list of
the predefined primitives.

• expand IND_CPA_sym_enc(key , cleartext , ciphertext , enc, dec, injbot , Z , Penc). defines a IND-
CPA (indistinguishable under chosen plaintext attacks) probabilistic symmetric encryption scheme.
key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.
cleartext is the type of cleartexts.
ciphertext is the type of ciphertexts.
enc(cleartext , key) : ciphertext is the encryption function. Internally, it generates random coins, so
that it is probabilistic.
dec(ciphertext , key) : bitstringbot is the decryption function; it returns bottom when decryption
fails.
injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.
Z (cleartext) : cleartext is the function that returns for each cleartext a cleartext of the same length
consisting only of zeroes.
Penc(t,N, l) is the probability of breaking the IND-CPA property in time t for one key and N
encryption queries with cleartexts of length at most l.
The types key , cleartext , ciphertext and the probability Penc must be declared before this macro
is expanded. The functions enc, dec, injbot , and Z are declared by this macro. They must not be
declared elsewhere, and they can be used only after expanding the macro.
This macro defines the equivalence named ind_cpa(enc) for use in the crypto command in inter-
active proofs (see Section 7).

• expand IND_CPA_sym_enc_all_args(key , cleartext , ciphertext , enc_seed , enc, enc_r , enc_r ′,
dec, injbot , Z , Penc). is similar to the above, with three additional arguments.
enc_seed is the type of random coins for encryption, must be bounded.
enc_r(cleartext , key , enc_seed) : ciphertext is the encryption function that takes coins as argument
(instead of generating them internally).
enc_r ′ is the symbol that replaces enc_r after game transformation.

• expand IND_CPA_sym_enc_nonce(key , cleartext , ciphertext , nonce, enc, dec, injbot , Z , Penc).
defines a IND-CPA (indistinguishable under chosen plaintext attacks) probabilistic symmetric en-
cryption scheme using a nonce (which must have a different value in each call to encryption) instead
of random coins generated by encryption.
key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.
cleartext is the type of cleartexts.
ciphertext is the type of ciphertexts.
nonce is the type of nonces.
enc(cleartext , key ,nonce) : ciphertext is the encryption function.
dec(ciphertext , key ,nonce) : bitstringbot is the decryption function; it returns bottom when
decryption fails.

29

injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.

Z (cleartext) : cleartext is the function that returns for each cleartext a cleartext of the same length
consisting only of zeroes.

Penc(t,N, l) is the probability of breaking the IND-CPA property in time t for one key and N
encryption queries with cleartexts of length at most l.

The types key , cleartext , ciphertext , nonce and the probability Penc must be declared before this
macro is expanded. The functions enc, dec, injbot , and Z are declared by this macro. They must
not be declared elsewhere, and they can be used only after expanding the macro.

This macro defines the equivalence named ind_cpa(enc) for use in the crypto command in inter-
active proofs (see Section 7).

• expand IND_CPA_sym_enc_nonce_all_args(key , cleartext , ciphertext , nonce, enc, enc′, dec,
injbot , Z , Penc). is similar to the above, with one additional argument: enc′ is the symbol
that replaces enc after game transformation.

• expand IND_CPA_INT_CTXT_sym_enc(key , cleartext , ciphertext , enc, dec, injbot , Z , Penc,
Pencctxt). defines a IND-CPA (indistinguishable under chosen plaintext attacks) and INT-CTXT
(ciphertext integrity) probabilistic symmetric encryption scheme.

key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.

cleartext is the type of cleartexts.

ciphertext is the type of ciphertexts.

enc(cleartext , key) : ciphertext is the encryption function. Internally, it generates random coins, so
that it is probabilistic.

dec(ciphertext , key) : bitstringbot is the decryption function; it returns bottom when decryption
fails.

injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.

Z (cleartext) : cleartext is the function that returns for each cleartext a cleartext of the same length
consisting only of zeroes.

Penc(t,N, l) is the probability of breaking the IND-CPA property in time t for one key and N
encryption queries with cleartexts of length at most l.

Pencctxt(t,N,N ′, l, l′) is the probability of breaking the INT-CTXT property in time t for one key,
N encryption queries, N ′ decryption queries with cleartexts of length at most l and ciphertexts of
length at most l′.

The types key , cleartext , ciphertext and the probabilities Penc and Pencctxt must be declared
before this macro is expanded. The functions enc, dec, injbot , and Z are declared by this macro.
They must not be declared elsewhere, and they can be used only after expanding the macro.

This macro defines the equivalences named ind_cpa(enc), int_ctxt(enc), and
int_ctxt_corrupt(enc) for use in the crypto command (see Section 7). The first equiva-
lence corresponds to the IND-CPA property, the last two to the INT-CTXT property. The
equivalence int_ctxt_corrupt(enc) is used when the key may be corrupted. It is applied only
manually. The equivalence int_ctxt(enc) should generally be applied before ind_cpa(enc),
because int_ctxt(enc) eliminates the decryption oracle.

• expand IND_CPA_INT_CTXT_sym_enc_all_args(key , cleartext , ciphertext , enc_seed , enc, enc_r ,
enc_r ′, dec, injbot , Z , Penc, Pencctxt). is similar to the above, with three additional arguments.

enc_seed is the type of random coins for encryption, must be bounded.

enc_r(cleartext , key , enc_seed) : ciphertext is the encryption function that takes coins as argument
(instead of generating them internally).

enc_r ′ is the symbol that replaces enc_r after game transformation.

30

• expand IND_CPA_INT_CTXT_sym_enc_nonce(key , cleartext , ciphertext , nonce, enc, dec, injbot , Z ,
Penc, Pencctxt). defines a IND-CPA (indistinguishable under chosen plaintext attacks) and INT-
CTXT (ciphertext integrity) probabilistic symmetric encryption scheme using a nonce (which must
have a different value in each call to encryption) instead of random coins generated by encryption.

key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.

cleartext is the type of cleartexts.

ciphertext is the type of ciphertexts.

nonce is the type of nonces.

enc(cleartext , key ,nonce) : ciphertext is the encryption function.

dec(ciphertext , key ,nonce) : bitstringbot is the decryption function; it returns bottom when
decryption fails.

injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.

Z (cleartext) : cleartext is the function that returns for each cleartext a cleartext of the same length
consisting only of zeroes.

Penc(t,N, l) is the probability of breaking the IND-CPA property in time t for one key and N
encryption queries with cleartexts of length at most l.

Pencctxt(t,N,N ′, l, l′) is the probability of breaking the INT-CTXT property in time t for one key,
N encryption queries, N ′ decryption queries with cleartexts of length at most l and ciphertexts of
length at most l′.

The types key , cleartext , ciphertext , nonce and the probabilities Penc and Pencctxt must be
declared before this macro is expanded. The functions enc, dec, injbot , and Z are declared by
this macro. They must not be declared elsewhere, and they can be used only after expanding the
macro.

This macro defines the equivalences named ind_cpa(enc), int_ctxt(enc), and
int_ctxt_corrupt(enc) for use in the crypto command (see Section 7). The first equiva-
lence corresponds to the IND-CPA property, the last two to the INT-CTXT property. The
equivalence int_ctxt_corrupt(enc) is used when the key may be corrupted. It is applied only
manually. The equivalence int_ctxt(enc) should generally be applied before ind_cpa(enc),
because int_ctxt(enc) eliminates the decryption oracle.

• expand IND_CPA_INT_CTXT_sym_enc_nonce_all_args(key , cleartext , ciphertext , nonce, enc,
enc′, dec, injbot , Z , Penc, Pencctxt). is similar to the above, with one additional argument:
enc′ is the symbol that replaces enc after game transformation.

• expand AEAD(key , cleartext , ciphertext , add_data, enc, dec, injbot , Z , Penc, Pencctxt). defines
an authenticated encryption scheme with additional data.

key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.

cleartext is the type of cleartexts.

ciphertext is the type of ciphertexts.

add_data is the type of additional data.

enc(cleartext , add_data, key) : ciphertext is the encryption function. Internally, it generates ran-
dom coins, so that it is probabilistic.

dec(ciphertext , add_data, key) : bitstringbot is the decryption function; it returns bottom when
decryption fails.

injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.

31

Z (cleartext) : cleartext is the function that returns for each cleartext a cleartext of the same length
consisting only of zeroes.

Penc(t,N, l) is the probability of breaking the IND-CPA property in time t for one key and N
encryption queries with cleartexts of length at most l.

Pencctxt(t,N,N ′, l, l′, ld , ld ′) is the probability of breaking the INT-CTXT property in time t for
one key, N encryption queries, N ′ decryption queries with cleartexts of length at most l and
ciphertexts of length at most l′, additional data for encryption of length at most ld , and additional
data for decryption of length at most ld ′.

The types key , cleartext , ciphertext , add_data and the probabilities Penc and Pencctxt must be
declared before this macro is expanded. The functions enc, dec, injbot , and Z are declared by
this macro. They must not be declared elsewhere, and they can be used only after expanding the
macro.

This macro defines the equivalences named ind_cpa(enc), int_ctxt(enc), and
int_ctxt_corrupt(enc) for use in the crypto command (see Section 7). The first equiva-
lence corresponds to the IND-CPA property, the last two to the INT-CTXT property. The
equivalence int_ctxt_corrupt(enc) is used when the key may be corrupted. It is applied only
manually. The equivalence int_ctxt(enc) should generally be applied before ind_cpa(enc),
because int_ctxt(enc) eliminates the decryption oracle.

• expand AEAD_all_args(key , cleartext , ciphertext , add_data, enc_seed , enc, enc_r , enc_r ′, dec,
injbot , Z , Penc, Pencctxt). is similar to the above, with three additional arguments.

enc_seed is the type of random coins for encryption, must be bounded.

enc_r(cleartext , add_data, key , enc_seed) : ciphertext is the encryption function that takes coins
as argument (instead of generating them internally).

enc_r ′ is the symbol that replaces enc_r after game transformation.

• expand AEAD_nonce(key , cleartext , ciphertext , add_data, nonce, enc, dec, injbot , Z , Penc,
Pencctxt). defines an authenticated encryption scheme with additional data, using a nonce that
must have a different value in each call to encryption. A typical example is AES-GCM.

key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.

cleartext is the type of cleartexts.

ciphertext is the type of ciphertexts.

add_data is the type of additional data.

nonce is the type of nonces.

enc(cleartext , add_data, key ,nonce) : ciphertext is the encryption function.

dec(ciphertext , add_data, key ,nonce) : bitstringbot is the decryption function; it returns bottom
when decryption fails.

injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.

Z (cleartext) : cleartext is the function that returns for each cleartext a cleartext of the same length
consisting only of zeroes.

Penc(t,N, l) is the probability of breaking the IND-CPA property in time t for one key and N
encryption queries with cleartexts of length at most l.

Pencctxt(t,N,N ′, l, l′, ld , ld ′) is the probability of breaking the INT-CTXT property in time t for
one key, N encryption queries, N ′ decryption queries with cleartexts of length at most l and
ciphertexts of length at most l′, additional data for encryption of length at most ld , and additional
data for decryption of length at most ld ′.

The types key , cleartext , ciphertext , add_data, nonce and the probabilities Penc and Pencctxt
must be declared before this macro is expanded. The functions enc, dec, injbot , and Z are declared

32

by this macro. They must not be declared elsewhere, and they can be used only after expanding
the macro.
This macro defines the equivalences named ind_cpa(enc), int_ctxt(enc), and
int_ctxt_corrupt(enc) for use in the crypto command (see Section 7). The first equiva-
lence corresponds to the IND-CPA property, the last two to the INT-CTXT property. The
equivalence int_ctxt_corrupt(enc) is used when the key may be corrupted. It is applied only
manually. The equivalence int_ctxt(enc) should generally be applied before ind_cpa(enc),
because int_ctxt(enc) eliminates the decryption oracle.

• expand AEAD_nonce_all_args(key , cleartext , ciphertext , add_data, nonce, enc, enc′, dec, injbot ,
Z , Penc, Pencctxt). is similar to the above with one additional argument.
enc′ is the symbol that replaces enc after game transformation.

• expand INDdollar_CPA_sym_enc(key , cleartext , ciphertext , cipher_stream, enc, dec, injbot , Z ,
enc_len, truncate, Penc).
expand INDdollar_CPA_sym_enc_all_args(key , cleartext , ciphertext , enc_seed , cipher_stream,
enc, enc_r , dec, injbot , Z , enc_len, truncate, Penc).
expand INDdollar_CPA_sym_enc_nonce(key , cleartext , ciphertext , nonce, cipher_stream, enc,
dec, injbot , Z , enc_len, truncate, Penc).
expand INDdollar_CPA_INT_CTXT_sym_enc(key , cleartext , ciphertext , cipher_stream, enc, dec,
injbot , Z , enc_len, truncate, Penc, Pencctxt).
expand INDdollar_CPA_INT_CTXT_sym_enc_all_args(key , cleartext , ciphertext , enc_seed ,
cipher_stream, enc, enc_r dec, injbot , Z , enc_len, truncate, Penc, Pencctxt).
expand INDdollar_CPA_INT_CTXT_sym_enc_nonce(key , cleartext , ciphertext , nonce,
cipher_stream, enc, dec, injbot , Z , enc_len, truncate, Penc, Pencctxt).
expand AEAD_INDdollar_CPA(key , cleartext , ciphertext , add_data, cipher_stream, enc, dec,
injbot , Z , enc_len, truncate, Penc, Pencctxt).
expand AEAD_INDdollar_CPA_all_args(key , cleartext , ciphertext , add_data, enc_seed ,
cipher_stream, enc, enc_r , dec, injbot , Z , enc_len, truncate, Penc, Pencctxt).
expand AEAD_INDdollar_CPA_nonce(key , cleartext , ciphertext , add_data, nonce, cipher_stream,
enc, dec, injbot , Z , enc_len, truncate, Penc, Pencctxt).
define macros similar to the ones above, but with the IND$-CPA property instead of IND-CPA.
IND$-CPA means that the length of the ciphertext only depends on the length of the cleartext,
and that the ciphertext is indistinguishable from a random bitstring of the same length. In
comparison with the previous macros, they do not have the primed encryption argument (enc_r ′

or enc′), so the _all_args variant disappears for encryptions with a nonce since enc′ was the only
additional argument. They additionally have the following arguments:
cipher_stream is the type of unbounded streams (must be nonuniform).
enc_len(cleartext) : ciphertext is a function that returns, for each bitstring x, a bitstring of the
same length as the encryption of x, consisting only of zeroes.
truncate(cipher_stream, ciphertext) : ciphertext is the function such that truncate(s, x) is the
truncation of s to the length of x, where s is a stream of unbounded length.
The type cipher_stream must be declared before these macros are expanded. The functions
enc_len and truncate are declared by these macros. They must not be declared elsewhere, and
they can be used only after expanding one of the macros.
These macros define the equivalence inddollar_cpa(enc) instead of ind_cpa(enc).

• expand IND_CCA2_sym_enc(key , cleartext , ciphertext , enc, dec, injbot , Z , Penc). defines a IND-
CCA2 (indistinguishable under adaptive chosen ciphertext attacks) probabilistic symmetric en-
cryption scheme.
key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.
cleartext is the type of cleartexts.

33

ciphertext is the type of ciphertexts.

enc(cleartext , key) : ciphertext is the encryption function. Internally, it generates random coins, so
that it is probabilistic.

dec(ciphertext , key) : bitstringbot is the decryption function; it returns bottom when decryption
fails.

injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.

Z (cleartext) : cleartext is the function that returns for each cleartext a cleartext of the same length
consisting only of zeroes.

Penc(t,N,Nu, N ′, l, l′) is the probability of breaking the IND-CCA2 property in time t for one key,
N encryption queries that are different in both sides of the IND-CCA2 equivalence, Nu encryption
queries that are the same in both side of the IND-CCA2 equivalence, N ′ decryption queries with
cleartexts of length at most l and ciphertexts of length at most l′.

The types key , cleartext , ciphertext and the probability Penc must be declared before this macro
is expanded. The functions enc, dec, injbot , and Z are declared by this macro. They must not be
declared elsewhere, and they can be used only after expanding the macro.

This macro defines the equivalences named ind_cca2(enc) and ind_cca2_partial(enc), for use in
the crypto command (see Section 7). While the equivalence ind_cca2(enc) replaces all cleartexts
with zeroes, the equivalence ind_cca2_partial(enc) replaces only some of them with zeroes.
The latter equivalence can be applied only manually. The user should map the occurrences of
encryption that he wants to transform to oracle Oenc, the ones he wants to leave unchanged to
oracle Oenc_unchanged , and the ones that have already been transformed by a previous application
of this equivalence to oracle Oenc_unchanged ′.

• expand IND_CCA2_sym_enc_all_args(key , cleartext , ciphertext , enc_seed , enc, enc_r , enc_r ′,
dec, dec′, injbot , Z , Penc). is similar to the above, with four additional arguments.

enc_seed is the type of random coins for encryption, must be bounded.

enc_r(cleartext , key , enc_seed) : ciphertext is the encryption function that takes coins as argument
(instead of generating them internally).

enc_r ′ and dec′ are the symbols that replace enc_r and dec respectively after game transformation.

• expand INT_PTXT_sym_enc(key , cleartext , ciphertext , enc, dec, injbot , Pencptxt). defines an INT-
PTXT (plaintext integrity) probabilistic symmetric encryption scheme.

key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.

cleartext is the type of cleartexts.

ciphertext is the type of ciphertexts.

enc(cleartext , key) : ciphertext is the encryption function. Internally, it generates random coins, so
that it is probabilistic.

dec(ciphertext , key) : bitstringbot is the decryption function; it returns bottom when decryption
fails.

injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.

Pencptxt(t,N,N ′,Nu ′, l, l′) is the probability of breaking the INT-PTXT property in time t for
one key, N encryption queries, N ′ decryption queries that are modified by the transformation, and
Nu ′ decryption queries that are left unchanged by the transformation, with cleartexts of length at
most l and ciphertexts of length at most l′.

The types key , cleartext , ciphertext and the probability Pencptxt must be declared before this
macro is expanded. The functions enc, dec, and injbot are declared by this macro. They must not
be declared elsewhere, and they can be used only after expanding the macro.

34

This macro defines the equivalences named int_ptxt(enc) and int_ptxt_corrupt_partial(enc),
for use in the crypto command (see Section 7). While the equivalence ind_ptxt(enc) replaces all
decryption with lookups in encryption queries, the equivalence ind_ptxt_corrupt_partial(enc)
may replace only some of them and supports corruption of the key. The latter equivalence can be
applied only manually. To transform only some occurrences of decryption, the user should map
the occurrences of decryption that he wants to transform to oracle Odec, the ones he wants to
leave unchanged to oracle Odec_unchanged , and the ones that have already been transformed by
a previous application of this equivalence to oracle Odec_unchanged ′.

• expand INT_PTXT_sym_enc_all_args(key , cleartext , ciphertext , enc_seed , enc, enc_r , dec, dec′,
injbot , Pencptxt). is similar to the above, with three additional arguments.

enc_seed is the type of random coins for encryption, must be bounded.

enc_r(cleartext , key , enc_seed) : ciphertext is the encryption function that takes coins as argument
(instead of generating them internally).

dec′ is the symbol that replaces dec after game transformation.

• expand IND_CCA2_INT_PTXT_sym_enc(key , cleartext , ciphertext , enc, dec, injbot , Z , Penc,
Pencptxt). defines a IND-CCA2 (indistinguishable under adaptive chosen ciphertext attacks) and
INT-PTXT (plaintext integrity) probabilistic symmetric encryption scheme.

key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.

cleartext is the type of cleartexts.

ciphertext is the type of ciphertexts.

enc(cleartext , key) : ciphertext is the encryption function. Internally, it generates random coins, so
that it is probabilistic.

dec(ciphertext , key) : bitstringbot is the decryption function; it returns bottom when decryption
fails.

injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.

Z (cleartext) : cleartext is the function that returns for each cleartext a cleartext of the same length
consisting only of zeroes.

Penc(t,N,Nu, N ′, l, l′) is the probability of breaking the IND-CCA2 property in time t for one key,
N encryption queries that are different in both sides of the IND-CCA2 equivalence, Nu encryption
queries that are the same in both side of the IND-CCA2 equivalence, N ′ decryption queries with
cleartexts of length at most l and ciphertexts of length at most l′.

Pencptxt(t,N,N ′,Nu ′, l, l′) is the probability of breaking the INT-PTXT property in time t for
one key, N encryption queries, N ′ decryption queries that are modified by the transformation, and
Nu ′ decryption queries that are left unchanged by the transformation, with cleartexts of length at
most l and ciphertexts of length at most l′.

The types key , cleartext , ciphertext and the probabilities Penc and Pencptxt must be declared
before this macro is expanded. The functions enc, dec, injbot , and Z are declared by this macro.
They must not be declared elsewhere, and they can be used only after expanding the macro.

This macro defines the equivalences named ind_cca2(enc), ind_cca2_after_int_ptxt(enc),
ind_cca2_partial(enc), int_ptxt(enc), int_ptxt_after_ind_cca2(enc), and
int_ptxt_corrupt_partial(enc), for use in the crypto command (see Section 7). The
first three correspond to the IND-CCA2 property, the last three to the INT-PTXT property.
The equivalence ind_cca2(enc) can be applied before applying the INT-PTXT property, while
ind_cca2_after_int_ptxt(enc) can be applied after applying the INT-PTXT property. Sim-
ilarly, the equivalence int_ptxt(enc) can be applied before applying the IND-CCA2 property,
while int_ptxt_after_ind_cca2(enc) can be applied after applying the IND-CCA2 property.
The equivalences ind_cca2_partial(enc) and int_ptxt_corrupt_partial(enc) may transform

35

only some occurrences of encryption and/or decryption, and int_ptxt_corrupt_partial(enc)
supports corruption of the key. They can be applied only manually, in any order. For
ind_cca2_partial(enc), the user should map the occurrences of encryption that he wants to
transform to oracle Oenc, the ones he wants to leave unchanged to oracle Oenc_unchanged . For
int_ptxt_partial(enc), the user should map the occurrences of decryption that he wants to
transform to oracle Odec, the ones he wants to leave unchanged to oracle Odec_unchanged .

CryptoVerif often needs manual guidance with this property, because it does not know which
property (IND-CCA2 or INT-PTXT) to apply first. Moreover, when empty plaintexts are not
allowed, IND-CCA2 and INT-PTXT is equivalent to IND-CPA and INT-CTXT, which is much
easier to use for CryptoVerif, so we recommend using the latter property when possible.

• expand IND_CCA2_INT_PTXT_sym_enc_all_args(key , cleartext , ciphertext , enc_seed , enc,
enc_r , enc_r ′, dec, dec′, injbot , Z , Penc, Pencptxt). is similar to the above, with four addi-
tional arguments.

enc_seed is the type of random coins for encryption, must be bounded.

enc_r(cleartext , key , enc_seed) : ciphertext is the encryption function that takes coins as argument
(instead of generating them internally).

enc_r ′ and dec′ are the symbols that replace enc_r and dec respectively after game transformation.

• expand SPRP_cipher(key , blocksize, enc, dec, Penc). defines a SPRP (super-pseudo-random per-
mutation) deterministic symmetric encryption scheme.

key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.

blocksize is the type of cleartexts and ciphertexts, must be fixed and large. (The modeling
of SPRP block ciphers is not perfect in that, in order to encrypt a new message, one chooses a
fresh random number, not necessarily different from previously generated random numbers. Then
CryptoVerif needs to eliminate collisions between those random numbers, so blocksize must really
be large.)

enc(blocksize, key) : blocksize is the encryption function.

dec(blocksize, key) : blocksize is the decryption function.

Penc(t,N,N ′) is the probability of breaking the SPRP property in time t for one key, N encryption
queries, and N ′ decryption queries.

The types key , blocksize and the probability Penc must be declared before this macro is expanded.
The functions enc and dec are declared by this macro. They must not be declared elsewhere, and
they can be used only after expanding the macro.

This macro defines the equivalence named sprp(enc) for use in the crypto command (see Section 7).

• expand PRP_cipher(key , blocksize, enc, dec, Penc). defines a PRP (pseudo-random permutation)
deterministic symmetric encryption scheme.

key is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of enc without mentioning the length of the key), typically fixed and
large.

blocksize is the type of cleartexts and ciphertexts, must be fixed and large. (The modeling of
PRP block ciphers is not perfect in that, in order to encrypt a new message, one chooses a fresh
random number, not necessarily different from previously generated random numbers. In other
words, we model a PRF rather than a PRP, and apply the PRF/PRP switching lemma to make
sure that this is sound. Then CryptoVerif needs to eliminate collisions between those random
numbers, so blocksize must really be large.)

enc(blocksize, key) : blocksize is the encryption function.

dec(blocksize, key) : blocksize is the decryption function.

36

Penc(t,N) is the probability of breaking the PRP property in time t for one key and N encryption
queries.

The types key , blocksize and the probability Penc must be declared before this macro is expanded.
The functions enc and dec are declared by this macro. They must not be declared elsewhere, and
they can be used only after expanding the macro.

This macro defines the equivalence named prp(enc) for use in the crypto command (see Section 7).

• expand ICM_cipher(cipherkey , key , blocksize, enc, dec, enc_dec_oracle, qE , qD). defines a block
cipher in the ideal cipher model.

cipherkey is the type of keys that correspond to the choice of the scheme, must be bounded or
nonuniform, typically fixed.

key is the type of keys (typically large).

blocksize is type of the input and output of the cipher, must be bounded or nonuniform (to be
able to generate random numbers from it; typically fixed), and large. (The modeling of the ideal
cipher model is not perfect in that, in order to encrypt a new message, one chooses a fresh random
number, not necessarily different from previously generated random numbers. Then CryptoVerif
needs to eliminate collisions between those random numbers, so blocksize must really be large.)

enc(cipherkey , blocksize, key) : blocksize is the encryption function.

dec(cipherkey , blocksize, key) : blocksize is the decryption function.

enc_dec_oracle is a parametric process that allows the adversary to call the encryption and de-
cryption functions. WARNING: the encryption and decryption functions take 2 keys as input:
the key of type cipherkey that corresponds to the choice of the scheme, and the normal encryp-
tion/decryption key. The cipherkey must be chosen once and for all at the beginning of the game
and the encryption and decryption oracles must be made available to the adversary, by including
the process enc_dec_oracle(ck) where ck is the cipherkey.

qE is the number of queries to the encryption oracle.

qD is the number of queries to the decryption oracle.

The types cipherkey , key , blocksize must be declared before this macro is expanded. The functions
enc, dec, the process enc_dec_oracle, and the paramters qE and qD are declared by this macro.
They must not be declared elsewhere, and they can be used only after expanding the macro.

This macro defines the equivalence named icm(enc) for use in the crypto command (see Section 7).

• expand SUF_CMA_det_mac(mkey , macinput , macres, mac, check , Pmac). defines an SUF-CMA
(strongly unforgeable under chosen message attacks) deterministic MAC (message authentication
code).

The difference between a UF-CMA (unforgeable under chosen message attacks) MAC and a SUF-
CMA MAC is that, for a UF-CMA MAC, the adversary may easily forge a new MAC for a message
for which he has already seen a MAC. Such a forgery is guaranteed to be hard for a SUF-CMA
MAC. For deterministic MACs, the verification can be done by recomputing the MAC, and in this
case, an UF-CMA MAC is always SUF-CMA, so we model only SUF-CMA deterministic MACs.
This macro transforms tests mac(k,m) = m′ into check(k,m,m′), so that the MAC verification
can also be written mac(k,m) = m′.

mkey is the type of keys, must be bounded (to be able to generate random numbers from it, and
to talk about the runtime of mac without mentioning the length of the key), typically fixed and
large.

macinput is the type of inputs of MACs

macres is the type of MACs.

mac(macinput ,mkey) : macres is the MAC function.

check(macinput ,mkey ,macres) : bool is the verification function.

37

Pmac(t,N,N ′,Nu ′, l) is the probability of breaking the SUF-CMA property in time t for one key,
N MAC queries, N ′ verification queries modified by the transformation and Nu verification queries
left unchanged by the transformation for messages of length at most l.

The types mkey , macinput , macres and the probability Pmac must be declared before this macro
is expanded. The functions mac, check are declared by this macro. They must not be declared
elsewhere, and they can be used only after expanding the macro.

This macro defines the equivalences named suf_cma(mac), suf_cma_corrupt(mac), and
suf_cma_corrupt_partial(mac), for use in the crypto command (see Section 7). All equiva-
lences correspond to the SUF-CMA property, but the first one does not allow corruption of the
secret keys while last two allow it. The last two equivalences are applied only manually, in par-
ticular because their automatic application can sometimes be done too early, when other trans-
formations should first be done in order to eliminate uses of the secret keys. The equivalence
suf_cma_corrupt_partial(mac) allows the user to transform only some occurrences of the MAC
verification into a lookup in the MACed messages. The user should map the occurrences he wants
to transform to the oracle Ocheck and the ones he does not want to transform to the oracle
Ocheck_unchanged .

• expand SUF_CMA_det_mac_all_args(mkey , macinput , macres, mac, mac′, check , Pmac). is sim-
ilar to the above, with one additional argument.

mac′ is the symbol that replaces mac after game transformation.

• expand UF_CMA_proba_mac(mkey , macinput , macres, mac, check , Pmac). defines a UF-CMA
(unforgeable under chosen message attacks) probabilistic MAC (message authentication code).
The arguments are the same as for SUF_CMA_det_mac, but the mac function chooses random
coins internally so that it is probabilistic, and the verification is not done by recomputing the
MAC. This macro defines the equivalences named uf_cma(mac), uf_cma_corrupt(mac), and
uf_cma_corrupt_partial(mac) for use in the crypto command (see Section 7), similarly to
SUF_CMA_det_mac.

• expand UF_CMA_proba_mac_all_args(mkey , macinput , macres, mac_seed , mac, mac_r ,
mac_r ′, check , check ′, Pmac). is similar to the above, with four additional arguments.

mac_seed is the type of random coins for MAC, must be bounded.

mac_r(macinput ,mkey ,mac_seed) : macres is the MAC function that takes coins as argument
(instead of generating them internally).

mac_r ′ and check ′ are the symbols that replace mac_r and check respectively after game trans-
formation.

• expand SUF_CMA_proba_mac(mkey , macinput , macres, mac, check , Pmac). defines a SUF-CMA
(strongly unforgeable under chosen message attacks) probabilistic MAC (message authentication
code). The arguments are the same as for SUF_CMA_det_mac, but the mac function chooses random
coins internally so that it is probabilistic, and the verification is not done by recomputing the
MAC. This macro defines the equivalences named suf_cma(mac), suf_cma_corrupt(mac), and
suf_cma_corrupt_partial(mac), for use in the crypto command (see Section 7), similarly to
SUF_CMA_det_mac.

• expand SUF_CMA_proba_mac_all_args(mkey , macinput , macres, mac_seed , mac, mac_r ,
mac_r ′, check , Pmac). is similar to the above, with three additional arguments.

mac_seed is the type of random coins for MAC, must be bounded.

mac_r(macinput ,mkey ,mac_seed) : macres is the MAC function that takes coins as argument
(instead of generating them internally).

mac_r ′ is the symbol that replaces mac_r after game transformation.

• expand IND_CCA2_public_key_enc(keyseed , pkey , skey , cleartext , ciphertext , skgen, pkgen, enc,
dec, injbot , Z , Penc, Penccoll). defines a IND-CCA2 (indistinguishable under adaptive chosen
ciphertext attacks) probabilistic public-key encryption scheme.

38

keyseed is the type of key seeds, must be bounded (to be able to generate random numbers from it,
and to talk about the runtime of pkgen without mentioning the length of the key), typically fixed
and large.

pkey is the type of public keys, must be bounded.

skey is the type of secret keys, must be bounded.

cleartext is the type of cleartexts.

ciphertext is the type of ciphertexts.

skgen(keyseed) : skey is the secret key generation function.

pkgen(keyseed) : pkey is the public key generation function.

enc(cleartext , pkey) : ciphertext is the encryption function. Internally, it generates random coins,
so that it is probabilistic.

dec(ciphertext , skey) : bitstringbot is the decryption function; it returns bottom when decryption
fails.

injbot(cleartext) : bitstringbot is the natural injection from cleartext to bitstringbot.

Z (cleartext) : cleartext is the function that returns for each cleartext a cleartext of the same length
consisting only of zeroes.

Penc(t,N) is the probability of breaking the IND-CCA2 property in time t for one key and N
decryption queries.

Penccoll is the probability of collision between independently generated keys.

The types keyseed , pkey , skey , cleartext , ciphertext , and the probabilities Penc, Penccoll must be
declared before this macro is expanded. The functions skgen, pkgen, enc, dec, injbot , and Z are
declared by this macro. They must not be declared elsewhere, and they can be used only after
expanding the macro.

This macro defines the equivalences named ind_cca2(enc) and ind_cca2_partial(enc) for use
in the crypto command (see Section 7). The equivalence ind_cca2_partial(enc) can be applied
only manually and allows the user to replace the encryption of a message with the encryption of
zeroes for only some occurrences of encryption under the considered key, the ones in which the
public key appears explicitly.

• expand IND_CCA2_public_key_enc_all_args(keyseed , pkey , skey , cleartext , ciphertext ,
enc_seed , skgen, skgen ′, pkgen, pkgen ′, enc, enc_r , enc_r ′, dec, dec′, injbot , Z , Penc,
Penccoll). is similar to the above, with six additional arguments.

enc_seed is the type of random coins for encryption, must be bounded.

enc_r(cleartext , pkey , enc_seed) : ciphertext is the encryption function that takes coins as argu-
ment (instead of generating them internally).

pkgen ′, skgen ′, enc_r ′, and dec′ are the symbols that replace pkgen, skgen, enc_r and dec respec-
tively after game transformation.

• expand UF_CMA_det_signature(keyseed , pkey , skey , signinput , signature, skgen, pkgen, sign,
check , Psign, Psigncoll). defines a UF-CMA (unforgeable under chosen message attacks) deter-
ministic signature scheme.

keyseed is the type of key seeds, must be bounded (to be able to generate random numbers from it,
and to talk about the runtime of pkgen without mentioning the length of the key), typically fixed
and large.

pkey is the type of public keys, must be bounded.

skey is the type of secret keys, must be bounded.

signinput is the type of signature inputs.

signature is the type of signatures.

skgen(keyseed) : skey is the secret key generation function.

39

pkgen(keyseed) : pkey is the public key generation function.

sign(signinput , skey) : signature is the signature function.

check(signinput , pkey , signature) : bool is the verification function.

Psign(t,N, l) is the probability of breaking the UF-CMA property in time t, for one key, N signature
queries with messages of length at most l.

Psigncoll is the probability of collision between independently generated keys.

The types keyseed , pkey , skey , signinput , signature and the probabilities Psign, Psigncoll must be
declared before this macro is expanded. The functions skgen, pkgen, sign, and check are declared
by this macro. They must not be declared elsewhere, and they can be used only after expanding
the macro.

This macro defines the equivalences named uf_cma(sign), uf_cma_corrupt(sign), and
uf_cma_corrupt_partial(sign), for use in the crypto command (see Section 7). All three equiv-
alences correspond to the UF-CMA property, but the first one does not allow corruption of the
secret keys while last two allow it. The last two equivalences are applied only manually, in par-
ticular because their automatic application can sometimes be done too early, when other trans-
formations should first be done in order to eliminate uses of the secret keys. The equivalence
uf_cma_corrupt_partial(sign) allows the user to transform only some occurrences of the signa-
ture verification into a lookup in the signed messages, the ones in which the public key appears
explicitly.

• expand UF_CMA_det_signature_all_args(keyseed , pkey , skey , signinput , signature, skgen,
skgen ′, pkgen, pkgen ′, sign, sign ′, check , check ′, Psign, Psigncoll). is similar to the above with
four additional arguments.

pkgen ′, skgen ′, sign ′, and check ′ are the symbols that replace pkgen, skgen, sign and check respec-
tively after game transformation.

• expand SUF_CMA_det_signature(keyseed , pkey , skey , signinput , signature, skgen, pkgen, sign,
check , Psign, Psigncoll). defines a SUF-CMA (strongly unforgeable under chosen message
attacks) deterministic signature scheme. The difference between a UF-CMA signature and
a SUF-CMA MAsignature is that, for a UF-CMA signature, the adversary may easily
forge a new signature for a message for which he has already seen a signature. Such a
forgery is guaranteed to be hard for a SUF-CMA signature. The arguments are the same
as for UF_CMA_det_signature. This macro defines the equivalences named suf_cma(sign),
suf_cma_corrupt(sign), and suf_cma_corrupt_partial(sign), for use in the crypto command
(see Section 7).

• expand SUF_CMA_det_signature_all_args(keyseed , pkey , skey , signinput , signature, skgen,
skgen ′, pkgen, pkgen ′, sign, sign ′, check , check ′, Psign, Psigncoll). is similar to the above with
four additional arguments.

pkgen ′, skgen ′, sign ′, and check ′ are the symbols that replace pkgen, skgen, sign and check respec-
tively after game transformation.

• expand UF_CMA_proba_signature(keyseed , pkey , skey , signinput , signature, skgen, pkgen, sign,
check , Psign, Psigncoll). defines a UF-CMA (strongly unforgeable under chosen message at-
tacks) probabilistic signature scheme. The arguments are the same as for UF_CMA_det_signature,
but the signature function internally generated random coins, so that it is probabilis-
tic. This macro defines the equivalences named uf_cma(sign), uf_cma_corrupt(sign), and
uf_cma_corrupt_partial(sign), for use in the crypto command (see Section 7).

• expand UF_CMA_proba_signature_all_args(keyseed , pkey , skey , signinput , signature,
sign_seed , skgen, skgen ′, pkgen, pkgen ′, sign, sign_r , sign_r ′, check , check ′, Psign, Psigncoll).
is similar to the above, with six additional arguments.

sign_seed is the type of random coins for signature, must be bounded.

40

sign_r(signinput , skey , sign_seed) : signature is the signature function that takes coins as argu-
ment (instead of generating them internally).

pkgen ′, skgen ′, sign_r ′, and check ′ are the symbols that replace pkgen, skgen, sign_r and check
respectively after game transformation.

• expand SUF_CMA_proba_signature(keyseed , pkey , skey , signinput , signature, skgen, pkgen, sign,
check , Psign, Psigncoll). defines a SUF-CMA (strongly unforgeable under chosen message at-
tacks) probabilistic signature scheme. The arguments are the same as for UF_CMA_det_signature,
but the signature function internally generated random coins, so that it is probabilis-
tic. This macro defines the equivalences named suf_cma(sign), suf_cma_corrupt(sign), and
suf_cma_corrupt_partial(sign), for use in the crypto command (see Section 7).

• expand SUF_CMA_proba_signature_all_args(keyseed , pkey , skey , signinput , signature,
sign_seed , skgen, pkgen, sign, sign_r , check , Psign, Psigncoll). is similar to the above, with six
additional arguments.

sign_seed is the type of random coins for signature, must be bounded.

sign_r(signinput , skey , sign_seed) : signature is the signature function that takes coins as argu-
ment (instead of generating them internally).

pkgen ′, skgen ′, sign_r ′, and check ′ are the symbols that replace pkgen, skgen, sign_r and check
respectively after game transformation.

• expand ROM_hash(key , hashinput , hashoutput , hash, hashoracle, qH). defines a hash function in
the random oracle model [1].

key is the type of the key of the hash function, which models the choice of the hash function, must
be bounded, typically fixed.

hashinput is the type of the input of the hash function.

hashoutput is the type of the output of the hash function, must be bounded or nonuniform (typically
fixed).

hash(key , hashinput) : hashoutput is the hash function.

hashoracle is a process that allows the adversary to call the hash function. WARNING: The key
must be generated once and for all at the beginning of the game and the hash oracle must be made
available to the adversary, by including hashoracle(hk) in the executed process, where hk is the
key.

qH is the number of queries to the hash oracle.

The types key , hashinput , and hashoutput must be declared before this macro. The function hash,
the process hashoracle, and the parameter qH are defined by this macro. They must not be declared
elsewhere, and they can be used only after expanding the macro.

This macro defines the equivalence named rom(hash) for use in the crypto command (see Section 7).

• expand ROM_hash_large(key , hashinput , hashoutput , hash, hashoracle, qH). defines a random or-
acle with a large output, that is, it optimizes the definition by eliminating collisions between random
output elements. Its interface is the same as the one of ROM_hash above.

• expand CollisionResistant_hash(key , hashinput , hashoutput , hash, hashoracle,Phash). defines
a collision-resistant hash function [10], [7, Section 8.2].

key is the type of the key of the hash function, must be bounded or nonuniform, typically fixed.

hashinput is the type of the input of the hash function.

hashoutput is the type of the output of the hash function.

hash(key , hashinput) : hashoutput is the hash function.

hashoracle is a process that leaks the key that it receives as argument. WARNING: A collision
resistant hash function is a keyed hash function. The key must be generated once and for all at the

41

beginning of the game, and immediately made available to the adversary, for instance by including
the process hashoracle(hk), where hk is the key.

Phash(t) is the probability of breaking collision resistance, for an adversary that runs in time at
most t. (t is the time since the choice of the hash function, that is, of the key hk .)

The types key , hashinput , and hashoutput and the probability Phash must be declared before this
macro. The function hash and the process hashoracle are defined by this macro. They must not
be declared elsewhere, and they can be used only after expanding the macro.

• expand HiddenKeyCollisionResistant_hash(key , hashinput , hashoutput , hash, hashoracle, qH ,
Phash). defines a hidden-key collision-resistant hash function [7, Section 8.6]. It differs from
collision-resistance in that the adversary is not allowed to access the key that defines the hash
function; it is just allowed to query the hash oracle. The interface is similar to collision-resistant
hash functions above.

hashoracle is a process that provides a hash oracle to the adversary. WARNING: A hidden-key
collision resistant hash function is a keyed hash function. The key must be generated once and
for all at the beginning of the game, and the hash oracle for that key must be provided to the
adversary by including the process hashoracle(hk), where hk is the key.

qH is the number of calls to the hash oracle provided by hashoracle.

Phash(t,N) is the probability of breaking collision resistance, for an adversary that runs in time
at most t and calls the hash oracle at most N times.

This macro defines the equivalence named collision_res(hash) for use in the crypto command
(see Section 7).

• expand SecondPreimageResistant_hash(key , hashinput , hashoutput , hash, hashoracle,Phash).
defines a second-preimage-resistant hash function [10]. The interface is the same as for collision-
resistant hash functions above. However, note that the argument type hashinput must be bounded
or nonuniform so that one can generate random values in it. It is typically fixed and large.

• expand HiddenKeySecondPreimageResistant_hash(key , hashinput , hashoutput , hash,
hashoracle, qH , Phash). defines a hidden-key second-preimage-resistant hash function. The
interface is the same as for hidden-key collision-resistant hash functions above. However, note that
the argument type hashinput must be bounded or nonuniform so that one can generate random
values in it. It is typically fixed and large.

This macro defines the equivalence named second_pre_res(hash) for use in the crypto command
(see Section 7).

• expand FixedSecondPreimageResistant_hash(hashinput , hashoutput , hash,Phash). defines a
second-preimage-resistant hash function, for a hash function without key. (It can also be interpreted
as a hash function with a fixed key as in [10], which we omit in our model.)

hashinput is the type of the input of the hash function. It must be bounded or nonuniform so that
one can generate random values in it. It is typically fixed and large.

hashoutput is the type of the output of the hash function.

hash(hashinput) : hashoutput is the hash function.

Phash(t) is the probability of breaking second-preimage resistance, for an adversary that runs in
time at most t.

The types hashinput , and hashoutput and the probability Phash must be declared before this
macro. The function hash is defined by this macro. It must not be declared elsewhere, and it can
be used only after expanding the macro.

• expand PreimageResistant_hash(key , hashinput , hashoutput , hash, hashoracle,Phash). defines a
preimage-resistant hash function [10]. The interface is the same as for collision-resistant hash
functions above. However, note that the argument type hashinput must be bounded or nonuniform
so that one can generate random values in it. It is typically fixed and large.

42

This macro defines the equivalence named preimage_res(hash) for use in the crypto command
(see Section 7).
expand PreimageResistant_hash_all_args(key , hashinput , hashoutput , hash, hash ′, hashoracle,
Phash). is similar, with an additional argument hash ′, which is a symbol that replaces hash after
game transformation.

• expand HiddenKeyPreimageResistant_hash(key , hashinput , hashoutput , hash, hashoracle, qH ,
Phash). defines a hidden-key preimage-resistant hash function. The interface is the same as
for hidden-key collision-resistant hash functions above. However, note that the argument type
hashinput must be bounded or nonuniform so that one can generate random values in it. It is
typically fixed and large.
This macro defines the equivalence named preimage_res(hash) for use in the crypto command
(see Section 7).
expand HiddenKeyPreimageResistant_hash_all_args(key , hashinput , hashoutput , hash, hash ′,
hashoracle, qH , Phash). is similar, with an additional argument hash ′, which is a symbol that
replaces hash after game transformation.

• expand FixedPreimageResistant_hash(hashinput , hashoutput , hash,Phash). defines a
preimage-resistant hash function, for a hash function without key. (It can also be inter-
preted as a hash function with a fixed key as in [10], which we omit in our model.) The interface
is the same as for fixed second-preimage-resistant hash functions above.
This macro defines the equivalence named preimage_res(hash) for use in the crypto command
(see Section 7).
expand FixedPreimageResistant_hash_all_args(hashinput , hashoutput , hash, hash ′,Phash).
is similar, with an additional argument hash ′, which is a symbol that replaces hash after game
transformation.

• Similarly to the macros above, for N from 1 to 10, the macros
expand ROM_hash_N(key , hashinput1 , . . . , hashinputN, hashoutput , hash, hashoracle, qH).
expand ROM_hash_large_N(key , hashinput1 , . . . , hashinputN, hashoutput , hash, hashoracle, qH).
expand CollisionResistant_hash_N(key , hashinput1 , . . . , hashinputN , hashoutput , hash,
hashoracle, Phash).
expand HiddenKeyCollisionResistant_hash_N(key , hashinput1 , . . . , hashinputN , hashoutput ,
hash, hashoracle, qH , Phash).
expand SecondPreimageResistant_hash_N(key , hashinput1 , . . . , hashinputN , hashoutput ,
hash, hashoracle, Phash).
expand HiddenKeySecondPreimageResistant_hash_N(key , hashinput1 , . . . , hashinputN ,
hashoutput , hash, hashoracle, qH , Phash).
expand FixedSecondPreimageResistant_hash_N(hashinput1 , . . . , hashinputN , hashoutput ,
hash, Phash).
expand PreimageResistant_hash_N(key , hashinput1 , . . . , hashinputN , hashoutput , hash,
hashoracle, Phash).
expand PreimageResistant_hash_all_args_N(key , hashinput1 , . . . , hashinputN , hashoutput ,
hash, hash ′, hashoracle, Phash).
expand HiddenKeyPreimageResistant_hash_N(key , hashinput1 , . . . , hashinputN , hashoutput ,
hash, hashoracle, qH , Phash).
expand HiddenKeyPreimageResistant_hash_all_args_N(key , hashinput1 , . . . , hashinputN ,
hashoutput , hash, hash ′, hashoracle, qH , Phash).
expand FixedPreimageResistant_hash_N(hashinput1 , . . . , hashinputN , hashoutput , hash,
Phash).
expand FixedPreimageResistant_hash_all_args_N(hashinput1 , . . . , hashinputN , hashoutput ,
hash, hash ′, Phash).
define hash functions with N arguments, with the same properties as above.
hashinput1 , . . . , hashinputN are the types of the inputs of the hash function and
hash(key , hashinput1 , . . . , hashinputN) : hashoutput is the hash function, except

43

for FixedSecondPreimageResistant_hash_N and FixedPreimageResistant_hash_N , where
hash(hashinput1 , . . . , hashinputN) : hashoutput is the hash function.

• expand OW_trapdoor_perm(seed , pkey , skey ,D , pkgen, skgen, f , invf ,POW). defines a one-way
trapdoor permutation.

seed is the type of key seeds, must be bounded (to be able to generate random numbers from it,
and to talk about the runtime of pkgen without mentioning the length of the key), typically fixed
and large.

pkey is the type of public keys, must be bounded.

skey is the type of secret keys, must be bounded.

D is the type of the input and output of the permutation, must be bounded, typically fixed.

pkgen(seed) : pkey is the public key generation function.

skgen(seed) : skey is the secret key generation function.

f (pkey ,D) : D is the permutation (taking as argument the public key)

invf (skey ,D) : D is the inverse permutation of f (taking as argument the secret key, i.e. the
trapdoor)

POW (t) is the probability of breaking the one-wayness property in time t, for one key and one
permuted value.

The types seed , pkey , skey , D , and the probability POW must be declared before this macro. The
functions pkgen, skgen, f , invf are defined by this macro. They must not be declared elsewhere,
and they can be used only after expanding the macro.

This macro defines the equivalences remove_invf(f), which expresses that, for y chosen randomly
in D, y and invf (skey , y) are distributed like for x chosen randomly in D, f (pkey , x) and x, and
ow(f), which corresponds to one-wayness, for use in the crypto command (see Section 7).

• expand OW_trapdoor_perm_RSR(seed , pkey , skey ,D , pkgen, skgen, f , invf ,POW). defines a one-
way trapdoor permutation, with random self-reducibility. The arguments are the same as for
OW_trapdoor_perm, but the probability of breaking one-wayness is bounded more precisely. This
macro defines the equivalences remove_invf(f) as above and ow_rsr(f).

• expand set_PD_OW_trapdoor_perm(seed , pkey , skey , D , Dow , Dr , pkgen, skgen, f , invf , concat ,
P_PD_OW). defines a set partial-domain one-way trapdoor permutation.

seed is the type of key seeds, must be bounded (to be able to generate random numbers from it,
and to talk about the runtime of pkgen without mentioning the length of the key), typically fixed
and large.

pkey is the type of public keys, must be bounded.

skey is the type of secret keys, must be bounded.

D is the type of the input and output of the permutation, must be bounded, typically fixed.
The domain D consists of the concatenation of bitstrings in Dow and Dr . Dow is the set of sub-
bitstrings of D on which one-wayness holds (it is difficult to compute the random element x of Dow
knowing f(pk , concat(x, y)) where y is a random element of Dr). Dow and Dr must be bounded,
typically fixed.

pkgen(seed) : pkey is the public key generation function.

skgen(seed) : skey is the secret key generation function.

f (pkey ,D) : D is the permutation (taking as argument the public key)

invf (skey ,D) : D is the inverse permutation of f (taking as argument the secret key, i.e. the
trapdoor)

concat(Dow ,Dr) : D is bitstring concatenation.

P_PD_OW (t, l) is the probability of breaking the set partial-domain one-wayness property in
time t, for one key, one permuted value, and l tries.

44

The types seed , pkey , skey , D , Dow , Dr and the probability P_PD_OW must be declared before
this macro. The functions pkgen, skgen, f , invf , concat are defined by this macro. They must not
be declared elsewhere, and they can be used only after expanding the macro.
This macro defines the equivalences remove_invf(f), which expresses that, for y chosen randomly
in D, y and invf (skey , y) are distributed like for x chosen randomly in D, f (pkey , x) and x, and
pd_ow(f), which corresponds to set partial-domain one-wayness, for use in the crypto command
(see Section 7).

• expand OW_trapdoor_perm_all_args(seed , pkey , skey ,D , pkgen, pkgen ′, skgen, f , f ′, invf ,POW).
expand OW_trapdoor_perm_RSR_all_args(seed , pkey , skey ,D , pkgen, pkgen ′, skgen, f , f ′, invf ,POW).
expand set_PD_OW_trapdoor_perm_all_args(seed , pkey , skey , D , Dow , Dr , pkgen,
pkgen ′, skgen, f , f ′, invf , concat , P_PD_OW). are similar to OW_trapdoor_perm,
OW_trapdoor_perm_RSR, and set_PD_OW_trapdoor_perm_all_args respectively, with two
additional arguments.
pkgen ′ and f ′ are the symbols that replace pkgen and f respectively after game transformation.

• expand PRF(key , input , output , f ,Pprf). defines a pseudo-random function.
key is the type of keys, must be bounded (to be able to generate random numbers from it, and to
talk about the runtime of f without mentioned the length of the key), typically fixed and large.
input is the type of the input of the PRF.
output is the type of the output of the PRF, must be bounded, typically fixed.
f (key , input) : output is the PRF function.
Pprf (t,N, l) is the probability of breaking the PRF property in time t, for one key, N queries to
the PRF of length at most l.
The types key , input , output and the probability Pprf must be declared before this macro is
expanded. The function f is declared by this macro. It must not be declared elsewhere, and it can
be used only after expanding the macro.
This macro defines the equivalence named prf(f) for use in the crypto command (see Section 7).

• expand PRF_large(key , input , output , f ,Pprf). defines a pseudo-random function with a large
output, that is, it optimizes the definition by eliminating collisions between random output ele-
ments. Its interface is the same as the one of PRF above.

• Similarly, for N from 1 to 10, the macros
expand PRF_N(key , input1 , . . . , inputN, output , f ,Pprf).
expand PRF_large_N(key , input1 , . . . , inputN, output , f ,Pprf).
define pseudo-random functions with N arguments, similarly to PRF and PRF_large above. input1 ,
. . . , inputN are the types of the inputs of the PRF and f (key , input1 , . . . , inputN) : output is the
PRF.

• The specification of Diffie-Hellman key agreements is typically composed of two or three macro
expansions:

– One from the following set of macros, which defines properties of the group:
∗ expand DH_basic(G,Z, g, exp, exp′,mult). defines a group G.
G: type of group elements (must be bounded and large).
Z: type of exponents (must be bounded and large).
g: an element of the group G.
exp(G,Z) : G: the exponentiation function.
exp′(G,Z) : G: symbol used to replace exp after game transformations.
mult(Z,Z) : Z: the multiplication function for exponents, commutative.
The equation exp(exp(a, x), y) = exp(a,mult(x, y)) must be satisfied.
The private Diffie-Hellman keys are generated by choosing an element randomly in Z,
according to its default distribution (which is not necessarily uniform). The public Diffie-
Hellman keys are generated as X = exp(g, x), where x is a private Diffie-Hellman key,

45

and similarly Y = exp(g, y). The Diffie-Hellman shared secret is exp(X, y) = exp(Y, x) =
exp(g,mult(x, y)). This macro makes no other assumption. In particular, it allows G to
contain elements other than those generated by g.
The types G and Z must be declared before this macro. The functions g, exp, and mult
are defined by this macro. They must not be declared elsewhere, and they can be used
only after expanding the macro.

∗ expand DH_proba_collision(G,Z, g, exp, exp′,mult ,PCollKey1 ,PCollKey2). defines a
group G like DH_basic, with the following additional properties: the probability that
exp(g, x) = Y where x is random and Y is independent of x is at most PCollKey1 ,
and the probability that exp(g,mult(x, y)) = Y where x and y are independent random
private keys and Y is independent of x or y is at most PCollKey2 . These probabilities
are negligible in most Diffie-Hellman groups, but need to be evaluated more precisely for
using this property.
The types G and Z and the probabilities PCollKey1 and PCollKey2 must be declared
before this macro. The functions g, exp, and mult are defined by this macro. They must
not be declared elsewhere, and they can be used only after expanding the macro.

∗ expand square_DH_proba_collision(G,Z, g, exp, exp′,mult ,PCollKey1 ,PCollKey2 ,
PCollKey3). is similar to DH_proba_collision, but additionally says that the proba-
bility that exp(g,mult(x, x)) = Y where x is random and Y is independent of x is at
most PCollKey3 , with PCollKey3 ≥ PCollKey2 .
The types G and Z and the probabilities PCollKey1 , PCollKey2 , and PCollKey3 must
be declared before this macro. The functions g, exp, and mult are defined by this macro.
They must not be declared elsewhere, and they can be used only after expanding the
macro.

∗ expand DH_good_group(G,Z, g, exp, exp′,mult). defines a group G like DH_basic, with
the following additional properties: G is a group of prime order q, with the neutral element
excluded, the set of exponents Z is {1, . . . , q−1}, g is a generator of G, mult is the product
modulo q in {1, . . . , q− 1}, i.e. in the group (Z/qZ)∗, the distributions of random choices
in Z and G are uniform.
It may not be obvious when an element is received on the network whether it really belongs
to the group G generated by g. That should be checked for the properties assumed in
this macro to hold.
This macro defines the following equivalences for use in the crypto command (see Sec-
tion 7):
· group_to_exp_strict(exp) which allows to replace a random X ∈ G with exp(g, x)
for a random x ∈ Z, provided exp(X,_) occurs in the game.
· group_to_exp(exp) which allows to replace a random X ∈ G with exp(g, x) for a
random x ∈ Z in any case. (This transformation is applied only manually.)
· exp_to_group(exp) which allows to replace exp(g, x) for a random x ∈ Z with a
random X ∈ G.
· exp’_to_group(exp) which allows to replace exp′(g, x) for a random x ∈ Z with a
random X ∈ G.

∗ expand DH_single_coord_ladder(G, Z, g, exp, mult , subG , Znw , ZnwtoZ , g_k ,
exp_div_k , exp_div_k ′, pow_k , subGtoG , zero, sub_zero). models an elliptic curve
defined by the equation Y 2 = X3 + AX2 + X in the field Fp of non-zero integers mod-
ulo the large prime p, where A2 − 4 is not a square modulo p. This curve must form
a commutative group of order kq where k is a small integer and q is a large prime. Its
quadratic twist must form a commutative group of order k′q′ where k′ is a small integer
and q′ is a large prime. k must be a multiple of k′. We must use a single coordinate
ladder defined as follows: we consider the elliptic curve E(Fp2) defined by the equation
Y 2 = X3 +AX2 +X in a quadratic extension Fp2 of Fp, we define X0 : E(Fp2)→ Fp2 by
X0(∞) = 0 and X0(X,Y) = X, and for X ∈ Fp and y an integer, we define y ·X ∈ Fp

as y · X = X0(yQ) for all Q ∈ E(Fp2) such that X0(Q) = X. The value g = X0(g0)
represents the base point g0, which must have order q. The public keys (bitstrings) are

46

mapped to elements of Fp by the function red and conversely, elements of Fp are mapped
to public keys by the function repr, such that red◦repr is the identity. The Diffie-Hellman
“exponentiation” is defined by

exp(X, y) = repr(y · red(X))

The secret keys are chosen uniformly in {kn | n ∈ [nmin, nmax]} where nmin < nmax,
nmax − nmin < q and nmax − nmin < q′. Therefore the set of secret keys may contain a
multiple of q (resp. q′). Such keys are weak, in the sense that they yield 0 for all public
keys on the curve (resp. on the twist). We exclude them as a first step in the proof, by
applying the equivalence exclude_weak_keys(Z) defined by this macro, automatically or
with the crypto command (see Section 7).
This model is justified in [9].
G: type of public keys (must be bounded and large).
subG : type of {k · X | X ∈ Fp} (must be bounded, nonuniform, and large). Random
choices in subG are done by choosing uniformly in {x · g | x ∈ {1, . . . , q − 1}}. (This set
is not the whole subG , since subG also contains elements of the twist.) This is important
when the DDH assumption or the square DDH assumption is used.
Z, Znw : type of exponents (must be bounded, nonuniform, and large). Znw is the set
of integers multiple of k, prime to qq′ modulo kqq′, that is, exponents without weak keys.
Random choices in Znw are done by choosing uniformly in {kn | n ∈ [nmin, nmax], n prime
to qq′}. Z is the set of integers multiple of k modulo kqq′, that is, exponents with weak
keys. Random choices in Z are done by choosing uniformly in {kn | n ∈ [nmin, nmax]},
hence Pcoll1rand(Z) = 1/(nmax − nmin + 1).
ZnwtoZ (Znw) : Z: injection from Znw to Z.
g : G: represents the base point.
exp(G,Z) : G: the exponentiation function.
mult(Znw ,Znw) : Znw : the multiplication function for exponents, defined as mult(x, y) =
x.y mod kqq′. (It remains in Znw .)
g_k = k · red(g). It is an element of subG .
exp_div_k(subG ,Znw) : subG is defined by exp_div_k(X, y) = (y/k) ·X.
exp_div_k ′: symbol that replaces exp_div_k after game transformation, with the same
definition as exp_div_k .
pow_k(G) : subG , defined by pow_k(x) = k · red(x).
subGtoG(subG) : G is repr restricted to subG .
zero : G is the public key 0.
sub_zero : subG is 0, as an element of subG .
The types G, subG , Z, and Znw must be declared before this macro. The functions g,
exp, mult , ZnwtoZ , g_k , exp_div_k , exp_div_k ′, pow_k , subGtoG , zero, sub_zero are
defined by this macro. They must not be declared elsewhere, and they can be used only
after expanding the macro.
When this macro is used, the Diffie-Hellman assumptions (detailed below) should be
applied to the subgroup, that is, expand assumption(subG , Znw , g_k , exp_div_k ,
exp_div_k ′, mult , . . .).

∗ expand DH_X25519(G, Z, g, exp, mult , subG , g_k , exp_div_k , exp_div_k ′, pow_k ,
subGtoG , zero, sub_zero). models Curve25519 as defined in RFC 7748 (https://tools.
ietf.org/html/rfc7748). It is justified in detail in [9]. More generally, it supports the
same curves as DH_single_coord_ladder with the additional assumption that all secret
keys are prime to qq′. Therefore, we do not need to exclude weak secret keys, so the
parameters Znw and ZnwtoZ are removed, and we use Z instead of Znw .
Curve25519 satisfies these assumptions with p = 2255 − 19, k = 8, k′ = 4, q = 2252 + δ
with 0 < δ < 2128, q′ = 2253 − 9 − 2δ, red(X) = (X mod 2255) mod p, repr(X) is the
representation of X as an element of {0, . . . , p − 1}, nmin = 2251, and nmax = 2252 − 1,
so Pcoll1rand(Z) = 2−251. (For simple examples that use Curve25519, using the macro
DH_proba_collision may also work.)

∗ expand DH_X448(G, Z, g, exp, mult , subG , Znw , ZnwtoZ , g_k , exp_div_k , exp_div_k ′,

47

https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc7748

pow_k , subGtoG , zero, sub_zero). models Curve448 as defined in RFC 7748 (https:
//tools.ietf.org/html/rfc7748). More generally, it supports the same curves as
DH_single_coord_ladder with the additional assumptions that there is at most one
secret key multiple of q or q′, and that q = −1 mod 4, so −1 is not a square modulo q.
That allows to reduce some probabilities. This model is justified in [9].

– Optionally, expand DH_dist_random_group_element_vs_exponent(G,Z, g, exp, exp′,mult ,
PDist). This macro says that the probability of distinguishing a random group element from
an exponentiation exp(g, x) with a random exponent x is at most PDist . The other arguments
are as in DH_basic and all arguments must be defined before expanding the macro.
This macro defines the following equivalences for use in the crypto command (see Section 7):

∗ group_to_exp_strict(exp) which allows to replace a random X ∈ G with exp(g, x) for
a random x ∈ Z, provided exp(X,_) occurs in the game.

∗ group_to_exp(exp) which allows to replace a random X ∈ G with exp(g, x) for a random
x ∈ Z in any case. (This transformation is applied only manually.)

∗ exp_to_group(exp) which allows to replace exp(g, x) for a random x ∈ Z with a random
X ∈ G.

∗ exp’_to_group(exp) which allows to replace exp′(g, x) for a random x ∈ Z with a random
X ∈ G.

This macro can be used with any of the previous macros, except that it is useless with the
macro DH_good_group, because this macro already includes these properties with PDist = 0.
When the macro DH_single_coord_ladder, DH_X25519, or DH_X448 is used, this macro should
be applied to the subgroup. For instance, with expand DH_single_coord_ladder(G, Z, g,
exp, mult , subG , Znw , ZnwtoZ , g_k , exp_div_k , exp_div_k ′, pow_k , subGtoG , zero,
sub_zero)., it should be expand DH_dist_random_group_element_vs_exponent(subG ,
Znw , g_k , exp_div_k , exp_div_k ′, mult , Pdist).

– One from the following set of macros, which defines the Diffie-Hellman assumption itself:

∗ expand CDH(G,Z, g, exp, exp′,mult , p). says that the group G satisfies the computational
Diffie-Hellman assumption; p(t) is the probability of breaking the CDH assumption, for
one pair of exponents, in time t. This macro defines the equivalence cdh(exp), whichs
corresponds to the CDH property, for use in the crypto command (see Section 7).

∗ expand CDH_RSR(G,Z, g, exp, exp′,mult , p). is similar to CDH, but uses random self re-
ducibility. It may yield lower probabilities but requires the exponents to be chosen uni-
formly in (Z/qZ)∗ or in Z/qZ, where q is the order of g, so it is not correct for usual
implementations of Curve25519 for instance. (The proof is done using uniform choices in
Z/qZ; we add the probability of distinguishing these choices from choices in (Z/qZ)∗ so
that the result also applies to choices in (Z/qZ)∗, as assumed in DH_good_group and as
often done in Diffie-Hellman implementations. Indeed, 0 is a bad secret key, since with a
0 secret key, the Diffie-Hellman shared secret is always the neutral element of the group,
independently of the other public key.)

∗ expand DDH(G,Z, g, exp, exp′,mult , p). says that the group G satisfies the decisional
Diffie-Hellman assumption; p(t) is the probability of breaking the DDH assumption, for
one pair of exponents, in time t. This macro defines the equivalence ddh(exp), whichs
corresponds to the DDH property, for use in the crypto command (see Section 7).

∗ expand GDH(G,Z, g, exp, exp′,mult , p). says that the group G satisfies the gap Diffie-
Hellman assumption (GDH). The probability p(t, n) is the probability of breaking the
GDH assumption for one pair of exponents in time t with at most n calls to the decisional
Diffie-Hellman oracle. This macro defines the equivalence gdh(exp), whichs corresponds
to the GDH property, for use in the crypto command (see Section 7).

∗ expand GDH_RSR(G,Z, g, exp, exp′,mult , p). is similar to GDH, but uses random self re-
ducibility. It may yield lower probabilities but requires the exponents to be chosen uni-
formly in (Z/qZ)∗ or in Z/qZ, where q is the order of g, so it is not correct for usual
implementations of Curve25519 for instance.

48

https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc7748

∗ expand square_CDH(G,Z, g, exp, exp′,mult , p, sqp). says that the group G satisfies the
computational Diffie-Hellman assumption and the square computational Diffie-Hellman
assumption; p(t) is the probability of breaking the CDH assumption, for one pair of ex-
ponents, in time t and sqp(t) is the probability of breaking the square CDH assumption,
for one pair of exponents, in time t. This macro defines the equivalence cdh(exp), whichs
corresponds to the (square) CDH property, for use in the crypto command (see Sec-
tion 7). When the group has prime order, the computational Diffie-Hellman assumption
is equivalent to the square variant, but CryptoVerif can do more proofs using the square
variant. (It allows transforming exp(g,mult(x, x)).)

∗ expand square_CDH_RSR(G,Z, g, exp, exp′,mult , sqp). says that the group G satisfies the
square computational Diffie-Hellman assumption; sqp(t) is the probability of breaking
the square CDH assumption, for one pair of exponents, in time t. This macro defines
the equivalence cdh(exp), whichs corresponds to the square CDH property, for use in
the crypto command (see Section 7). It uses random self reducibility. It may yield
lower probabilities than square_CDH but requires the exponents to be chosen uniformly in
(Z/qZ)∗ or in Z/qZ, where q is the order of g, so it is not correct for usual implementations
of Curve25519 for instance.

∗ expand square_DDH(G,Z, g, exp, exp′,mult , p, sqp). says that the group G satisfies the
decisional Diffie-Hellman assumption and the square decisional Diffie-Hellman assump-
tion; p(t) is the probability of breaking the DDH assumption, for one pair of exponents,
in time t and sqp(t) is the probability of breaking the square DDH assumption, for one pair
of exponents, in time t. This macro defines the equivalence ddh(exp), whichs corresponds
to the (square) DDH property, for use in the crypto command (see Section 7).

∗ expand square_GDH(G,Z, g, exp, exp′,mult , p, sqp). says that the group G satisfies the
gap Diffie-Hellman (GDH) assumption and the square gap Diffie-Hellman assumption;
p(t, n) is the probability of breaking the GDH assumption, for one pair of exponents, in
time t with at most n calls to the decisional Diffie-Hellman oracle and sqp(t, n) is the
probability of breaking the square GDH assumption, for one pair of exponents, in time
t with at most n calls to the decisional Diffie-Hellman oracle. This macro defines the
equivalence gdh(exp), whichs corresponds to the (square) GDH property, for use in the
crypto command (see Section 7).

∗ expand square_GDH_RSR(G,Z, g, exp, exp′,mult , sqp). says that the group G satisfies the
square gap Diffie-Hellman assumption; sqp(t, n) is the probability of breaking the square
GDH assumption, for one pair of exponents, in time t with at most n calls to the decisional
Diffie-Hellman oracle. This macro defines the equivalence gdh(exp), whichs corresponds
to the square GDH property, for use in the crypto command (see Section 7). It uses
random self reducibility. It may yield lower probabilities than square_GDH but requires
the exponents to be chosen uniformly in (Z/qZ)∗ or in Z/qZ, where q is the order of g,
so it is not correct for usual implementations of Curve25519 for instance.

∗ expand PRF_ODH1(G,Z, prf _in, prf _out , g, exp, exp′,mult , prf , p). says that the group
G satisfies the PRF-ODH1 (pseudo-random function oracle Diffie-Hellman) assumption,
which corresponds to PRF-ODHnn in [6]. The pseudo-random function prf (G, prf _in) :
prf _out takes as argument a group element in G and an element in prf _in, and produces
a result in prf _out . The type prf _out must be bounded or nonuniform. This assumption
means that an adversary that has 2 public Diffie-Hellman keys exp(g, a) and exp(g, b) for
random a, b cannot distinguish x 7→ prf (exp(g,mult(a, b)), x) from a random function.
A random function returns a fresh random value when it is called with a new argument
and the previous result when it is called with the same argument as a previous call. The
probability p(t, n) is the probability of breaking the PRF-ODH1 assumption in time t with
n queries to prf (exp(g,mult(a, b)), x). This macro defines the equivalence prf_odh(prf),
whichs corresponds to the PRF-ODH1 property, for use in the crypto command (see
Section 7).

∗ expand PRF_ODH2(G,Z, prf _in, prf _out , g, exp, exp′,mult , prf , p). says that the group
G satisfies the PRF-ODH2 assumption, which corresponds to PRF-ODHmm in [6].
The types prf _in and prf _out and the pseudo-random function prf are defined as

49

for PRF_ODH1. This assumption means that an adversary that has 2 public Diffie-
Hellman keys exp(g, a) and exp(g, b) for random a, b and has access to the or-
acles (Y, x) 7→ prf (exp(Y, a), x) and (X,x) 7→ prf (exp(X, b), x) cannot distinguish
x 7→ prf (exp(g,mult(a, b)), x) from a random function. The probability p(t, n, n′) is
the probability of breaking the PRF-ODH2 assumption in time t with n queries to
prf (exp(g,mult(a, b)), x) and n′ queries to (Y, x) 7→ prf (exp(Y, a), x) and (X,x) 7→
prf (exp(X, b), x) in total. This macro defines the equivalence prf_odh(prf), whichs cor-
responds to the PRF-ODH2 property, for use in the crypto command (see Section 7).

∗ expand square_PRF_ODH1(G,Z, prf _in, prf _out , g, exp, exp′,mult , prf , p, sqp). says
that the group G satisfies the square PRF-ODH1 assumption and the PRF-ODH1
assumption. The types prf _in and prf _out and the pseudo-random function prf
are defined as for PRF_ODH1. The square PRF-ODH1 assumption means that an
adversary that has a public Diffie-Hellman key exp(g, a) for random a cannot distinguish
x 7→ prf (exp(g,mult(a, a)), x) from a random function. The probability sqp(t, n) is the
probability of breaking the square PRF-ODH1 assumption in time t with n queries
to prf (exp(g,mult(a, a)), x). The probability p(t, n) is the probability of breaking the
PRF-ODH1 assumption in time t with n queries to prf (exp(g,mult(a, b)), x). This macro
defines the equivalence prf_odh(prf), whichs corresponds to the square PRF-ODH1 and
PRF-ODH1 properties, for use in the crypto command (see Section 7).

∗ expand square_PRF_ODH2(G,Z, prf _in, prf _out , g, exp, exp′,mult , prf , p, sqp). says
that the group G satisfies the square PRF-ODH2 assumption and the PRF-ODH2
assumption. The types prf _in and prf _out and the pseudo-random function prf are
defined as for PRF_ODH1. The square PRF-ODH2 assumption means that an adversary
that has a public Diffie-Hellman key exp(g, a) for random a and has access to the oracle
(Y, x) 7→ prf (exp(Y, a), x) cannot distinguish x 7→ prf (exp(g,mult(a, a)), x) from a
random function. The probability sqp(t, n, n′) is the probability of breaking the square
PRF-ODH2 assumption in time t with n queries to prf (exp(g,mult(a, a)), x) and n′

queries to (Y, x) 7→ prf (exp(Y, a), x). The probability p(t, n, n′) is the probability of
breaking the PRF-ODH2 assumption in time t with n queries to prf (exp(g,mult(a, b)), x)
and n′ queries to (Y, x) 7→ prf (exp(Y, a), x) and (X,x) 7→ prf (exp(X, b), x) in total.
This macro defines the equivalence prf_odh(prf), whichs corresponds to the square
PRF-ODH2 and PRF-ODH2 properties, for use in the crypto command (see Section 7).

The argument prf of the PRF-ODH macros is defined by these macros. It must not be
declared elsewhere, and it can be used only after expanding the macro. All other arguments
of these macros must be defined before expanding the macro.

• expand Xor(D, xor , zero). defines the function symbol xor to be exclusive or on the set of bitstrings
D, where zero is the bitstring consisting only of zeroes in D. D should be fixed.

The type D must be declared before this macro is expanded. The function xor and the constant
zero are declared by this macro. They must not be declared elsewhere, and they can be used only
after expanding the macro.

This macro defines the equivalence named remove_xor(xor) for use in the crypto command (see
Section 7).

• expand keygen(keyseed , key , kgen). defines a key generation function kgen. It can be used to add
a key generation function to symmetric cryptographic primitives, if needed.

keyseed is the type of key seeds, must be bounded or nonuniform (to be able to generate random
numbers from it), typically fixed, and large.

key type of keys, must be bounded.

kgen(keyseed) : key is the key generation function.

The types keyseed and key must be declared before this macro is expanded. The function kgen is
declared by this macro. It must not be declared elsewhere, and it can be used only after expanding
the macro.

50

This macro defines the equivalence named keygen(kgen) for use in the crypto command (see
Section 7).

• expand Auth_Enc_from_Enc_then_MAC(key , cleartext , ciphertext , enc, dec, injbot ,Z ,Penc,Pmac).
defines an authenticated encryption scheme, built by encrypt-then-MAC from an IND-CPA en-
cryption scheme and an SUF-CMA deterministic MAC.

The arguments are the same as for IND_CPA_INT_CTXT_sym_enc except that Penc(t,N, l) is the
probability of breaking the IND-CPA property of the underlying encryption scheme in time t for
one key and N encryption queries with cleartexts of length at most l, and Pmac(t,N,N ′,Nu ′, l) is
the probability of breaking the SUF-CMA property of the underlying MAC scheme in time t for one
key, N MAC queries, N ′ verification queries modified by the transformation and Nu verification
queries left unchanged by the transformation for messages of length at most l.

• expand Auth_Enc_from_AEAD(key , cleartext , ciphertext , enc, dec, injbot ,Z ,Penc,Pencctxt). de-
fines an authenticated encryption scheme, built from an AEAD scheme using empty additional
data.

The arguments are the same as for IND_CPA_INT_CTXT_sym_enc except that Penc(t,N, l) is the
probability of breaking the IND-CPA property of the underlying AEAD scheme in time t for one
key and N encryption queries with cleartexts of length at most l, and Pencctxt(t,N,N ′, l, l′, ld , ld ′)
is the probability of breaking the INT-CTXT property of the underlying AEAD scheme in time t
for one key, N encryption queries, N ′ decryption queries with cleartexts of length at most l and
ciphertexts of length at most l′, additional data for encryption of length at most ld , and additional
data for decryption of length at most ld ′.

• expand Auth_Enc_from_AEAD_nonce(key , cleartext , ciphertext , enc, dec, injbot ,Z ,Penc,Pencctxt).
defines an authenticated encryption scheme, built from an AEAD scheme with a nonce by choosing
the nonce randomly at each encryption and using empty additional data.

The arguments are the same as for IND_CPA_INT_CTXT_sym_enc except that Penc(t,N, l) is the
probability of breaking the IND-CPA property of the underlying AEAD scheme in time t for one
key and N encryption queries with cleartexts of length at most l, and Pencctxt(t,N,N ′, l, l′, ld , ld ′)
is the probability of breaking the INT-CTXT property of the underlying AEAD scheme in time t
for one key, N encryption queries, N ′ decryption queries with cleartexts of length at most l and
ciphertexts of length at most l′, additional data for encryption of length at most ld , and additional
data for decryption of length at most ld ′.

• expand AEAD_from_Enc_then_MAC(key , cleartext , ciphertext , add_data, enc, dec, injbot , Z , Penc,
Pmac). defines an authenticated encryption scheme with additional data built by encrypt-then-
MAC from an IND-CPA encryption scheme and an SUF-CMA deterministic MAC.

The arguments are the same as for AEAD except that Penc(t,N, l) is the probability of breaking the
IND-CPA property of the underlying encryption scheme in time t for one key and N encryption
queries with cleartexts of length at most l, and Pmac(t,N,N ′,Nu ′, l) is the probability of breaking
the SUF-CMA property of the underlying MAC scheme in time t for one key, N MAC queries, N ′
verification queries modified by the transformation and Nu verification queries left unchanged by
the transformation for messages of length at most l.

• expand AEAD_from_AEAD_nonce(key , cleartext , ciphertext , add_data, enc, dec, injbot , Z ,Penc,
Pencctxt). defines an authenticated encryption scheme with additional data, built from an AEAD
scheme with a nonce by choosing the nonce randomly at each encryption.

The arguments are the same as for AEAD except that Penc(t,N, l) is the probability of breaking the
IND-CPA property of the underlying AEAD scheme in time t for one key and N encryption queries
with cleartexts of length at most l, and Pencctxt(t,N,N ′, l, l′, ld , ld ′) is the probability of breaking
the INT-CTXT property of the underlying AEAD scheme in time t for one key, N encryption
queries, N ′ decryption queries with cleartexts of length at most l and ciphertexts of length at most
l′, additional data for encryption of length at most ld , and additional data for decryption of length
at most ld ′.

51

• expand random_split_N(input_t , part1_t , . . . , partN_t , tuple_t , tuple, split). defines allows to
split a random value into N values, for N ≤ 10.

input_t : type of the input value

part1_t , . . . , partN_t : types of the output parts.

tuple_t : type of a tuple of the output parts

tuple(part1_t , . . . , partN_t) : tuple_t : builds a tuple from N parts.

split(input_t) : tuple_t splits the input into N parts and returns a tuple of these parts. The
macro says that if y is a random value in input_t , then split(y) is a tuple tuple(x1, . . . , xN) of N
independent random values in part1_t , . . . , partN_t .

To split a value y of type input_t into N parts of types part1_t , . . . , partN_t , write:

let tuple(x1, . . . , xN) = split(y) in . . .

Note that a priori, CryptoVerif thinks that the pattern-matching with tuple(x1, . . . , xN) may fail,
and thus requires an else branch when the let occurs in a term. CryptoVerif realizes that the
pattern-matching never fails when it expands the definition of split .

This macro defines the equivalence named splitter(split) which replaces the splitting of a
random number generation in input_t with N independent random number generations in
part1_t , . . . , partN_t .

input_t , part1_t , . . . , partN_t , tuple_t must be defined before expanding this macro. tuple and
split are defined by this macro. They must not be declared elsewhere, and they can be used only
after expanding the macro.

7 Interactive Mode
In interactive mode, the user specifies transformations to perform. Some of the instructions take a
program point (or occurrence) in the current game as argument. One should use the command show_game
occ or out_game f occ (mentioned below) to display the game with an occurrence number at each
program point. The program points can then be specified as follows:

• an integer designates the program point labeled by that integer in the displayed game.

• before "regexp" designates the program point at the beginning of the line that matches the regular
expression regexp. Regular expressions follow the syntax of regular expressions in the OCaml
Str module, see https://caml.inria.fr/pub/docs/manual-ocaml-4.07/libref/Str.html. In
regular expressions, blackslash (\) must be escaped as \\, as in OCaml string literals. There must
be a single line that matches this regular expression, otherwise CryptoVerif shows an error message.

• after "regexp" designates the program point at the beginning of the first line that has an occur-
rence number after the line that matches the regular expression regexp. There must be a single
line that matches this regular expression, otherwise CryptoVerif shows an error message.

• before_nth n "regexp" designates the program point at the beginning of the n-th line that
matches the regular expression regexp.

• after_nth n "regexp" designates the program point at the beginning of the first line that has an
occurrence number after the n-th line that matches the regular expression regexp.

• at n′ "regexp" designates the program point at the n′-th occurrence number that occurs inside
the string that matches the regular expression regexp in the displayed game. There must be a
single match for this regular expression, otherwise CryptoVerif shows an error message. (With at,
if the same line matches the regular expression several times, it counts as several matches.)

52

https://caml.inria.fr/pub/docs/manual-ocaml-4.07/libref/Str.html

• at_nth n n′ "regexp" designates the program point at the n′-th occurrence number that occurs
inside the string corresponding to the n-th match of the regular expression regexp in the displayed
game. (With at_nth, if the same line matches the regular expression several times, it counts as
several matches.)

Using an explicit integer to designate a program point is very unstable: it changes if the verified protocol
is slightly modified, or if a new version of CryptoVerif itself is used, which may transform games in
a slightly different way. The other ways of designating program points are therefore preferable when
possible.

When an identifier is expected in an instruction, it is possible to put it between quotes. This is useful
in particular for identifiers that clash with proof keywords.

Here is a list of available instructions:

• help or ?: display a list of available commands.

• remove_assign useless: remove useless assignments, that is, assignments to x when x is unused
and assignments between variables.

• remove_assign findcond: removes useless assignments, as above, as well as assignments let x =
M in inside conditions of find.

• remove_assign all: remove all assignments, by replacing variables with their values. This is not
recommended: you should try to specify which assignments to remove more precisely.

• remove_assign binder x1 . . . xn: remove assignments to x1, . . . , xn by replacing xi with its
value. When xi becomes unused, its definition is removed. When xi is used only in defined
tests after transformation, its definition is replaced with a constant. The variables xi may also
be regular expressions, following the syntax of regular expressions in the OCaml Str module, see
https://caml.inria.fr/pub/docs/manual-ocaml-4.07/libref/Str.html. In this case, they
designate all variables that match the regular expression. This is particularly helpful to designate
all variables that come from the same initial name but have different numbers: "name_[0-9]*".
Regular expressions need to be put between quotes because they use characters that do not belong
to ordinary identifiers. Blackslash (\) must then be escaped as \\, as in OCaml string literals.

• move m: Try to move instructions as follows:

– Move random number generations down in the syntax tree as much as possible, in order to
delay the choice of random numbers. This is especially useful when the random number
generations can be moved under a test if, let, or find, so that we can distinguish in which
branch of the test the random number is created by a subsequent SArename instruction.

– Move assignments down in the syntax tree but without duplicating them. This is especially
useful when the assignment can be moved under a test, in which the assigned variable is used
only in one branch. In this case, the assigned term is computed in fewer cases thanks to this
transformation. (Note that only assignments without array accesses can be moved, because
in the presence of array accesses, the computation would have to be kept in all branches of
the test, yielding a duplication that we want to avoid.)

The argument m specifies which instructions should be moved:

– all: move random number generations and assignments, when this is beneficial, that is, when
they can be moved under a test.

– noarrayref: move random number generations and assignments without array accesses, when
this is beneficial.

– random: move random number generations, when this is beneficial.

– random_noarrayref: move random number generations without array accesses, when this is
beneficial.

– assign: move assignments, when this is beneficial.

53

https://caml.inria.fr/pub/docs/manual-ocaml-4.07/libref/Str.html

– binder x1 . . . xn: move random number generations and assignments that define x1, . . . , xn
(even when this is not beneficial). The variables xi may also be regular expressions.

– array x ["exp", . . . , "exp"]: move random number generations that define x when x is
of a bounded or nonuniform type and x is not used in the process that defines it, until the
next output after the definition of x. x is then chosen at the point where it is really first
used. (Since this point may depend on the trace, the uses of x are often transformed into
find instructions that test whether x has been chosen before, and reuse the previously chosen
value if this is true.)
The expressions "exp" allow the user to specify expressions that do no require the generation
of x when it has not been generated before, because the expression always yields the same
result when x is a fresh random value, up to negligible probability. More precisely, these
expressions must be of the form

[forall seq〈vartype〉;] new 〈vartype〉; 〈simpleterm〉

The expression can be forall y1 : T1, . . . , yn : Tn; new x′ : T; M , where T is the type
of x and y1, . . . , yn, x

′ are the variables of M . CryptoVerif tries to simplify M into a term
M ′ that does not contain x′, assuming that x′ is random and y1, . . . , yn are independent of
x′. If it fails, the move array transformation fails. If it succeeds, the transformation can be
performed, replacing M{x/x′} with M ′ instead of generating a fresh x.
When no expression "exp" is mentioned, the expressions that do no require the generation
of x are equality tests with x, and the type T of x must be large enough, so that collisions
between x and a value independent of x can be eliminated (Pcoll1rand(T) ≤ 2−n

′
, that is,

T has option pcolln with n ≥ n′ where n′ is set by set minAutoCollElim = pestn′; the
default is n′ = 80).
The variables x may also be a regular expression. In this case, it designates all variables that
match the regular expression; all these variables must have the same type.

• simplify: simplify the game.

• simplify coll_elim(variables: x1, . . . , xn; types:t1, . . . , tn′; terms:occ1, . . . , occn′′): simplify
the game, additionally allowing elimination of collisions on data at all occurrences of variables
x1, . . . , xn, at all data of types t1, . . . , tn′ , and at the program points occ1, . . . , occn′′ . See above
for how to specify the program points occi. Some of the lists of variables, types, or terms may be
omitted. In this case, the separating semi-colon ; is obviously omitted as well. It is also possible
to reorder or repeat these lists; the lists add up. (The probability of the collision must still satisfy
the condition given by allowed_collisions.)

• global_dep_anal x performs global dependency analysis on x: it computes all variables that
depend on x, and when possible, shows that all output messages are independent of x and that all
tests are independent of x after eliminating collisions. The tests are then simplified by eliminating
these collisions, so that all dependencies on x can be removed.

global_dep_anal x coll_elim(variables: x1, . . . , xn; types:t1, . . . , tn′; terms:occ1, . . . , occn′′)
performs global dependency analysis on x, additionally allowing elimination of collisions on data
at all occurrences of variables x1, . . . , xn, at all data of types t1, . . . , tn′ , and at the program points
occ1, . . . , occn′′ . See above for how to specify the program points occi. Some of the lists of variables,
types, or terms may be omitted. In this case, the separating semi-colon ; is obviously omitted as
well. It is also possible to reorder or repeat these lists; the lists add up. (The probability of the
collision must still satisfy the condition given by allowed_collisions.)

One must allow elimination on x independently of the program point, so if x is not large, x must
be mentioned in x1, . . . , xn or its type must be mentioned in t1, . . . , tn; mentioning the occurrences
of x in occ1, . . . , occn′′ is not sufficient.

The variable x may also be a regular expression. In this case, it designates all variables that match
the regular expression, and the command global_dep_anal is executed for each of these variables
in turn.

54

• SArename x: When x is defined at several places, rename x to a different name for each definition.
This is useful for distinguishing cases depending on which definition of x is used. The variable x
may also be a regular expression. In this case, it designates all variables that match the regular
expression, and the command SArename is executed for each of these variables in turn.

• all_simplify: perform several simplifications on the game, as if

– simplify,

– move all if autoMove = true,

– remove_assign useless if autoRemoveAssignFindCond = false,
remove_assign findcond if autoRemoveAssignFindCond = true,

– and merge_branches if autoMergeBranches = true

had been called.

• expand: expand if, let, find, event, event_abort, new terms into processes. That leads to dis-
tinguishing the branches until the end of the process, which may help the proof by distinguishing
more cases, but may lead to very large games. This is also needed because some game transforma-
tions of CryptoVerif do not support non-expanded games. When autoExpand = true (the default),
this expansion is performed automatically in case a game transformation results in a non-expanded
game.

• crypto . . . : applies a cryptographic transformation that comes from a statement equiv. This
command can have several forms:

– crypto: list all available equiv statements, and ask the user to choose which one should be
applied, with which variables of the game corresponding to random number generations of the
left-hand side of the equivalence.

– crypto 〈name〉 *: apply a cryptographic transformation determined by the name 〈name〉.
This name can be either an identifier id or id(f), and corresponds to the name given at the
declaration of the cryptographic transformation by equiv. In case the name is not found,
CryptoVerif reverts to the old way of designating cryptographic transformations, in which
〈name〉 can be either a function symbol that occurs in the terms in the left-hand side of
the equiv statement, or a probability function that occurs in the probability formula of the
equiv statement. When several equivalences correspond, the user is prompted for choice. The
transformation is applied as many times as possible. (In this case, the advised transformations
are applied automatically even when set autoAdvice = false.)

– crypto 〈name〉 **: similar to crypto 〈name〉 *, but the game is simplified only after the last
cryptographic transformation instead of simplifying it after each transformation, for faster
execution. This is recommended only for very simple cryptographic transformations.

– crypto 〈name〉 x1 . . . xn: apply a cryptographic transformation chosen as above, where
x1, . . . , xn are variable names of the game corresponding to random number generations in
the left-hand side of the equivalence. (CryptoVerif may automatically add variables to the
list x1, . . . , xn if needed, except when a dot is added at the end of the list x1, . . . , xn. The
transformation is applied only once. If several disjoint lists x1, . . . , xn are possible and no
variable name is mentioned, CryptoVerif makes a choice. It is better to mention at least
one variable name when the left-hand side of the equivalence contains a random number
generation, to make explicit which transformation should be applied.)
In case the command ends with a dot (.), CryptoVerif never adds other variable names to
those already listed. If the dot is absent, CryptoVerif may add other variable names if that
seems necessary to perform the transformation.
The variables xi may also be regular expressions. In this case, they designate all variables
that match the regular expression.

– crypto 〈name〉 [variables: x1->y1, . . . , xn->yn; terms: occ1->O1, . . . , occm->Om]: ap-
ply a cryptographic transformation chosen as above, where

55

∗ x1, . . . , xn are variable names of the game which correspond to random number genera-
tions y1, . . . , yn respectively in the left-hand side of the equivalence. (CryptoVerif may
automatically add variables to the list x1->y1, . . . , xn->yn if needed, except when a dot
is added at the end of this list.)
The variables xi may also be regular expressions. In this case, they designate all variables
that match the regular expression, and they are mapped to the same variable yi in the
equivalence.

∗ occ1, . . . , occm are program points at which terms will be transformed using oracles
O1, . . . , Om respectively of the equivalence. See above for how to specify the program
points occi. (CryptoVerif may automatically add elements to the list occ1->O1, . . . ,
occm->Om if needed, except when a dot is added at the end of this list.)

When the considered equivalence is defined inside a macro, macro expansion may add an
integer suffix _k to the variable and oracle names of the equivalence (or may modify that
suffix if they already have one). This suffix must be included in the variable and oracle names
used in this command. This happens in particular for primitives defined in the library of
primitives of CryptoVerif. The right value of k in the suffix can be determined by issuing a
command crypto without further indication. This command will display the equivalences as
they are stored by CryptoVerif after macro expansion.
One of the lists of variables or terms may be omitted. In this case, the separating semi-colon
; is obviously omitted as well. It is also possible to reorder or repeat the variables and /or
terms lists; the lists add up.

• insert_event e occ replaces the subprocess or term at program point occ with the event event e.
The games may be distinguished if and only if the event e is executed, and CryptoVerif then tries to
find a bound for the probability of executing that event. See above for how to specify the program
point occ. The program point occ must correspond to an output process (resp. oracle body in the
oracles front-end) or to a term not in a condition of find nor in the channel of an input.

When the setting autoExpand is true and the occurrence occ corresponds to a term, the game is
automatically expanded after inserting the event, so that after expansion the event occurs in a
process, not in a term.

• insert occ "ins" inserts instruction ins at program point occ. The instruction ins can be

new 〈vartype〉
if 〈cond〉 then

event 〈ident〉[(seq〈term〉)]
let 〈pattern〉 = 〈term〉 in
find[[unique]] 〈findbranch〉 (orfind 〈findbranch〉)∗

or in the oracles front-end

〈ident〉 <-R 〈ident〉
if 〈cond〉 then

event 〈ident〉[(seq〈term〉)]
〈ident〉[:〈ident〉] <- 〈term〉
let 〈pattern〉 = 〈term〉 in
find[[unique]] 〈findbranch〉 (orfind 〈findbranch〉)∗

where 〈findbranch〉 ::= seq〈identbound〉 suchthat 〈cond〉 then

In contrast to the initial game, the terms new, if, find, or let are not expanded, so if, find,
let can occur only in conditions of find and new must not occur as a term. The variables of the
inserted instruction are not renamed, so one must be careful when redefining variables with the
same name. In particular, one is not allowed to add a new definition for a variable on which array

56

accesses are done (because it could change the result of these array accesses). The obtained game
must satisfy the required invariants (each variable is defined at most once in each branch of if,
find, or let; each usage of a variable x must be either x without array index syntactically under
its definition, inside a defined condition of a find, or x[M1, . . . ,Mn] under a defined condition
that contains x[M1, . . . ,Mn] as a subterm). In case the inserted instruction is not appropriate, an
error message explaining the problem is displayed.

The obtained game is indistinguishable from the initial game. The main practical usage of this
command is to introduce case distinctions (if, find, or let with a pattern that is not a variable).
In this situation, the process that follows the insertion point is duplicated in each branch of if,
find, or let, and can subsequently be transformed in different ways in each branch. It may be
useful to disable the merging of branches in simplification by set autoMergeBranches = false
when a case distinction is inserted, so that the operation is not immediately undone at the next
simplification.

See above for how to specify the program point occ. The program point occ must correspond to
an output process (resp. oracle body in the oracles front-end).

• replace occ "term" replaces the term at program point occ with the term term. Obviously,
CryptoVerif must be able to prove that these two terms are equal. These terms must not contain
if, let, find, new, event, event_abort, insert, get. See above for how to specify the program
point occ. The program point occ must correspond to a term not containing if, let, find, new,
event, event_abort, insert, get.

• merge_branchesmerges the branches of if, find, and let when they execute equivalent code. Such
a merging is already done in simplification, but merge_branches goes further. It performs several
merges simultaneously and takes into account that merges may remove array accesses in conditions
of find and thus allow further merges. Moreover, it advises merge_arrays when variables with
different names and with array accesses are used in the branches that we may want to merge.

• merge_arrays x11 . . . x1n , . . . , xk1 . . . xkn takes as argument k lists of n variables separated
by commas. It merges the variables xi1, . . . , xin into xi1. This is useful when these variables play
the same role in different branches of if, find, let: merging them into a single variable may allow
to merge the branches of if, find, let by merge_branches.

The k lists to merge must contain the same number of variables n (at least 2). Variables xij and
xi′j′ for i 6= i′ must never be simultaneously defined for the same value of their array indices.
Variables xij must have the same type and the same array indices for all j. Each variable xij must
have a single definition, and must not be used in queries.

In general, the variables xi1 should preferably belong to the else branch of the if, find, let that
we want to merge later. Indeed, the code of the else branch is often more general than the code
of the other branches (which may exploit the conditions that are tested), so merging towards the
code of the else branch works more often.

The variables x1j should preferably be defined above the variables xij for any i > 1. If this is true,
we can introduce special variables yj at the definition site of x1j which are used only for testing
that branch j has been executed. This allows the merge to succeed more often.

• start_from_other_end: for proofs of indistinguishability only (equivalence), instruct Cryp-
toVerif to start transforming from the other game. When your input file contains equivalenceQ1 Q2,
CryptoVerif initally works on the first processQ1. When you issue the command start_from_other_end,
CryptoVerif stores your current state, and starts working fromQ2. If you issue start_from_other_end
again, it will store what you did from Q2, and will restart working from the end of the sequence
that you built from Q1. This command allows you to alternate between the sequence that starts
from Q1 and the one that starts from Q2. The property is proved when both sequences end with
the same game (which you can check with the command success, as usual).

• quit: terminate execution.

57

• success: test whether the desired properties are proved in the current game. If yes, display the
proof and stop. Otherwise, wait for further instructions.

• success simplify: run success then simplify, with the following addition. The command
success collects information that is known to be true when the adversary manages to break at
least one of the desired properties. The first iteration of simplify removes parts of the game that
contradict this information and replaces them with event adv_loses.

• show_game: display the current game.

• show_game occ: display the current game with occurrence numbers. Useful for some commands
that require specifying a program point; see above for how program point are specified.

• show_state: display the whole sequence of games until the current game.

• show_facts occ: show the facts that are proved by CryptoVerif in the current game, at the program
point occ. See above for how to specify the program point occ. This command is mainly helpful
for debugging.

• out_game f : output the current game to file f . By default, f is output in the current directory.
If the command-line option -o directory was given, f is output in the given directory. Only the
digits, ascii letters, and %+-.=@_~ are allowed in the filename f . The dot (.) is not allowed as first
character. (Be careful: file f will be overwritten if it already exists.)

• out_game f occ: output the current game with occurrence numbers to file f . Useful for some
commands that require specifying a program point; see above for how occurrences are specified.
(See command out_game for details on the filename f . Be careful: file f will be overwritten if it
already exists.)

• out_state f : output the whole sequence of games until the current game to file f . (See command
out_game for details on the filename f . Be careful: file f will be overwritten if it already exists.)

• out_facts f occ: output the facts that are proved by CryptoVerif in the current game, at the
program point occ, to file f . See above for how to specify the program point occ. This command is
mainly helpful for debugging. (See command out_game for details on the filename f . Be careful:
file f will be overwritten if it already exists.)

• auto: switch to automatic mode; try to terminate the proof automatically from the current game.

• set 〈parameter〉 = 〈value〉: sets parameters, as the set instruction in input files.

• allowed_collisions determines when to eliminate collisions. This command has two variants:

– allowed_collisions 〈formulas〉: 〈formulas〉 is a comma-separated list of formulas of the form
〈psize〉1^n1 * . . . *〈psize〉k^nk/〈pest〉, where the exponents ni can be omitted when equal to 1;
〈psize〉i is an identifier that determines the size of a parameter: sizen for parameters of size
n, meaning that the parameter is at most 2n, small for size 2, passive or default for size 30,
noninteractive for size 80; 〈pest〉 (probability estimate) is an identifier such that 1/〈pest〉
estimates a probability. It can take the following values: pestn means that the probability
1/〈pest〉 is at most 2−n; password is equivalent to pest20, i.e. the probability 1/〈pest〉 is
at most 2−20; large is equivalent to pest160, i.e. the probability 1/〈pest〉 is at most 2−160.
(See also the declarations param, proba, and type for explanations of these estimates.)
Collisions are eliminated when their probability is at most of the form constant× pn1

1 × · · · ×
pnk

k × Pcoll1rand(T), where pi is a parameter of size at most 〈psize〉i and Pcoll1rand(T)
is at most the probability estimated by 1/〈pest〉. By default, collisions are eliminated for
anything×Pcoll1rand(T) when Pcoll1rand(T) ≤ 2−160 (large), and for p×Pcoll1rand(T)
when p ≤ 22 (small) and Pcoll1rand(T) ≤ 2−20 (password).
Additionally, 〈formulas〉 may also contain elements of the form collision *〈psize〉1^n1 * . . . *
〈psize〉k^nk. These formulas allow the transformation of terms by collision statements,

58

provided the number of times the collision statement is applied is at most constant × pn1
1 ×

· · · × pnk

k where pi is a parameter of size at most 〈psize〉i. By default, collision statements
can always be applied.
The default behavior is inspired by what happens in asymptotic security: large means that
the probability of collision is asymptotically negligible, while the parameters are always poly-
nomial, so constant×pn1

1 ×· · ·×p
nk

k ×Pcoll1rand(T) is negligible when T is large. Similarly,
probabilities given in collision statements are always negligible, while the parameters are al-
ways polynomial, so the probability obtained by applying constant× pn1

1 × · · · × p
nk

k times a
collision statement remains negligible.

– allowed_collisions 〈pest〉, where 〈pest〉 estimates a probability: pestn means that the
probability is at most 2−n; password is equivalent to pest20, i.e. probability at most 2−20;
large is equivalent to pest160, i.e. probability at most 2−160. Collisions are eliminated
when their probability, taking into account how many times they are applied, is at most the
probability specified by 〈pest〉. This behavior fits the exact security framework nicely: we
eliminate collisions when they have a small enough probability.

• focus "〈querydecl〉", . . . , "〈querydecl〉" where 〈querydecl〉 ::= query [seq〈vartypeb〉;]〈query〉(;
〈query〉)∗ follows the syntax of query declarations given in Section 3 without the final dot: tell
CryptoVerif to try to prove only the mentioned queries, ignoring all other queries. That sometimes
allows to simplify the game further (e.g. remove events that are not used in the queries on which
we focus), and may allow to prove the mentioned queries. The queries are considered equal modulo
renaming of variables declared in seq〈vartypeb〉. When there is no ambiguity, the public variables
of the queries can be omitted. When the queries on which we focus are all proved, CryptoVerif goes
back to the state before the last focus command, to try to prove the other queries. undo focus
also goes back to the state before the last focus command, to try to prove remaining queries.

• tag t: tag the current state with tag t (which can be an identifier or a string). This is useful to
mark the current state and be able to go back to that state with the command undo t.

• undo: undo the last transformation.

• undo n: undo the last n transformations.

• undo focus: go back to the state before the last focus command.

• undo t: undo the transformations until the last state tagged t.

• restart: restart the proof from the beginning. (Still simplify automatically the first game.)

• interactive: starts interactive mode. Allowed in proof environments, but not when one is already
in interactive mode. Useful to start interactive mode after some proof steps.

• forget_old_games: removes games before the current one from memory. That allows to save some
memory, but prevents undo and undo n. However, tagged states are not removed from memory, so
that the command undo t where t is a tag still works. Similarly, states before focus commands are
not removed from memory, so that the command undo focus still works. The display of the games
is saved into a temporary file to allow displaying the games at the end of the proof. You can save
more memory by applying this command systematically with the setting set forgetOldGames =
true.

Ctrl-C allows to interrupt a command in interactive mode, and go back to the state before the beginning
of this command. This feature can be helpful when a command is very slow, to be able to try another
command without waiting for the current command to terminate. It may not work under Windows.

The following indications can help finding a proof:

• When a message contains several nested cryptographic primitives, it is in general better to apply
first the security definition of the outermost primitive.

• In order to distinguish more cases, one can start by applying the security of primitives used in the
first messages, before applying the security of primitives used in later messages.

59

Using a text editor such as emacs to look at games output by out_game can be helpful, in order to use
the search function to look for definitions or usages of variables in large games. For example, when trying
to prove secrecy of x, one may look for usages of x, for definitions of x, and for usages of other variables
used in those definitions.

8 Output of the system
The system outputs the executed transformations when it performs them. At the end, it outputs the
sequence of games that leads to the proof of the desired properties. Between consecutive games, it prints
the name of the performed transformation and details of what it actually did, and the formula giving
the difference of probability between these games (if it is not 0). The description of the transformation
between game may refer to program points in the previous game. These program points may not be
completely accurate for the following reasons:

• When a step of the transformations transforms the same part of the game as a previous step, the
program point in the second step actually refers to the code generated by the previous step, so it
is not found in the previously displayed game.

• When a step transforms part of the game that was duplicated by a previous step of the transfor-
mation, the displayed program point is in fact ambiguous: one does not know which of the copies
is actually transformed.

One can usually clarify the ambiguities by looking at the previous and next games.
Lines that begin with RESULT give the proved results. They may indicate that a property is proved

and give an upper bound of the probability that the adversary breaks the property. In the end, they
may also list the properties that could not be proved, if any.

When the -tex command-line option is specified, CryptoVerif also outputs a LATEX file containing
the sequence of games and the proved properties.

Correspondence between ACSII and LATEX outputs To use nicer and more conventional nota-
tions, the LATEX output sometimes differs from the ASCII output. Here is a table of correspondence:

ASCII LATEX
<=(p)=> ≈p

&& ∧
|| ∨
<> 6=
<= ≤
orfind ⊕
==> =⇒
For the channels front-end
in(c,p) c(p)
in(c,(p1, . . . , pn)) c(p1, . . . , pn)
out(c,M) c〈M〉
out(c,(M1, . . . ,Mn)) c〈M1, . . . ,Mn〉
!N !N

yield 0
-> →
For the oracles front-end
<- ←
<-R R←

9 Implementation
CryptoVerif can generate an OCaml implementation of the protocol from the CryptoVerif specification,
using the option -impl.

60

CryptoVerif generates the code for the protocol itself, but the code for the cryptographic primitives
and for interacting with the network and the application has to be manually written in OCaml.

• For the cryptographic primitives, one can specify which OCaml function corresponds to which
CryptoVerif function as explained in Section 9.3 below. For the security guarantees to hold, the
OCaml implementation must satisfy the security assumptions mentioned in the CryptoVerif specifi-
cation. The subdirectory implementation provides a basic implementation for some cryptographic
primitives, in the module Crypto. This module has two implementations:

– crypto_real.ml corresponds to real cryptographic primitives, implemented by relying on the
OCaml cryptographic library Cryptokit (http://forge.ocamlcore.org/projects/cryptokit/).
You need to install this library in order to run the protocol implementations generated by
CryptoVerif. (It is used at least for random number generation even if you implement the
cryptographic primitives by other means.)

– crypto_dbg.ml is a debugging implementation, which constructs terms instead of applying
the real cryptographic primitives.

You can choose which implementation to use by linking crypto.ml to the desired implementation.
If you implement your own protocol, you will probably need to define your own cryptographic
primitives.
The module Base contains functions used by code generated by CryptoVerif. It should not be
modified.

• The network and application code calls the code generated by CryptoVerif. From the point of view
of security, this code can be considered as part of the adversary. We require that this code does
not use unsafe OCaml functions (such as Obj.magic or marshalling/unmarshalling with different
types) to bypass the typesystem (in particular to access the environment of closures and send it
on the network).
We also require that this code does not mutate the values received from or passed to functions
generated by CryptoVerif. This can be guaranteed by using unmutable types, with the previous
requirement. However, OCaml typically uses string for cryptographic functions and for network
input/output, and the type string is mutable in OCaml. For simplicity and efficiency, the gener-
ated code uses the type string, with the requirement mentioned above.
We also require that all data structures manipulated by the generated code are non-circular. This is
necessary because we use OCaml structural equality to compare values, and this equality may not
terminate in the presence of circular data structures. This can easily be guaranteed by requiring
that all OCaml types declared in the CryptoVerif input file are non-recursive.
We also require that this code does not fork after obtaining but before calling an oracle that can
be called only once (because it is not under a replication in the CryptoVerif specification). Indeed,
forking at this point would allow the oracle to be called several times. In practice, forking generally
occurs only at the very beginning of the protocol, when the server starts a new session, so this
requirement should be easily fulfilled.
Finally, we require that the programs do not perform several simultaneous writes to the same file
and do not simultaneously read and write in the same file. This requirement could be enforced
using locks, but in practice, it is generally obtained for free if the programs are run as intended.
More precisely, we have two categories of files:

– Files that are created to store variables defined in a program and used in another program, for
example, long-term keys generated by a key generation program, then used by the protocol.
These files are written in one program, and read at the beginning of another program. These
two programs should not be run concurrently, and the program that writes the file should be
run once on each machine, not several times.

– Files that store tables of keys. The programs that insert elements in the table should be run
one at a time. The insertion in the table is actually appending the file, so the system should
support reading the table while inserting elements in it. (Elements not yet completely inserted
are ignored.)

61

http://forge.ocamlcore.org/projects/cryptokit/

〈mod_opt〉 ::= 〈ident〉(< | >)〈string〉
〈odef〉 :: + = 〈ident〉[[seq+〈mod_opt〉]] { 〈odef〉
If channel frontend, 〈obody〉 :: + = out(〈channel〉, 〈term〉)[}][; 〈odef〉]
If oracle frontend, 〈obody〉 :: + = return(seq〈term〉)[}][; 〈odef〉]

Figure 6: Extensions to the syntax

The subdirectories implementation/nspk and implementation/wlsk provide two complete examples,
with the CryptoVerif specification and the OCaml network and application code.

9.1 Restrictions on the processes for implementation
The following two constraints must be satisfied:

• find must not be used. You can obtain a similar result using insert and get, which are supported.

• Let us name “oracles” the parts of the process that are between an in/〈ident〉(seq〈pattern〉) := . . .
and an out/return statement, because in the oracle frontend, they correspond exactly to that.

Let us define the signature of an oracle as the pair containing

– the type T1 × . . . × Tk → T ′1 × . . . × T ′n, where T1 × . . . × Tk are the types of the arguments
expected in the in/〈ident〉(seq〈pattern〉) := statement, and T ′1× . . .×T ′n are the types of the
result given in the out/return statements, and

– the list containing for each of the following oracles, its name and whether it is under a repli-
cation or not.

An oracle can have multiple out/return statements. To be able to implement it, we must be able
to define the signature above for each oracle, that is, all out/return must return the same type of
elements, and the oracles present after each out/return statement must be the same. Moreover,
if an oracle with the same name is defined at several places, all its definitions must have the same
signature.

9.2 Defining modules
The syntax of the processes is extended to add annotations, described in Figure 6. The symbol :: + =
means that we add the rule at the right-hand side to the non-terminal symbol at the left-hand side.

The terminals { and } are used to mark the boundary of a module. Different modules typically
correspond to different programs, for instance, key generation, client, and server of a protocol. More
precisely, the following two constructs define respectively the beginning and the end of a module:

• µ[x1>"filex 1", . . . ,xn>"filexn",y1<"filey1", . . . ,ym<"fileym"] { Q: The module µ will contain
the oracles defined in Q. The implementation of the module µ will write the contents of the
variables x1, . . . , xn upon instanciation in the files filex 1, . . . , filexn respectively. The variables
x1, . . . , xn must be defined under no replication inside module µ. These variables can then be
used in other modules defined after the end of µ; these modules will read them automatically from
the files filex 1, . . . , filexn respectively. The module µ will read at initialization the value of the
variables y1, . . . , ym from the files filey1, . . . , fileym respectively. The variables y1, . . . , ym must be
free in µ. (They are defined before the beginning of µ.)

• In the channel frontend, out(c, t)}; Q, or in the oracle frontend return(t1, . . . , tn)}; Q: The
module being defined will not contain Q.

We transform the oracles present in the module into functions taking the arguments given to the oracle,
and returning a tuple containing the result of the oracle and closures corresponding to the oracles following

62

seq;+〈N〉 ::= N | N;seq;+〈N〉
〈impl_block〉 ::= implementation 〈impl_opt〉(;〈impl_opt〉)∗.
〈type_opt〉 ::= 〈ident〉=seq+〈string〉
〈fun_opt〉 ::= 〈ident〉=〈string〉
〈impl_opt〉 ::= type 〈ident〉=〈string〉 [[seq;+〈type_opt〉]]

| type 〈ident〉=〈integer〉 [[seq;+〈type_opt〉]]
| table 〈ident〉=〈string〉
| fun 〈ident〉=〈string〉 [[seq;+〈fun_opt〉]]
| const 〈ident〉=〈string〉

Figure 7: Grammar for implementation options

the current oracle that are in the same module. A module implementation contains only one function:
the function init, which returns closures corresponding to the oracles accessible at the beginning of the
module.

9.3 Implementation options
The implementation options declares how the implementation should translate functions, tables and
types, and one must declare them after the declaration of the element it modifies and before use. The
syntax is described in Figure 7.

The available implementation options are described hereafter:

• type T="ty": Sets the OCaml type ty to be the type corresponding to the type T .

This also can be followed by options between brackets and separated by semicolons. These options
are:

– serial="s","d": Sets the serialization/deserialization of the type. There is no default, and
this is required when a variable of type T is written or read to a file/table, or when it
is contained in a tuple. The serialization function s must be of type ty → string, the
deserialization function d must be of type string → ty. When deserialization fails, it must
raise exception Match_fail.

– pred="p": Sets the predicate function, this function must be an OCaml function of type
ty→ bool. It returns whether an element is of type T or not. The default predicate function
is a function that accepts every element.

– random="f": Sets the random generation function. This function must be an OCaml function
of type unit → ty, and must return uniformly a random element of type ty. In particular,
if a predicate function has been defined, the predicate function must return true on every
element returned by the random generation function.

• type T=n: Sets the size of the fixed type T . The size must be a multiple of 8 and then will
be represented by a string or 1 and then by a boolean. This can be followed by options between
brackets and separated by semicolons. The only allowed option is:

– serial="s","d": Modifies the default serialization/deserialization of the type (used when a
variable of this type is read/written to a file/table).

• table tbl="file": Sets the file in which the table tbl is written.

• fun f="s": Sets the implementation of the function f to the OCaml function s. If the function
f takes arguments of type T1 × . . . × Tn and returns a result of type T , the type of s must be
st1 → st2 → . . .→ stn → st, where for all i between 1 and n, sti must be the corresponding type

63

declared using the type declaration for the type Ti, and st is the corresponding type for T . For
functions f with no arguments, the type of the function s must be unit → st, with st the type
corresponding to T . This can take the following options:

– inverse="s_inv": If f has the compos attribute, this declares s_inv as the inverse function.
With the previous notations, this function must be of type st→ st1×st2× . . .×stn. s_inv x
must return a tuple (x1, . . . , xn) such that s x1 . . . xn = x. If there is no such element, s_inv
must raise Match_fail.

CryptoVerif allows one to define macros by letfun. Specifying an OCaml implementation for these
macros is optional. When the OCaml implementation is not specified, CryptoVerif generates code
according to the letfun macro. When the OCaml implementation is specified, it is used when
generating the OCaml code, while the CryptoVerif macro defined by letfun is used for proving
the protocol. This feature can be used, for instance, to define probabilistic functions: the OCaml
implementation generates the random choices inside the function, while the CryptoVerif definition
by letfun first makes the random choices, then calls a deterministic function.

• const f="s": Sets the implementation of the function f that has no arguments to an OCaml
constant. If the constant is a string, one can write, for example, const f="\"constant\"".

10 Additional programs

10.1 test

Usage:
test 〈mode〉 〈test_set〉

where 〈mode〉 can be:

• test: test the mentioned scripts

• test_add: test the mentioned scripts and add the expected result in the script when it is missing

• add: add the expected result in the script when it is missing, do not test scripts that already have
an expected result

• update: test the mentioned scripts and update the expected result in the script

and 〈test_set〉 can be:

• basic runs basic CryptoVerif tests

• big runs bigger CryptoVerif examples

• proverif runs ProVerif on tests suitable for it

• converted runs CryptoVerif on examples converted from CryptoVerif 1.28

• all runs all tests included in basic, proverif, converted, and big

• dir 〈prefix〉 〈list_of_directories〉 analyzes the mentioned directories using CryptoVerif, using
〈prefix〉 as prefix for the output files.

〈test_set〉 can be omitted when it is basic, and 〈mode〉 〈test_set〉 can both be omitted when they are
test basic.

The script test is a bash shell script, so you must have bash installed. On Windows, the best is to
install Cygwin and run test from a Cygwin terminal.

The script test must be run in the CryptoVerif main directory; the programs analyze, xtime, and
cryptoverif must be present in that directory.

For CryptoVerif tests, the programs first runs the script prepare in each directory when it is present.
That allows for instance to generate the CryptoVerif scripts to run. Then it runs the program analyze
described below.

64

10.2 analyze

The program analyze is mainly meant to be called from test, but it can also be called directly.
Usage:

analyze 〈prog〉 〈mode〉 〈tmp_directory〉 〈prefix_for_output_files〉 dirs 〈directories〉
analyze 〈prog〉 〈mode〉 〈tmp_directory〉 〈prefix_for_output_files〉 file 〈directory〉 〈filename〉

where 〈prog〉 is either CV for CryptoVerif or PV for ProVerif and 〈mode〉 is as for the test program above.
This program analyzes a series of scripts using the program specified by 〈prog〉.

• In the first command line, it analyzes scripts in the mentioned directories and in their subdirectories.
The files whose name contains .m4. or .out. are excluded. (The first ones are supposed to be
files to preprocess by m4 before actually analyzing them; the second ones are supposed to be output
files.) When the program is CryptoVerif, the files whose name ends with .cv, .ocv, or .pcv are
analyzed. When the program is ProVerif, the files whose name ends with .pcv, .pv, .pi, .horn,
or .horntype are analyzed.

• In the second command line, the specified file in the specified directory is analyzed, provided it
has one of the extensions above. (The directory and the file are mentioned separately because the
directory may be used to locate the library mylib.*, see below.)

The executable for CryptoVerif is searched in the current directory, in $HOME/CryptoVerif, and in the
PATH. The executable for ProVerif is searched in the current directory, in $HOME/proverif/proverif,
and in the PATH.

When mylib.cvl is present in a directory, its files with extension .cv or .pcv are analyzed using
that library of primitives for CryptoVerif. Otherwise, the default library is used.

When mylib.ocvl is present in a directory, its files with extension .ocv are analyzed using that
library of primitives for CryptoVerif. Otherwise, the default library is used.

When mylib.pvl is present in a directory, its files with extension .pcv or .pv are analyzed using that
library of primitives for ProVerif. Otherwise, the library cryptoverif.pvl is used for .pcv files and no
library for .pv files. The file cryptoverif.pvl is searched in the current directory, $HOME/CryptoVerif
and $HOME/proverif/proverif. If it is not found and mylib.pvl is not present in the directory, .pcv
files are not analyzed using ProVerif.

The result of running each script is compared to the expected result. The expected result is found
in the script itself in a comment that starts with EXPECTED for CryptoVerif and EXPECTPV for ProVerif,
and ends with END. (The entire lines that contain EXPECTED, resp. EXPECTPV and END do not belong to
the expected result.) For CryptoVerif, the expected result consists of the line RESULT Could not be
proved . . . or All queries proved in the output of CryptoVerif. For ProVerif, it consists of the lines
that start with RESULT in the output of ProVerif. It also includes a runtime of the script or an error
message xtime: ... if the execution terminates with an error.

In the modes update (resp. test_add or add), the expected result is updated (resp. added if it is
absent or empty). To deal with generated files, the EXPECTED, resp. EXPECTPV line may contain the
indications

FILENAME: name of the file TAG: distinct tag

In this case, the expected result is not updated in the script itself, but in the file whose name is men-
tioned after FILENAME:, and inside this file after an exact copy of the line that contains EXPECTED,
resp. EXPECTPV. (This line is unique thanks to the tag.) The idea is that this file is the file from which
the script was generated. Hence regenerating the script from this file with an updated expected result
will update the expected result in the script.

10.3 addexpectedtags

Usage:
addexpectedtags 〈directories〉

65

For each mentioned directory, for each file in that directory or its subdirectories that contains .m4. in
its name and ends with .cv, .ocv, .pcv, .pv, .pi, .horntype, .horn, this program adds at the end of
each line that contains EXPECTED or EXPECTPV the indications

FILENAME: name of the file TAG: distinct integer

These files are supposed to be initial models used to generate CryptoVerif or ProVerif scripts by the
m4 preprocessor. The additional indications will propagate to the generated scripts, and will allow the
analyze program above to find from which m4 file the script was generated (indicated after FILENAME:)
and inside this m4 file, which expected result indication ended up in the considered script (identified by
the integer after TAG:). It can then update the expected results in the mode update, add, or test_add
(the last two when the expected result was initially empty).

Acknowledgments
CryptoVerif was partly developed while the authors were at École Normale Supérieure, Paris.

We warmly thank David Pointcheval for his advice and explanations of the computational proofs of
protocols. This project would not have been possible without him.

This project was partly supported by ARA SSIA Formacrypt and the ANR projects ProSe (decision
ANR-2010-VERS-004-01) and TECAP (decision ANR-17-CE39-0004-03).

References
[1] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient

protocols. In Computer and Communications Security (CCS’93), pages 62–73, New York, NY,
1993. ACM Press.

[2] B. Blanchet. A computationally sound mechanized prover for security protocols. Cryptology ePrint
Archive, Report 2005/401, Nov. 2005. Available at http://eprint.iacr.org/2005/401.

[3] B. Blanchet. A computationally sound mechanized prover for security protocols. In IEEE Symposium
on Security and Privacy, pages 140–154, May 2006. Extended version available as ePrint Report
2005/401, http://eprint.iacr.org/2005/401.

[4] B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. In C. Dwork,
editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science,
pages 537–554, Berlin, Heidelberg, Aug. 2006. Springer.

[5] B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. Cryptology
ePrint Archive, Report 2006/069, Feb. 2006. Available at http://eprint.iacr.org/2006/069.

[6] J. Brendel, M. Fischlin, F. Günther, and C. Janson. PRF-ODH: Relations, instantiations, and
impossibility results. Cryptology ePrint Archive, Report 2017/517, 2017. https://eprint.iacr.
org/2017/517.

[7] S. Goldwasser and M. Bellare. Lecture notes on cryptography. Available at http://cseweb.ucsd.
edu/~mihir/papers/gb.pdf, July 2008.

[8] P. Laud. Secrecy types for a simulatable cryptographic library. In 12th ACM Conference on Com-
puter and Communications Security (CCS’05), pages 26–35, New York, NY, Nov. 2005. ACM Press.

[9] B. Lipp, B. Blanchet, and K. Bhargavan. A mechanised cryptographic proof of the WireGuard
virtual private network protocol. Research report RR-9269, Inria, Apr. 2019. Available at https:
//hal.inria.fr/hal-02100345.

[10] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implications and
separations for preimage resistance, second-preimage resistance, and collision resistance. Cryptology
ePrint Archive, Report 2004/035, 2004. https://eprint.iacr.org/2004/035.

66

http://eprint.iacr.org/2005/401
http://eprint.iacr.org/2005/401
http://eprint.iacr.org/2006/069
https://eprint.iacr.org/2017/517
https://eprint.iacr.org/2017/517
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://hal.inria.fr/hal-02100345
https://hal.inria.fr/hal-02100345
https://eprint.iacr.org/2004/035

	Introduction
	Command Line
	channels Front-end
	oracles Front-end
	Summary of the Main Differences between the two Front-ends
	Predefined cryptographic primitives
	Interactive Mode
	Output of the system
	Implementation
	Restrictions on the processes for implementation
	Defining modules
	Implementation options

	Additional programs
	test
	analyze
	addexpectedtags

