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Proofs of cryptographic protocols

There are two main frameworks for analyzing security protocols:

The Dolev-Yao model: a formal, abstract model.

The cryptographic primitives are ideal blackboxes.
The adversary uses only those primitives.

Proofs can be done automatically.

The computational model: a realistic model.

The cryptographic primitives are functions on bit-strings.
The adversary is a polynomial-time Turing machine.

Proofs are done manually.

Our goal: bridge the gap between these two frameworks.

Bruno Blanchet et al FormaCrypt: Formal Computational Cryptography



Introduction A computationally sound prover A computationally sound logic The modular approach Conclusion

Three approaches

We have considered three approaches:

Direct approach: build an automatic computationally sound
prover.

Intermediate approach: design a computationally sound logic,
for reasoning symbolically on protocols.

Modular approach: obtain computational soundness results,
that is, show that security in the formal model implies security
in the computational model.

We will obviously compare these approaches on examples ranging
from protocols of the literature to more complex, realistic
protocols.
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An automatic computationally sound prover

We have implemented an automatic prover sound in the
computational model:

proves secrecy and correspondence properties.
Correspondence = if some event has been executed, then
other events have been executed before (except in cases of
negligible probability).

handles various cryptographic primitives: MACs (message
authentication codes), symmetric encryption, public-key
encryption, signatures, hash functions, . . .

works for a parametric number of sessions with an active
adversary.

gives a bound on the probability of an attack (exact security).
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Produced proofs

As in Shoup’s or Bellare and Rogaway’s method, the proof is a
sequence of games:

The prover is given the first game, which represents real
protocol, in interaction with an adversary.

The prover transforms each game into the next one by
syntactic transformations or by applying security assumptions
on cryptographic primitives.

The difference of probability between consecutive games is
bounded.

The last game is “ideal”: the desired security properties can
be read directly on it.

Games are formalized in a process calculus.

The user is allowed (but does not have) to interact with the prover
to make it follow a specific sequence of games.
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Experimental results

The prover is available at http://www.cryptoverif.ens.fr

We have tested it successfully on many examples:

protocols of the literature: incorrect and corrected versions of
Otway-Rees, Yahalom, Needham-Schroeder shared-key and
public-key, and Denning-Sacco public key;

the Full Domain Hash signature scheme;

encryption schemes of [Bellare and Rogaway, CCS’93].

Kerberos (joint work with A. D. Jaggard, A. Scedrov, and
J.-K. Tsay)
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Planed extensions

1 Handle other primitives, such as Diffie-Hellman key
agreements.

2 Improve the proof strategy, for more automation.

3 Test on more examples.
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A computationally sound logic

We have studied the following approach for proving protocols:

1 start from an existing protocol logic, designed in the formal
model (here, the Protocol Composition Logic),

2 and adapt it to the computational model.

Advantage of this approach:
proofs that use the logic in the formal model can be adapted to
the computational model with only minor corrections.
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The Protocol Composition Logic (PCL)

The Protocol Composition Logic allows symbolic reasoning on
protocols:

The protocol is specified in a simple “protocol programming
language”.

The logic consists of both

logical formulas (including predicates that specify knowledge
and actions of participants)
and modal formulas, similarly to the Floyd-Hoare logic
(if a formula is true at some point and certain actions are
executed, then another formula holds afterwards).

The logic allows compositional reasoning.
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Adapting PCL to the computational model

We have adapted the Protocol Composition Logic to the
computational model:

We have given a new probabilistic, polynomial-time semantics
to the logic: a formula is true if it holds with asymptotically
overwhelming probability.

We have given a meaning to logical connectives in this
semantics.

We had to extend the logic with new predicates that make
sense in the computational model but not in the formal one,
for example to express indistinguishability.

A soundness proof has been done for a subset of PCL with positive
indistinguishability tests.
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Proving more complex properties

We have extended this logic to more complex properties,
in particular secrecy of keys.

This result allows the following compositional reasoning:

we first prove the security of keys established using a key
exchange protocol;

then, we infer the security of a secure channel application that
uses these keys.
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Planed extensions

1 Soundness for any proof in PCL extended with computational
tests.

2 Make the semantics more direct and natural.
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Formal model: several abstractions

Messages are modeled by terms

{m}k : message m encrypted by k

〈m1, m2〉: pair of m1 and m2

...

→ no collisions:

∀m, m′
, k, k ′ {m}k 6= {m′}k ′ , {{m}k}k 6= m, 〈m, m′〉 6= {m}k , . . .

Perfect encryption assumption:

Nothing can be learned from {m}k except if k is known.

Much easier to analyze automatically

numerous decidability results

numerous automatic tools
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Goal: soundness of the formal model

Composition of two approaches

Ideal
protocol

protocol
Implemented

of the cryptographic primitives

of idealized protocols
Formal approach: verification

encryption

algorithmalgorithm

signature
Cryptographers: verification
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Combination result in presence of hash functions

Example

A → B : h(s)

s is symbolically secret but not indistinguishable to an attacker:
h(nb), n0, n1 → b

Results:

1 Design of a new formal secrecy property

2 Proof of its soundness and its faithfulness w.r.t.
indistinguishability in our new setting:

pairing
asymmetric encryption
hashes (random oracle model)

3 NP-completeness of the secrecy property
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Application: CryptoSec

Automatic proof at the cryptographic level
using Avispa, a symbolic theorem prover.

→ 9 protocols proved secure (for authentication or secrecy
properties) at the cryptographic level.
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Guessing attacks

Guessing attacks: The adversary can guess low entropy values such
as passwords and verify them off-line.

Results:

1 Design of a new security property for the interaction between
normal and password-based encryption

2 Proof of soundness of static-equivalence (passive case) w.r.t.
indistinguishability for:

asymmetric encryption
symmetric encryption
password-based encryption
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Equational theories

Equational theories: Cryptographic primitives can be modelled as
equational theories, which allows to specify algebraic properties

Results:

1 Generalization of the DDH assumption and soundness result
for modular exponentiation in the presence of a passive
adversary

2 Soundness result for protocols based on bilinear pairings in the
presence of a passive adversary

3 A general framework for reasoning about the soundness of
equational theories in the presence of an adaptive adversary:
equational theories include modular exponentiation and xor;
application to dynamic group key exchange protocols
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Planed extensions

1 Study branching properties, such as fairness.
We have designed a model of branching properties for
contract signing in the computational model;
computational soundness results are still needed.

2 Prove the secrecy of keys (not only of nonces).

3 Soundness results for equational theories in the presence of
active adversaries
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Conclusion

We have investigated three different approaches for bridging
the gap between the computational and the formal models of
cryptography.

Up to now, the project has produced 15 papers and 2 tools
that provide proofs of protocols in the computational model.

These three approaches will be extended and compared in the
next years.

More details, publications, and software available at:
http://www.di.ens.fr/~blanchet/formacrypt/
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