
Just Fast Keying in the Pi Calculus

Martı́n Abadi
University of California, Santa Cruz, and Microsoft Research
and
Bruno Blanchet
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JFK is a recent, attractive protocol for fast key establishment as part of securing IP commu-

nication. In this paper, we analyze it formally in the applied pi calculus (partly in terms of
observational equivalences, partly with the assistance of an automatic protocol verifier). We treat

JFK’s core security properties, and also other properties that are rarely articulated and studied

rigorously, such as plausible deniability and resistance to denial-of-service attacks. In the course
of this analysis we found some ambiguities and minor problems, such as limitations in identity

protection, but we mostly obtain positive results about JFK. For this purpose, we develop ideas

and techniques that should be useful more generally in the specification and verification of security
protocols.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—security and pro-
tection; C.2.2 [Computer-Communication Networks]: Network protocols—protocol verification; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—correctness proofs, formal methods; F.3.1 [Theory of
Computation]: Specifying and Verifying and Reasoning about Programs—mechanical verification, specifica-
tion techniques
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1. INTRODUCTION

The design of security mechanisms for the Internet has been the focus of much activity. In
particular, IP security has received much attention; in this area, we have seen some progress
but also some disappointment and some controversy. The Internet Key Exchange (IKE)
protocol [Harkins and Carrel 1998], an important method for establishing cryptographic
keys for secure IP communication, has been the subject of considerable and reasonable
criticisms. Those criticisms tend to concern not the core authenticity and secrecy properties
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that IKE offers but rather the complexity of IKE, some of its inefficiencies, and its poor
resistance against denial-of-service (DOS) attacks. Several recent protocols aim to address
IKE’s shortcomings. These include the JFK protocol [Aiello et al. 2002b; 2002a] (for “just
fast keying”) and the IKEv2 protocol [Kaufman 2005].

In some respects, IKE and its successors are fairly classical security protocols. They
all employ common pieces in the standard arsenal of modern cryptography, and aim to
guarantee the integrity and secrecy of IP communication. They are all subject to common
efficiency considerations, which limit the use of expensive cryptographic operations and
the number and size of messages. Beyond such basic aspects, however, these protocols—
and JFK in particular—exhibit a number of interesting features because they address other
security objectives. These other objectives are sometimes subtle; they are seldom articu-
lated precisely. Moreover, they give rise to new tensions and delicate compromises. For
instance, in the name of privacy, a protocol may attempt to hide the identities of the par-
ticipants (that is, to provide identity protection) and to guarantee the plausible deniability
of their actions, and may accordingly avoid or delay the authentication of the participants.
On the other hand, strong, early authentication can simplify DOS resistance. Of course,
such tensions are not unique to JFK and its close relatives. Rather, they seem to be increas-
ingly important in the design of modern security protocols. JFK exemplifies them well and
resolves them nicely.

In this paper we analyze JFK, relying on the applied pi calculus, an extension of the
standard pi calculus with functions. Specifically, we present a formalization of JFK in the
applied pi calculus; we focus on a variant of JFK known as JFKr (which is the closer one to
IKEv2), but we also consider its other major variant, JFKi, more briefly. While fairly short
and abstract, our formalization gives a fine level of detail in the modelling of contexts and
parallel sessions. It also covers aspects of the protocol beyond the “messages on the wire”,
such as protocol interfaces, the checks performed by the participants, and other delicate
features such as the treatment of duplicate requests.

We treat the core security properties of the protocol, and also other properties that are
rarely articulated and studied rigorously, such as plausible deniability and DOS resistance.
(We consider all the properties with a single model of the protocol: we do not need to define
special, partial models for particular properties.) We also provide proofs for those prop-
erties. Some of the proofs were done by hand, while others were done with an automated
protocol verifier, ProVerif [Blanchet 2001]. In some cases, there are overlaps between the
two kinds of proofs; those overlaps provide extra assurance about the correctness of the
formalization and the proofs. Moreover, while ProVerif can be used for establishing stan-
dard security properties such as correspondence assertions, it is still limited when it comes
to subtler properties, which we therefore prove partly by hand.

In the course of this analysis, we identified some minor limitations and weaknesses of
JFK. In particular, we discovered that JFK does not provide as much identity protection as
one might have expected on the basis of informal descriptions of the protocol. However,
we did not discover fatal mistakes. That is comforting but not surprising, since the authors
of JFK have substantial experience in protocol design and since JFK benefited from careful
review and prolonged discussion in the IETF context.

Beyond observations and results on JFK, this study contributes to the specification and
verification of security protocols in several ways. Our basic approach and tools come from
recent work; it is pleasing to confirm their effectiveness. On the other hand, the approach
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to formalizing several of the protocol’s less mundane facets is largely new, and should be
applicable elsewhere. Similarly, the proofs are non-trivial and motivate some new develop-
ments of our techniques. These novelties include a formulation of plausible deniability, a
general lemma about state elimination, and extensions in ProVerif. The proofs also provide
an opportunity for integrating manual and automatic methods in the applied pi calculus.
This integration relies on new results on the correctness of ProVerif proofs.

Contents.The next section is a review and informal discussion of JFK. Section 3 in-
troduces the applied pi calculus. Section 4 then presents a model of JFKr in the ap-
plied pi calculus. Section 5 discusses ProVerif, its extensions, and its use. Section 6
treats DOS resistance. Section 7 concerns core security properties (secrecy and authen-
ticity). It also briefly addresses identity protection. Section 8 deals with plausible de-
niability. Section 9 mentions some related work and concludes. The appendix includes
details on our use of ProVerif and proofs. Our ProVerif scripts are on-line, athttp:
//www.di.ens.fr/ ∼blanchet/crypto/jfk.html .

2. THE JFK PROTOCOL

The JFK protocol has been discussed in a series of five Internet Drafts [Aiello et al. 2002b],
starting in 2001, and it is also described in a conference paper [Aiello et al. 2002a] and
in a journal paper [2004]. While our work is based on all those documents, we tend to
privilege the contents of the papers, since they should have more permanence than the
Internet Drafts. Primarily we follow the presentation of the conference paper; we also
discuss minor changes introduced in the journal paper. We refer to the papers for additional
material on the protocol and its motivation.

JFK involves two principals that play the roles of an initiator (I) and a responder (R).
As in many other protocols, these two principals wish to open a secure communication
channel, and they attempt to accomplish it by establishing a shared secret. This shared
secret serves as the basis for computing session keys. The two principals should associate
the shared secret with each other, verify each other’s identities, and also agree on various
communication parameters (for example, what sort of session keys to employ). Attackers
may eavesdrop, delete, and insert messages; they may also attempt to impersonate princi-
pals [Needham and Schroeder 1978]. Therefore, the communications between the initiator
and the responder are cryptographically protected.

JFK has two major variants, JFKr and JFKi. These differ in their protection of identity
information. JFKr aims to protect the identity of the responder against active attacks, and
also the identity of the initiator against passive attacks. JFKi aims to protect the identity of
the initiator against active attacks.

2.1 The JFKr Variant

The JFKr protocol consists of the following four messages:

Message1 I → R : NI , xI

Message2 R → I : NI , NR, xR, gR, tR
Message3 I → R : NI , NR, xI , xR, tR, eI , hI

Message4 R → I : eR, hR
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z = I, R one of the two roles in the protocol: initiator or responder.
i, r two distinct constants used to tag initiator and responder MACs.
Nz random fresh nonce for the session.
dz Diffie-Hellman secret exponents.
xz = g ˆdz Diffie-Hellman exchange values (gi andgr in [Aiello et al. 2002a]).
g Diffie-Hellman group (possibly obtained from a previously receivedgR).
gR responder’s choice of groupg and algorithms (GRPINFOR in [Aiello et al. 2002a]).
tR authenticator cookie used by the responder against DOS.
KR responder’s secret hash key for authenticatorstR (HKR in [Aiello et al. 2002a]).
u = a, e, v one of the three usages for keys: authentication, encryption, and main session secret.
a, e, v three distinct constants used to tag usages for keys.
Ku shared key obtained by a Diffie-Hellman computation, specialized foru.
E shared-key encryption function.
H keyed hash function for MACs (message authentication codes).
ez, hz encrypted payload messages and their MACs (protectingz’s identity and signature).
S public-key signature function.
sz signed nonces and exponentials.
Kz
− private signature key for the principal playing rolez.

IDz identity for the principal playing rolez, and its public signature-verification key.
ID′

R “hint” of the responder identity, provided by the initiator.
IPI IP source address for the initiator (hashed intR).
saz additional parameters for IP security associations (sa andsa′ in [Aiello et al. 2002a]).
A, B principals taking part in the protocol (in either or both roles).

Fig. 1. Main notations

where:

xI = g ˆdI xR = g ˆdR

tR = H{KR}(xR, NR, NI , IPI)

Ku = H{xR ˆdI}(NI , NR, u) for u = a, e, v

eI = E{Ke}(IDI , ID
′
R, saI , sI) eR = E{Ke}(IDR, saR, sR)

hI = H{Ka}(i, eI) hR = H{Ka}(r, eR)

sI = S{KI
−}(NI , NR, xI , xR, gR) sR = S{KR

−}(xR, NR, xI , NI)

Figure 1 summarizes the notations of this exchange, adapted from Aiello et al. [2002b]. In
particular, keyed cryptographic primitives take a key as first argument in braces, followed
by other arguments in parentheses—for instanceE{K}(T ) is the encryption of plaintextT
under keyK.

The first pair of messages establishes a shared secret via a Diffie-Hellman exchange.
Each principal generates and communicates a fresh nonceNz. Each principal also se-
lects or generates a secret exponentdz, and communicates the corresponding exponential
xz = g ˆdz. Relying on the equationxR ˆdI = xI ˆdR, three independent shared keys are
derived from nonces and exponentials:Ka andKe are used in Messages 3 and 4, while
Kv is returned to each principal as the newly established session secret. The reuse of ex-
ponentials is allowed, with a trade-off between forward secrecy and efficiency; in any case,
the freshness of nonces suffices to guarantee that the generated shared secrets differ for all
sessions.

Message 2 includes an authenticator cookietR, keyed with a secret local to the respon-
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der,KR. The responder expects to see this cookie in Message 3, as proof of a successful
round-trip (Messages 1 and 2), and it need not perform any expensive cryptography or
allocate resources before validating the cookie. Furthermore, after receiving Message 3,
the responder can remember handlingtR, so as to avoid expense in the event thattR is
replayed.

The second pair of messages provides authentication. Specifically, Messages 3 and 4
include encrypted signatures of the nonces, exponentials, and other material. The encryp-
tions protect identity information. The signatures can be interpreted as delegations from
the principals that control the signature keys (possibly users) to the protocol endpoints that
control the secret exponents. Only transient protocol data is signed—not identities or long-
term keys associated with users. In this respect, the protocol is in tune with concerns about
plausible deniability that have appeared from time to time in this context.

A recent refinement of JFK uses a hash ofNI instead ofNI in the first two messages
and within signatures [Aiello et al. 2004]. This change “raises the bar” for DOS attacks in
certain environments where the attacker can eavesdrop and inject messages but not modify
them in flight. We have redone our automated proofs with this change, both for JFKr and
JFKi; we have not revisited our manual proofs.

2.2 The JFKi Variant

JFKi uses the following messages:

Message1 I → R : NI , xI , ID
′
R

Message2 R → I : NI , NR, xR, gR, IDR, s′R, tR
Message3 I → R : NI , NR, xI , xR, tR, eI , hI

Message4 R → I : eR, hR

wherexI , xR, tR, andKu for u = a, e, v are computed as in JFKr, but with different
encrypted and signed fields:

s′R = S{KR
−}(xR, gR)

eI = E{Ke}(IDI , saI , sI) eR = E{Ke}(sR, saR)
hI = H{Ka}(i, eI) hR = H{Ka}(r, eR)
sI = S{KI

−}(NI , NR, xI , xR, IDR, saI) sR = S{KR
−}(NI , NR, xI , xR,

IDI , saI , saR)

The hintID′
R appears in clear in the first message, rather than ineI . The second message

also contains a signatures′R of the responder’s parameters. The form of the last two mes-
sages is unchanged, but the parties sign each other’s identity. This design choice implies
that the parties cannot later deny their intent to communicate.

Although this paper presents a formal model only for JFKr, we also developed a model
for JFKi and conducted all the corresponding automated proofs.

2.3 Discussion: Ambiguities and Limitations

The protocol specification, although clear, focuses on the messages exchanged in a single
successful run of the protocol. It does not say much on the local processing that the parties
perform, on the deployment of the protocol, and other subjects relevant for security. For
instance, it does not prescribe how principals should use the protocol (and especially what
is the sharing of signing keys and Diffie-Hellman exponentials); how messages should be
checked; and how the responder should manage state in order to resist DOS attacks. We
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have reason to believe that implementations differ in some of these respects, sometimes
with unfortunate consequences. The protocol specification does however state several se-
curity objectives. We discuss them all and study them formally below.

In the course of the analysis of JFK, we found some ambiguities and limitations, which
we document here. These are generally minor in comparison with the positive results of
the rest of the paper.

Identity Protection.Identity protection is discussed only informally in the published de-
scriptions of JFK. Those descriptions do not provide a precise definition of identity protec-
tion, and several are possible (see Abadi and Fournet [2004]). Apparently, JFK primarily
aims to conceal the identities of participants, much like one would try to hide a password or
any other secret value. On the other hand, identities (for example, the name of a long-lived
server) are often widely known, and JFK provides only limited protection for the fact that
certain known principals communicate. We note the following leaks of information:

—A passive attacker can perform traffic analysis on JFK exchanges. For instance, if prin-
cipals are associated with fixed or long-lived IP addresses, then the attacker may link
their sessions.

—Similarly, if exponentials are reused at most by a single principal, then all sessions that
share the same exponential must involve the same principal, and information on that
principal can be correlated. In particular, when a principalA uses JFKi as both initiator
and responder with a single exponential, an attacker may eavesdrop the exponential
whenA acts as initiator, then discoverA’s identity by initiating another session in which
A is the responder.

—In JFKr, the identity hintID′
R provided in Message 3 can be obtained by an active at-

tacker that impersonates a responder, and may leak information on the intendedIDR.
The attacker learns only the initiator’s intent, rather than the presence ofIDR, but this
presence may then be inferred, for instance by observing a successful retry.

—More remarkably, even when exponentials are not reused,ID′
R is left empty, and IP

addresses are not linked to identities, an active attack against JFKr can reveal that two
particular principalsA andB are communicating. This attack may be hard to detect. It
relies on an indirect equality test on authenticator keys, as detailed below.
(1) A initiates a session withB.
(2) C (the attacker) plays the role of responder inB’s place, thus learningA’s identity

from Message 3 (as permitted in JFKr).C does not send any Message 4; the session
fails.

(3) A retries, initiating a second session withB, with a nonceNI .
(4) C intercepts Messages 1 and 2 of this session, then initiates yet another session

with B, using the same nonceNI but its own exponential and identity.
(5) C “swaps” these two sessions, continuing its session with the Message 2 fromA’s

session, and forwarding toA the other Message 2.
(6) If the two sessions succeed—that is,B is willing to respond to bothA andC—

thenC can infer that another principal has just established a session withB. In
addition,C may infer that the principal isA, from the retry behavior or by other
means. In short,C learns thatA andB are communicating.

This attack succeeds because the hash computation oftR keeps track ofNI but not ofxI .
The omission ofxI in the computation oftR is a deliberate performance optimization.
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Fortunately, the same effect can be achieved by usingH{NI}(xI) instead ofNI (or the
hash ofNI [Aiello et al. 2004]) in Message 1, and possibly omittingxI in that message.
With this change, the scenario above becomes impossible: the two swapped sessions
always fail.

Of course, any limitations of identity protection should be kept in perspective, taking into
account the relative importance of various identity-protection properties.

Despite these limitations, we do get some strong, formal identity-protection guarantees,
as corollaries of the theorems of Section 7. We refer to previous work on another proto-
col [Abadi and Fournet 2004] for a more thorough study of identity protection that relies on
observational equivalences between protocol configurations with different identities. We
have applied the approach developed there to JFK, finding the issues discussed above. In
particular, we discovered the attack based on indirect equality tests of authenticator keys
when we attempted to prove such an observational equivalence by bisimulation.

A Brief Negotiation.Protocols such as IKE and SSL include the capability of negotiat-
ing options, including cryptographic algorithms and their parameters. Some options may
be weaker than others, for a variety of legal and technical reasons; principals may prefer
strong options but be prepared to use weaker ones if their interlocutors require it. Since
preferences can be falsified before they are authenticated, negotiation can be a source of
concerns and subtle vulnerabilities (see e.g. Wagner and Schneier [1996]). In reaction, the
presentations of JFK emphasize the absence of negotiation. Nevertheless, the choice of
a particular Diffie-Hellman group and cryptographic algorithms by the responder can be
construed as a minimal negotiation (called a “ukase” by Aiello et al. [2004]).

In JFKi, the choice is signed in Message 2; this signature is a relatively recent precaution
not present in early drafts of the protocol. An analogous precaution has been omitted from
JFKr because it would break identity protection. Therefore, an attacker may tamper with
Message 2 in JFKr, and then either the initiator rejects the attacker’s choice, interrupting
communications, or the initiator sends poorly protected identity information in Message 3.
(After the fact, the tampering is detected when the responder fails to verifysI in Mes-
sage 3.) In short, the tampering appears as a minor risk; hence we have decided not to
model negotiation below.

Caching Answers to Message 3.The responder caches answers to Message 3, so as to
answer only once for every valid authenticator cookie received in an instance of Message 3.
The descriptions of JFK are somewhat ambiguous on this point. Where they refer to a
duplicate Message 3, we should probably read a Message 3 with a duplicate cookie, for
otherwise several problems appear. In particular, a blind DOS attack may effectively reuse
a single valid cookie in numerous, cheaply generated instances of Message 3. Moreover,
a responder that processes several different instances of Message 3 with the same cookie
(but for example for different initiator identities) could end up with the same key for several
sessions; confusion may result.

3. AN APPLIED PI CALCULUS FOR JFK

In this section, we present the instance of the applied pi calculus that we use for modelling
JFKr. This calculus is an extension of the pi calculus with function symbols, for instance
for tupling and for encryption, that can be assumed to satisfy particular equations. So
we first select function symbols and an equational theory for modelling the messages of
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JFKr. We also review the syntax and semantics of processes in the applied pi calculus.
(We refer to prior work [Abadi and Fournet 2001] for additional definitions, motivations,
and examples.) Finally, we introduce a few technical notations and concepts based on the
operational semantics of the applied pi calculus.

3.1 An Equational Theory

In general, asignatureΣ consists of a finite set of function symbols, such asg andH, each
with an integer arity. Given a signatureΣ, an infinite set of names, and an infinite set of
variables, the set oftermsis defined by the grammar:

U, V ::= terms
c, d, n, s, . . . name
x, y, . . . variable
f(U1, . . . , Ul) function application

wheref ranges over the function symbols ofΣ andl matches the arity off . We use meta-
variablesu andv to range over both names and variables. Furthermore, given a signatureΣ,
we equip it with an equational theory (that is, with an equivalence relation on terms with
certain closure properties). We writeΣ ` U = V when the equationU = V is in the
theory associated withΣ. We usually keep the theory implicit, and abbreviateΣ ` U = V
to U = V whenΣ is clear from context or unimportant.

For the study of JFK, we pickΣ in such a way that we have the following grammar for
terms:

M,T,U, V ::= Terms
c, d, n, s name
N,K, k, x, y, z variable
E{U}(T ) shared-key encryption
D{U}(T ) shared-key decryption
H{U}(T ) keyed cryptographic hash function
g Diffie-Hellman group
U ˆV Diffie-Hellman exponentiation
Pk(U) public key (and identity) from private key
S{U}(T ) public-key signature
V{U}(V, T ) public-key signature verification
RecoverKey(V ) public-key recovery (for the attacker)
RecoverText(V ) text recovery (for the attacker)
true true
e, a, v, i, r constant tags for keyed-hash specialization
cons(V1, V2) pairing
Fcons

1 (T ),Fcons
2 (T ) projections for pairs

1(V1, V2), . . . , 4(V1, V2) constructors for formatted messages
F1

1(T ), . . . ,F4
2(T ) projections for formatted messages

∅ empty set
U.V set extension

where we put some arguments in braces only as a syntactic convenience (so, for example,
H{U}(T ) stands forH(U, T )), and use ˆ and. as infix function symbols. These terms
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include names and variables, cryptographic constructs, and auxiliary constructs for tags,
pairs, formatted messages, and sets, as follows:

—JFKr uses formatted IP messages, each with a fixed number of fields. Accordingly, we
introduce function symbols1( , ), 2( , , , , ), 3( , , , , , , ), 4( , ) in the signa-
ture Σ; these symbols represent the message constructors. In addition, we introduce
inverse, unary function symbolsF1

1( ) andF1
2( ) to select the fields in Message 1, and

similarly for the other messages. Finally, we describe the intended behavior of formatted
messages with the evident equations:

Fn
i (n(x1, . . . , xi, . . . )) = xi projections for formatted messages

(n = 1, 2, 3, 4)

Similarly, for pairing, we have the equations:

Fcons
i (cons(x1, x2)) = xi projections for pairs

When we use formatted messages (rather than pairing and tupling), it is only for clarity:
1, 2, 3, and4 are convenient tags. It might appear that the use of tags could have security
implications, since for instance1(U, V ) and4(U, V ) cannot be confused, while confu-
sions between messages can sometimes facilitate attacks. However, because terms of
the forms1( , ), 2( , , , , ), 3( , , , , , , ), and4( , ) are never cryptographically
protected, a would-be active attacker can modify the tags1, 2, 3, 4 at will, so the tags do
not provide any protection.

—In order to model symmetric cryptography (that is, shared-key cryptography), we in-
troduce binary function symbolsE{ }( ) andD{ }( ) for encryption and decryption,
respectively, with the equation:

D{y}(E{y}(x)) = x shared-key decryption

Herex represents the plaintext andy the key. This and other equations embody our
(fairly standard) hypotheses on the cryptographic primitives introduced in Section 2.

—It is only slightly harder to model public-key signatures, where the keys for signing
and verification are different. In addition to symbols for signingS{ }( ) and signature
verification V{ }( , ), we introduce the unary function symbolPk( ) for deriving a
public verification key from a private signing key, and the equation:

V{Pk(y)}(S{y}(x), x) = true public-key signature verification

—In order to model the keyed hash function used in JFK, we introduce a binary function
symbolH{ }( ) with no equations. The fact thatH{K}(V ) = H{K ′}(V ′) only when
K = K ′ andV = V ′ models thatH is collision-free. The absence of an inverse for
H models the one-wayness ofH. In our protocol, these properties are important for
guaranteeing, for instance, that keyed hasheshI , hR, andKR cannot be forged.

—More interestingly, exponentiation̂ has no inverse, but an equation accounts for the
commutativity property used for establishing a shared secret.

(g ˆx) ˆy = (g ˆy) ˆx Diffie-Hellman computation

—Some of the functions and equations are not needed in the protocol itself, but may (in
principle) weaken the protocol for the benefit of an attacker; the functionsRecoverKey( )
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andRecoverText( ) can be used to extract information from signatures, as specified in
the following two equations:

RecoverKey(S{y}(x)) = Pk(y) public-key recovery from a signature
RecoverText(S{y}(x)) = x signed text recovery from a signature

We could further refine our theory by reflecting known weaknesses of the underlying
cryptographic algorithms or their interactions, by considering additional equations (for
instance refiningH{ }( ), in the spirit of Abadi and Fournet [2001, Section 6]).

—The equations for the remaining constructs are fairly mundane:

(∅.x).x = ∅.x idempotence of set extension
(x.y).z = (x.z).y commutativity of set extension

We have functions for constructing sets, but not a set membership relation; instead, we
let U ∈ V abbreviateV.U = V .

3.2 Syntax and Informal Semantics for Processes

The grammar forprocessesin the applied pi calculus is similar to the one in the pi calculus,
except that messages can contain terms (rather than only names) and that names need not
be just channel names:

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
νn.P name restriction (“new”)
if U = V then P else Q conditional
u(x).P message input
u〈V 〉.P message output

The null process0 does nothing;P | Q is the parallel composition ofP and Q; the
replication!P behaves as an infinite number of copies ofP running in parallel. The process
νn.P makes a new namen then behaves asP . We often useν as a generator of unguessable
seeds. In some cases, those seeds may directly serve as cryptographic keys; in others,
some transformations are needed for deriving keys from seeds. The conditional construct
if U = V then P else Q is standard, but we should stress thatU = V represents equality,
rather than strict syntactic identity. We abbreviate itif U = V then P whenQ is 0.
Finally, the input processu(x).P is ready to input from channelu, then to runP with the
actual message replaced for the formal parameterx, while the output processu〈V 〉.P is
ready to output messageV on channelu, then to runP . In both of these, we may omit
P when it is0. For instance, the (useless) processνK.c〈E{K}(M)〉 sends the termM
encrypted under a fresh keyK on channelc.

Further, we extend processes withactive substitutions:

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{x = M} active substitution
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We write{x = M} for the substitution that replaces the variablex with the termM . The
substitution{x = M} typically appears when the termM has been sent to the environ-
ment, but the environment may not have the atomic names that appear inM ; the variablex
is just a way to refer toM in this situation. The substitution{x = M} is active in the
sense that it “floats” and applies to any process that comes into contact with it. In order to
control this contact, we may add a variable restriction: we definelet {x = M} in P as
syntactic sugar forP{x = M}. Although the substitution{x = M} concerns only one
variable, we can build bigger substitutions by parallel composition. In particular, we can
write let {x1 = V1} | . . . | {xn = Vn} in P , which isP with local variablesx1, . . . ,xn

bound toV1, . . . ,Vn, respectively. We always assume that our substitutions are cycle-free.
We also assume that, in an extended process, there is at most one substitution for each
variable, and there is exactly one when the variable is restricted.

Although the syntax draws a formal distinction between ordinary processes and extended
processes, we typically ignore this distinction, for simplicity. In particular we often use the
symbolsP , Q, andR for extended processes, thus avoiding possible confusions between
extended processes and principals.

A frame is an extended process built up from active substitutions by parallel compo-
sition and restriction. Informally, frames represent the static knowledge gathered by the
environment after communications with an extended process. We letϕ range over frames.
The frame associated with an extended process is obtained by erasing its plain process
components. AcontextC[ ] is a process with a hole, andC[P ] is the result of fillingC[ ]’s
hole withP . An evaluation contextC[ ] is an extended process with a hole in the place of
an extended process. As usual, names and variables have scopes, which are delimited by
restrictions and by inputs. WhenE is any expression,fv(E), bv(E), fn(E), andbn(E)
are the sets of free and bound variables and free and bound names ofE, respectively.

We rely on a sort system for terms and extended processes [Abadi and Fournet 2001,
section 2]. We always assume that terms and extended processes are well-sorted and that
substitutions and context applications preserve sorts.

3.3 Syntactic Sugar

In our formalization of JFK, we rely on various abbreviations for processes and data struc-
tures. We writeif M then P instead ofif M = true then P . Given a finite setI and a
family of extended processesPi, one for eachi ∈ I, we let

∏
i∈I Pi be the parallel compo-

sition of the extended processesPi. We omit pair constructors and parentheses for nested
pairs, writing for instanceH{K}(xR, NR, NI) for H{K}(cons(xR, cons(NR, NI))). We
use pattern matching on tuples as syntactic sugar for the corresponding selectors, writing
for instance

c(1(=NI , xI)).P

instead of

c(z).let {xI = F1
2(z)} in if z = 1(NI , xI) then P

for some fresh variablez; this process receives a message on channelc, matches it with
1(NI , T ) for some subtermT , then runsP with T substituted forxI ; otherwise, the re-
ceived message is silently discarded. We also define syntax for filtering duplicate mes-
sages:

!c(X)\V.C[if T fresh then P ]
ACM Journal Name, Vol. V, No. N, January 2007.
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stands for

νs.(s〈V 〉 | !c(X).C[s(z).(s〈z.T 〉 | if T /∈ z then P )])

whereC[ ] is a context,X is a pattern,s is a fresh channel name, andz is a fresh variable.
We use the local channels for maintaining a setV of previous values for the termT .
The arrival of a message may cause the addition of a particularT (which may depend on
variables bound inX) to this set, and the execution ofP . For instance, takingX = T = x,
the process!c(x)\∅.if x fresh then P runsP once for every distinct messageM received
on c, with M substituted forx, and silently drops any duplicate message received onc.

3.4 Operational Semantics

Structural equivalences, written P ≡ Q, relate extended processes that are equal by any
capture-avoiding rearrangements of parallel compositions, restrictions, and active substi-
tutions, and by equational rewriting of any terms in processes. For example, we have that

νs.(c〈s〉 | c(x).d〈x〉) ≡ c(x).d〈x〉 | νs.c〈s〉

and, ifs = V in the underlying equational theory, that

νs.(c〈V 〉 | c(x).d〈x〉) ≡ c(x).d〈x〉 | νs.c〈s〉

We also have that

νs.(c〈E{s}(g)〉 | c(x).d〈x〉) ≡ νy.({y = E{s}(g)} | νs.(c〈y〉 | c(x).d〈x〉))

Reductions and labelled transitions, which we explain next, are closed by structural equiv-
alence, hence by equational rewriting on terms.

Reductions, written P → Q, represent silent steps of computation (that is, internal
message transmissions and branching on conditionals). For example, we have that

νs.(c〈s〉 | c(x).d〈x〉) → νs.d〈s〉

Labelled transitions, written P
α−→ Q, represent interactions between the extended

processP and its environment. Specifically,P
c(V )−−−→ Q andP

νeu.c〈V 〉−−−−−→ Q represent inputs
and outputs, respectively, fromP ’s viewpoint. In both,P andQ are extended processes,
c is a communication channel, andV is a message. The labelsc(V ) andνũ.c〈V 〉 are
the actions of these labelled transitions; an action indicates the nature and contents of an
interaction with the environment: whether a communication step is an input or an out-
put, on what channel it takes place, and the corresponding message. In general, output
actionsνũ.c〈V 〉 include restrictions on the fresh names and variablesũ that occur in the
message in question; after the transition, the environment gains access toũ and may use
them to perform further actions. In contrast with other process calculi, an output transition

P
νeu.c〈V 〉−−−−−→ Q is defined only for termsV that do not export restricted names (unlessV is

a name). Nonetheless,Q may contain an active substitution that associates variables inũ
with any terms. For example, we have that

νs.(c〈s〉 | c(x).d〈x〉) νs.c〈s〉−−−−→ c(x).d〈x〉

and that

νs.(c〈E{s}(g)〉 | c(x).d〈x〉) νy.c〈y〉−−−−→ νs.({y = E{s}(g)} | c(x).d〈x〉)
ACM Journal Name, Vol. V, No. N, January 2007.
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An input transitionP
c(V )−−−→ Q may use variables defined inP (typically from previous

message outputs) to form the messageV . For example, we have that

νs.({y = E{s}(g)} | c(x).d〈x〉) c(y)−−→ νs.({y = E{s}(g)} | d〈y〉)

3.5 Observational Equivalences

In the analysis of protocols, we frequently argue that two given processes cannot be dis-
tinguished by any context, that is, that the processes are observationally equivalent. As in
the spi calculus [Abadi and Gordon 1999], the context represents an active attacker, and
equivalences capture security properties in the presence of the attacker. The applied pi
calculus has a useful, general theory of observational equivalence parameterized byΣ and
its equational theory [Abadi and Fournet 2001]. Specifically, the following three relations
are defined for anyΣ and equational theory:

—Static equivalence, written≈s, relates frames that cannot be distinguished by any term
comparison. In the presence of theν construct, the relation≈s is somewhat delicate and
interesting. For instance, we haveνN.{x = H{N}(V )} ≈s νN.{x = H{N}(V ′)} for
any termsV andV ′, since the nonceN guarantees that both terms substituted forx have
the same (null) equational properties, butνN.{x = 1(N,V )} 6≈s νN.{x = 1(N,V ′)},
as soon asV andV ′ differ, since the comparisonF1

2(x) = V succeeds only with the
first frame. We say that two extended processes are statically equivalent when their
associated frames are.

—More generally,observational equivalence, written≈, relates extended processes that
cannot be distinguished by any evaluation context in the applied pi calculus, with any
combination of messaging and term comparisons; this relation is used to state some of
our main results on JFKr.

—Labelled bisimilarity, written ≈l, coincides with observational equivalence, but it is
defined in terms of labelled transitions instead of arbitrary evaluation contexts, and it is
the basis for standard, powerful proof techniques.

3.6 Traces and Related Notions

We close this section with a few technical notations and concepts based on the operational
semantics of the applied pi calculus. These are not specific to JFK, but we use them in its
study.

As discussed in Section 4.1 below, eavesdropping amounts to a message interception
followed by a re-emission of the same message. Formally, the interception corresponds to
an output labelνũ.c〈V 〉, and the re-emission corresponds to an input labelc(V ). We write

P
νeu.c[V ]−−−−−→ P ′ as a shorthand for the two transitionsP

νeu.c〈V 〉−−−−−→ c(V )−−−→ P ′.
A traceP

η−→ Q represents a sequence of computation steps, from processP to processQ
with the sequence of labelsη, possibly interleaved with internal computation steps, which
are kept implicit. In what follows, and especially when relying on automated proofs, we
often consider a particular class of traces. For a given sequence of labelsη, we say that the
traceP

η−→ Q is normalwhen:

(1) The free names and variables ofP and the extruded names and variables ofη do not
clash. (Such clashes can be prevented by renaming names and variables.) Hence, there
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can be a binding “ν” in front of anx or n in an output ofη only whenx or n does not
appear free in any process or transition preceding that output.

(2) There is no internal communication step on any free channel. (This condition does
not entail any loss of generality, since every communication step on a free channel can
be represented as a series of two transitions, an output immediately followed by an
identical input, as in our model of eavesdropping.)

Those conditions are technically convenient, but not essential.
We also often compare actions in traces up to equational rewriting. For any trace

P
η−→ Q, we haveQ ≡ νñ.(ϕ | R) where≡ is the structural-equivalence relation,R is

a process with no active substitutions, andνñ.ϕ is a frame associated withQ that defines
the variables exported inη. Assuming thatP

η−→ Q is normal and that the namesñ do not
occur free inP or in η, we can disregard the location of restrictions in labels, and consider
labels up to equality under the substitutionϕ. This comparison “afterη” depends onQ,
but not on a particular choice forϕ. Informally, it represents term comparison as observed
from R.

4. A MODEL OF JFK IN THE APPLIED PI CALCULUS

Next we discuss our representations for the IP network, attackers, and principals, and we
assemble processes that represent configurations of principals.

4.1 The Network and the Attacker

In our model, all IP messages are transmitted on a free pi calculus communication channel,
c, which represents a public IP network in which message contents serve for differentiating
traffic flows. An arbitrary environment (an arbitrary evaluation context) represents the
attacker. This environment can interact with other principals by inputs and outputs on any
free channel, includingc.

As a special case, we sometimes consider a weaker, passive attacker that only eavesdrops
on messages but does not modify them. An attack step against a processP consists in
eavesdropping on a message sent byP , and amounts to a message interception followed
by a re-emission of the same message.

4.2 Configurations of Principals

Our model allows an arbitrary number of principals. Each principal may run any number
of sessions, as initiator and as responder, and may perform other operations after session
establishment or even independently of the protocol. Only some of these principals follow
the protocol. We are interested in the security properties that hold for them.

For the present purposes, the essence of a principal lies in its ability to produce signatures
verifiable with its public key. Accordingly, we refer to each principal by its public key,
using variablesIDA, IDB ,. . . for both identities and public keys. We also associate the
context

PKA[ ] = νKA
− .({IDA = Pk(KA

−)} | [ ])

with every principalA. This context restricts the use of the signing keyKA
− to the process

in the context and it exports the corresponding verification keyIDA. Since there is no
inverse forPk( ), the verification key can be passed to the environment without giving
away the capability to sign messages withKA

− to the environment. Whenever we put a
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processR in this context, our intent is thatR never communicatesKA
− to the environment.

By definition of well-formed configurations in the applied pi calculus, a process of the form
Q | PKA[R] exportsIDA; bothQ andR can accessIDA; only R can accessKA

− ; and no
context may change the binding ofIDA to Pk(KA

−). On the other hand, the context may
define any number of other principals. Thus, we obtain a fairly generous and convenient
model when we represent an attacker by an arbitrary context.

We letC range over sets of compliant principals—that is, principals that entirely delegate
the use of their signing keys to JFKr. While some properties will obviously hold only
for compliant principals, the initiator and responder code do not assume knowledge ofC:
indeed, compliant and non-compliant principals can attempt to establish sessions.

Compliant principals rely on an implementation of JFKr, written as a processS. (The
notationS stands for “system”.) In addition, each compliant principalA has a “user
process”, writtenPA. The user process defines any additional behavior, such as when
protocol runs are initiated and what happens to the shared secretKv after each session es-
tablishment. While we defineS below, we treatPA as an abstract parameter, in the context
that enclosesS, possibly under the control of the attacker. Each user process interacts with
S through the following control interface:

—As initiator,PA sends a messageinit
A〈ID′

R, saI〉 to initiate a new session, with respon-
der hint ID′

R and security associationsaI . When the protocol completes successfully,
S sendsconnectA〈IDB , ID′

R, saI , saR,Kv〉 to notify PA that the session has been ac-
cepted, and thatA now sharesKv with a principal with identifierIDB .

—As responder,S sendsacceptA〈IDB , ID′
R, saI , saR,Kv〉 to notify PA that it has ac-

cepted a session initiated by a principal with identifierIDB , parametersID′
R, saI , saR

and shared secretKv. To control who can initiate a session withA, S is parameterized
by a setSA

I of acceptable initiator identities. (We do not need a set such asSA
I at the

initiator: after completion of the protocol, the initiator’s user process can decide what to
do with the new session depending on the responder identity in theconnectmessage.)
For simplicity,SA

I andsaR are fixed; we also assume that these terms do not contain
any name or variable restricted inS.

Thus, the interface between each principalA and JFKr consists of three communication
channelsinitA, acceptA, andconnectA plus a set of identitiesSA

I . The channelsinitA,
acceptA, andconnectA can be restricted (withν) in order to hide the interface from the
environment.

For example, the user processPA of a principalA may be:

init
A〈IDB , saI〉.connectA(=IDB ,=IDB ,=saI , saR,Kv).c〈E{Kv}(true)〉

This code initiates a single session, specifically withB; after connecting, it sends the term
true encrypted under the resulting session keyKv on the channelc that represents the
public IP network. A variant of this code can also accept a session and then send the term
true encrypted under the resulting session keyKv on c:

init
A〈IDB , saI〉.connectA(=IDB ,=IDB ,=saI , saR,Kv).c〈E{Kv}(true)〉

| acceptA(=IDB , ID′
R, saI , saR,Kv).c〈E{Kv}(true)〉

Another principalB may have a similar user processPB , for example:

acceptB(=IDA,=IDB , saI , saR,Kv).c(x).c〈D{Kv}(x)〉
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PuttingPA andPB together withS, and letting the setC of compliant principals be
{A,B}, we obtain a configurationPA | PB | S. Provided thatA ∈ SB

I , this sample
configuration can execute one run of JFKr. We may also add restrictions on the chan-
nels initA, acceptA connectA, initB , acceptB , andconnectB , thus ensuring that onlyPA

andPB controlS.

4.3 The Protocol

Figure 2 shows our implementation of JFKr in the applied pi calculus. It includes defini-
tions of processes for each role: a single process (IA

0 ) for the initiator, and two processes
(RA

1 , RA
3 ) that do not share session state for the responder. For each principalA, these

replicated processes perform tests on incoming messages and compute outgoing messages.
(Here, we give processes forA in both roles; elsewhere, when describing an exchange be-
tween two principals, we often useA as initiator andB as responder.) The code ofIA

0 , RA
1 ,

andRA
3 represents the steps in the informal protocol narration of Section 2.1. Comments

in the figure explain the code. As further explanation, we paraphrase the code ofRA
1 , as

an example. This code starts with the reception of a message1(NI , xI) on the public IP
network. The reception is replicated, because this code is expected to run whenever it
is triggered by an input; several instances of the code may execute in parallel. Then the
code generates a fresh nonceNR and computes an anti-DOS cookietR. Finally, it sends
2(NI , NR, xR, gR, tR) on the public IP network.

The figure also includes the definition of a configurationS: an assembly of an arbitrary
but fixed set of compliant principalsC that potentially share an arbitrary but fixed pool of
exponentialsX. We always assume thatC andX are not empty.

The design of JFK allows reusing Diffie-Hellman exponents for several sessions, prin-
cipals, and roles, and does not impose a particular policy for changing them. For each
exponent, one can decide when to stop using that exponent in new sessions. For instance,
an exponent may expire once the first session established using that exponent terminates,
so that discarding session keys prevents their later compromise. In our model, all compli-
ant principals may use any number of shared exponentials, in both roles, for any number
of parallel sessions. Results for configurations with less sharing are immediate corollaries
of ours.

The contextDx[ ] represents a Diffie-Hellman party,dx the corresponding secret expo-
nent,x the derived exchange value (the exponential), andg the group (the same one for
all compliant principals). The setX contains the exponentials shared by the compliant
principals. The contextDX [ ] consists of contextsDx[ ] for eachx ∈ X. For simplicity,
according to the code, compliant principals never disclose exponents.

In contrast with actual implementations of JFK, our model treats abstractly several as-
pects of the protocol. In particular, it uses an unambiguous format for all messages, thereby
assuming, for instance, that the wire format for messages does not leak additional informa-
tion, and that ill-formed messages are safely ignored. (In our model, ill-formed messages
cause pattern matching or other tests to fail, thereby discarding the message and, except
for Message 3, aborting the session.) Furthermore, it does not cover IP addressing, rout-
ing, and fragmentation concerns, the contents of the security-association parameterssaz,
the handling ofID′

R, the potential usage of several groupsg, aspects of caching, and error
messages. We made such simplifications partly by choice, partly by necessity; the resulting
model remains quite informative and rich.

ACM Journal Name, Vol. V, No. N, January 2007.



· 17

IA
0 = !initA(ID′

R, saI). Initiator for each messageinit
νNI . create a fresh nonce
c〈1(NI , xI)〉. send Message 1
c(2(=NI , NR, xR, gR, tR)). wait for Message 2
let κI in compute shared keys (see below)
let {sI = S{KA

−}(NI , NR, xI , xR, gR)} in sign
let {eI = E{Ke}(IDA, ID′

R, saI , sI)} in encrypt
let {hI = H{Ka}(i, eI)} in compute MAC
c〈3(NI , NR, xI , xR, tR, eI , hI)〉. send Message 3
c(4(eR, hR)). wait for Message 4
if H{Ka}(r, eR) = hR then check MAC
let {IDR, saR, sR = D{Ke}(eR)} in decrypt
if V{IDR}(sR, (NI , NR, xI , xR)) then check signature
connectA〈IDR, ID′

R, saI , saR, Kv〉 complete keying

RA
1 = !c(1(NI , xI)). Responder for each Message 1

νNR. create a fresh nonce
let {tR = H{KR}(xR, NR, NI)} in compute anti-DOS token
c〈2(NI , NR, xR, gR, tR)〉 send Message 2

RA
3 = !c(3(NI , NR, xI , x, tR, eI , hI))\∅. Responder for each Message 3

if tR = H{KR}(x, NR, NI) then check anti-DOS token
if tR fresh then accept token only onceQ

xR∈X if x = xR then branch on DH exponential
let κR in compute shared keys (see below)
if H{Ka}(i, eI) = hI then check MAC
let {IDI , ID′

R, saI , sI = D{Ke}(eI)} in decrypt
if IDI ∈ SA

I then authorize
if V{IDI}(sI , (NI , NR, xI , xR, gR)) then check signature
acceptA〈IDI , ID′

R, saI , saR, Kv〉. accept the session
let {sR = S{KA

−}(NI , NR, xI , xR)} in sign
let {eR = E{Ke}(IDA, saR, sR)} in encrypt
let {hR = H{Ka}(r, eR)} in compute MAC
c〈4(eR, hR)〉 send Message 4

S = DX

�Q
A∈C PKA

�
IA|RA

��
Compliant principal configuration

IA =
Q

xI∈X IA
0 A as initiator

RA = νKR.(
Q

xR∈X RA
1 | RA

3 ) A as responder

PKA[ ] = νKA
− .({IDA = Pk(KA

−)} | [ ]) A’s signing and verification keys

Dx[ ] = νdx.({x = g ˆdx} | [ ]) DH secretd and exchange valuex
DX [ ] = Dx1 [. . . Dxn [ ]] whereX = {x1, . . . , xn} shared exponentials

κI =
Q

u=a,e,v{Ku = H{xR ˆdxI}(NI , NR, u)} key computations forI
κR =

Q
u=a,e,v{Ku = H{xI ˆdxR}(NI , NR, u)} key computations forR

Fig. 2. JFKr in the applied pi calculus
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5. PROVERIF AND ITS USE

In this section, we briefly describe ProVerif and explain how we use it in the analysis of
JFK. In particular, we outline our interpretation of the outcome of automated script verifi-
cations as proofs of trace properties for JFK configurations expressed in the pi calculus.

5.1 ProVerif and its Extensions for JFK

ProVerif was first designed for proving secrecy properties, which mean that the adversary
cannot compute certain values [Blanchet 2001; Abadi and Blanchet 2005a]. ProVerif was
then extended for proving correspondence assertions of the form: if some evente is exe-
cuted, then some eventse1, . . . , en must have been executed before [Blanchet 2002; Abadi
and Blanchet 2005b]. Also treated were injective correspondences, which furthermore re-
quire that if the evente is executedm times, then the corresponding eventse1, . . . , en must
have been executed at leastm times. More recently, ProVerif was extended for proving ob-
servational equivalences of the formνa1, . . . , an.Pσ ≈ νa1, . . . , an.Pσ′ whereσ andσ′

are any substitutions that map the free variables ofP to terms in a given set [Blanchet
2004], as well as observational equivalences between processes that differ only in the terms
they contain [Blanchet et al. 2005].

Further extensions were added for analyzing JFK:

(1) In previous versions, the events added in the protocol description were either “begin”
or “end” events, and the correspondence assertions were always of the form “if some
end event has been executed, then some begin events must have been executed”. As
a result, for proving different properties, we often had to modify events in the proto-
col description. Now, the protocol description contains only one kind of event, and
ProVerif determines automatically from the property of interest which events should
be “begin”, which should be “end”, which should be both, and which should simply
be ignored.

(2) In previous versions, for a given “end” event, ProVerif returned a set of Horn clauses
from which the user could infer which “begin” events must be executed to execute the
“end” event. While this mode is still available, we have introduced a rich specification
language for correspondence assertions, and ProVerif can tell the user whether a given
correspondence property is proved or not, without manual inspection of the clauses.

(3) We have added an optimization that yields dramatic speedups when the property in
question contains many events. More specifically, ProVerif now removes redundant
hypotheses from Horn clauses when they contain “begin” events: if the clause is of
the formH ∧ H ′ → C and there existsσ such thatHσ ⊆ H ′ andσ does not op-
erate on variables ofH ′ andC, then ProVerif replaces the clause with the equivalent
clauseH ′ → C. This transformation considerably speeds up the subsumption test for
clauses.

(4) We have added support for scenarios with several phases, such as publishing secret
keys after the end of the execution of some sessions of the protocol. This extension
has been used in proving perfect forward secrecy properties of JFK.

(5) We have extended the treatment of equations proposed by Blanchet [2001] for Diffie-
Hellman to more general equations [Blanchet et al. 2005]. This extension allows us to
represent encryption and signatures using equations rather than destructors.
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5.2 Scripts for Proof Automation

We rely at least partially on ProVerif in most proofs. For that purpose, we code JFK
configurations (S in Figure 2) in the input syntax of ProVerif, which is an ASCII syntax
for the applied pi calculus, then we specify the properties to prove and simply run ProVerif.
Additional justifications and details on ProVerif appear in Appendix B.

As noted in the introduction, our ProVerif scripts are available athttp://www.di.
ens.fr/ ∼blanchet/crypto/jfk.html . The script for JFKr differs superficially
from S: whereas configurationsS are parameterized by fixed sets of compliant principals
and shared exponents, the script gives an interface to the adversary that enables the creation
of compliant principals (and provides their identities and control interfaces) and of shared
exponents (and provides their exponentials). These unfoldings are best omitted in the state-
ments of theorems. For a given configurationS, one can apply an evaluation context to the
process defined in the script so that the resulting process becomes observationally equiva-
lent toS after exporting the exponentials, the principal identities, and the control channels
initA, acceptA, andconnectA. A lemma in Appendix B justifies this transformation.

6. RESISTANCE TO DENIAL-OF-SERVICE ATTACKS

In our formal analysis, we first consider the security mechanisms at the early stages of the
protocol, before mutual authentication. These mechanisms aim at hardening JFK against
certain DOS attacks relevant in IP security (see e.g., Karn and Simpson [1999]). Our for-
mal analysis relies on an understanding of the costs incurred at these stages (much as in
Meadows’s cost-based framework [2001]). This understanding is based on discussions in
the protocol specification. We characterize the occurrences of operations deemed expen-
sive, without a formal measure of their cost.

In JFK, protocol-based DOS is a concern mostly for the responder. By design, until
the computation ofκR, the processing of Messages 1 and 3 is fast and involves almost
no state. From this point, the protocol performs CPU-intensive operations (including a
Diffie-Hellman exponentiation and two public-key operations), and allocates some session
state.

Since in general, in any protocol, the processing of a message may depend on the con-
tents of previously received messages, each principal may maintain some local state for
each session of a protocol. This state can be problematic for servers that are willing to
start a session whenever they receive a first client message, before adequate authentica-
tion. Indeed, an attacker may send (or redirect) first-message traffic to the server, filling
its buffers, and eventually causing valid session attempts to be dropped. This concern mo-
tivates a common protocol transformation: instead of keeping state for every session in
progress, one or both parties MAC (or encrypt) the state, append the result to outgoing
messages, and check (or decrypt) the corresponding values in later incoming messages
before processing them. Next, we show that this transformation is correct (i.e., preserves
equivalence) for a general class of protocols coded as processes.

We relate a sequential implementation of a protocol to a more complex but stateless
implementation, using the observational-equivalence relation,≈. This relation is closed
by application of evaluation contexts, which can represent active attackers.

LEMMA 1. Let C[ ] be a context that binds at most the variablex2, let KR be a fresh
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name, letP = !c(z), and

R◦
2 = νN.νt.c〈M2〉.R◦

3

R◦
3 = ?c(3(=t,=N,=x2, x3)).R4

R2 = νN.let {t = H{KR}(N,x2)} in c〈M2〉
R3 = !c(3(t,N, x2, x3))\ ∅.if t = H{KR}(N,x2) then if t fresh then R4

We haveC[R◦
2] | P ≈ νKR.(C[R2] | R3) | P .

In the statement of the lemma,R◦
2 andR◦

3 define the sequential implementation of the
protocol, whereasR2 andR3 define its stateless implementation. InR◦

2, we rely on syn-
tactic sugar for pattern-matching with a retry until a message that matches the patternX is
received, writing

?c(X).R for νl.
(
l〈〉 | !c(X).l().R

)
where l does not occur inX or R. (In the ProVerif scripts, we use instead the more
verbose encodingνl.(!c(X).l〈x̃〉 | l(x̃).R), wherex̃ collects the variables bound inX.
The two encodings are equivalent, but the latter encoding facilitates automated proofs.)
The processR2 is triggered each time a first message of the protocol is received; the pair
N,x2 represents the state of the protocol at the end ofR2 that is used later inR4; M2

represents a second message of the protocol carrying (at least)N andt, andx3 represents
new data received in Message 3. The presence of the same state (N,x2) in the message
received inR3 is checked using the authenticatort. The inclusion of a fresh nonceN
guarantees that all generated authenticators are different. (InR◦

2, the generation of a fresht
and the matching=t do not serve any functional purpose; they are performed only so that
the two implementations of the protocol behave similarly.) The additional processP is
necessary to account for the possibility of receiving any messagez and discarding it after
a failed test.

The proof of Lemma 1 appears in Appendix A; it relies on standard bisimulation tech-
niques. The lemma is reminiscent of classical replication laws in process calculi, such as
!(Q2 | !Q3) ≈ !Q2 | !Q3, sinceR◦

2 andR3 contain replications andC[ ] typically will.
Our next lemma applies this protocol transformation to JFKr. It relates our main modelS

(see Figure 2), which features a stateless responder till reception of a Message 3 with a
valid token, to a simplified, linear modelS◦. The lemma enables us to prove properties of
JFKr preserved by≈ (such as trace properties) onS◦ instead ofS.

LEMMA 2. We haveS◦ ≈ S, whereS◦ is S after replacing eachRA by

R◦A =
∏

xR∈X

!c(1(NI , xI)).
νNR, tR.

c〈2(NI , NR, xR, gR, tR)〉.
?c(3(=NI ,=NR, xI ,=xR,=tR, eI , hI)).
let κR in . . . (as inRA

3 )

The lemma is essentially a corollary of Lemma 1; its proof appears in Appendix A.
Our next theorem expresses that the responder commits session-specific resources only

once an initiator has established round-trip communication, that is, sent a Message 1, re-
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ceived a Message2, and returned a Message3 with matching nonces (Property 2). This
property helps because the responder controls the emission of tokens and can cheaply in-
validate old ones by rekeyingKR, and because a “blind” attacker (weaker than a typical
Needham-Schroeder attacker [1978]) may send Messages1 with fake IP addresses, but
then may not be able to eavesdrop on the corresponding Messages2. The theorem also
includes a similar guarantee for the initiator (Property 1).

THEOREM 1 (PROTECTION FROMDOS). LetA ∈ C.

(1) Let S$ beS with an additional output$〈NI〉 before the Diffie-Hellman computation
of κI in IA

0 .

For any normal traceS$
η−→ S ′, each output$〈NI〉 in η is preceded by distinct, suc-

cessive actions that match initA( , ), c〈1(NI , )〉, andc(2(NI , , , , )).

(2) LetS$ beS with an additional output$〈NI , NR〉 before the Diffie-Hellman computa-
tion ofκR in RA

3 .

For any normal traceS$
η−→ S ′, each output$〈NI , NR〉 in η is preceded by distinct,

successive actions that matchc(1(NI , )), c〈2(NI , NR, , , )〉, andc(3(NI , NR, , ,
, , )).

The additional outputs on$ serve as markers for the start of expensive processing (public-
key operations and session-state allocation). The theorem formulates “round-trip authen-
tication” as injective correspondences between actions. Property 1 is almost obvious for
JFKr, as the initiatorIA

0 sequentially processes all messages and receives a single Mes-
sage 2 for each session. Property 2 is more interesting and depends on the authenticator,
but its proof becomes easy after applying a variant of Lemma 2 to obtain an equivalent,
linear protocol. (As discussed in Section 2.3, many Messages 3 may be processed for the
same authenticator in incorrect interpretations of JFKr, for which Property 2 is false.) The
proof of the theorem appears in Appendix B.

7. CORE SECURITY PROPERTIES: SECRECY AND AUTHENTICITY

Next, we consider session-key secrecy and mutual authentication. We establish fundamen-
tal secrecy and authenticity results. Then, more briefly, we discuss perfect forward secrecy
and identity-protection properties, which partly follow from those fundamental results.

7.1 Secrecy and Authenticity

Let S be a JFKr configuration with compliant principalsC sharing exponentialsX. We
study arbitrary runs of the protocol by examining transitionsS η−→ S ′, whereη is an arbi-
trary sequence of labels. In these labelled transitions, as usual, we omit internal steps→.
Informally, S ′ represents any reachable state of the configuration in the presence of an
attacker that controls both the low-level IP network (c) and the control interfaces for the
principals inC.

The following theorem characterizes runs of the protocol that involve two compliant
principals,A and B, in terms of what can be observed by an eavesdropper. We write
[1,2,3]−−−−→ for the eavesdropped communications

νNI .[1(NI ,xI)]−−−−−−−−−→ νNR tR.[2(NI ,NR,xR,gR,tR)]−−−−−−−−−−−−−−−−−−→ νeI hI .[3(NI ,NR,xI ,xR,tR,eI ,hI)]−−−−−−−−−−−−−−−−−−−−−→
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and similarly write
[4]−→ for

νeR hR.[4(eR,hR)]−−−−−−−−−−−→. We also writeϕ3 andϕ4 for the frames that
map the variablesNI , NR, tR, eI , hI andNI , NR, tR, eI , hI , eR, hR, Kv, respectively,
to distinct restricted names. These frames represent the simplified “net effect” of the runs
[1,2,3]−−−−→ and

[1,2,3]−−−−→ [4]−→ (including the passing ofKv). Next we examine sessions between
compliant principals starting from any reachable stateS ′ of the protocol.

THEOREM 2 (SECRECY FORCOMPLETE SESSIONS). For any normal traceS η−→ S ′,
principals A,B ∈ C, exponentialsxI , xR ∈ X, and termsID′

R, saI , there existsS3

such that

S ′ initA(ID′R,saI)−−−−−−−−→ [1,2,3]−−−−→ S3

and either (i)IDA ∈ SB
I and

S3
νKv.acceptB〈IDA,ID′R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−−−−→ [4]−→ connectA〈IDB ,ID′R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−→≈ S ′ | ϕ4

or (ii) IDA /∈ SB
I andS3 ≈ S ′ | ϕ3.

The proof of these properties is given in Appendix C; it relies on an analysis of the config-
urationsS ′ and on auxiliary equivalences established by ProVerif.

Theorem 2 first expresses the functioning of the protocol, with two normal outcomes
depending onIDA ∈ SB

I ; the first disjunct is for acceptance, the second for rejection. The
two outcomes are not observationally equivalent, informally because an attacker that ob-
serves network traffic may be able to tell whether a session succeeds or fails. The theorem
also uses observational equivalence to give a simple, abstract characterization of the proto-
col outcomes: we are (apparently) back to the state of the protocol just before the session
began,S ′, except forϕ3 andϕ4 which export variables bound to distinct, plain names
(νN.{x = N}), our representation of independent, fresh values in the pi calculus. Hence,
from the viewpoint of an attacker that can eavesdrop onc and communicate on control
interfaces, the intercepted message fields and the session key appear to be fresh, indepen-
dent names, rather than computed values. In particular, the attacker can learnKv only
through the control interfaces, andeI andeR leak nothing about their encrypted contents.
Furthermore, the equivalences ensure that the session does not depend on (or affect) any
other session inS ′. Although the statement of the theorem deals only with a (temporarily)
passive attacker, its combination with Theorem 4 (below) does cover all cases of complete
sessions.

We also have complementary authentication properties, expressed as correspondence
properties on control actions (that is, messages on the control interfaces), now with an
active attacker.

THEOREM 3 (AUTHENTICITY FOR CONTROL ACTIONS). For any normal traceS η−→
S ′, the actions appearing inη have the following properties:

(1) For eachacceptB〈IDA, ID′
R, saI , saR,Kv〉, we haveIDA ∈ SB

I and, ifA ∈ C, there is
a distinct initA(ID′

R, saI).
(2) For eachconnectA〈IDB , ID′

R, saI , saR,Kv〉 there is a distinct initA(ID′
R, saI) and, if

B ∈ C, there is a distinctacceptB〈IDA, ID′
R, saI , saR,Kv〉.

The proof of these properties partly relies on ProVerif (see Appendix B). For Property 1, we
analyze the linear variant of JFKr, then extend the result to JFKr by Lemma 2; in contrast,
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the direct automated analysis of JFKr yields only a weaker, non-injective correspondence,
because ProVerif does not keep track of the linearity enforced by the authenticator cache.
ProVerif also yields proofs of these properties for variants of the protocol—with or without
sharing of exponentials, for JFKr and for JFKi.

The next theorem also deals with an active attacker. It says that, whenever a normal
trace includes a control actionconnectA〈IDB , . . . 〉 for someA,B ∈ C, the trace essentially
contains a complete, successful run of the protocol, as described in Theorem 2.

THEOREM 4 (AUTHENTICITY FOR COMPLETE SESSIONS). Let A,B ∈ C and as-
sume that we have a normal trace

S η−→ connectA〈IDB ,ID′R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−→ S ′

(1)
η−→ contains a series of transitions that match

initA(ID′R,saI)−−−−−−−−→ [1,2,3]−−−−→ νKv.acceptB〈IDA,ID′R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−−−−→ [4]−→

in the same order, except possibly for argumentxI in the first input onc and for
argumenttR in the second input and third output onc.

(2) Letη′ beη after erasure of these transitions. We haveS | ϕ4
η′−→≈ S ′.

We rely on ProVerif for establishing the first point of this theorem, via Lemma 2 (see
Appendix B), and on an analysis of the normal trace under consideration for establishing
the second point of the theorem (see Appendix C).

Theorem 3 is simpler and more abstract than Theorem 4, as it deals only with the inter-
face of the protocol, through control actions. Theorem 4 is more complex, as it expresses
properties on both control actions and lower-level IP messages exchanged by the protocol.
These properties imply that certain protocol inputs match previous protocol outputs, so
these inputs are authentic. In general, we would not expect an exact match of all message
fields (even if such matches facilitate a formal analysis): some fields are not authenticated.
Here, the absence of authentication ofxI in the first message weakens identity protec-
tion; see Section 2.3. The absence of authentication oftR by the initiator seems harmless,
inasmuch astR is used only byR.

7.2 Perfect Forward Secrecy

As a corollary of Theorems 4 and 2, the session keyKv, exported in the control ac-
tions, is equivalent to a variable bound to a fresh, independent name, sinceϕ4 contains
νN.{Kv = N}. Hence, up to observational equivalence,Kv is syntactically independent
from S and the values intercepted by the attacker. As previously discussed [Abadi and
Fournet 2001], this provides a characterization of perfect forward secrecy for the session
key. We obtain this property even with our liberal reuse of exponentials. We also derive a
more specific (but still comforting) property thatKv is distinct from any key established in
another session of the protocol.

Independently, ProVerif confirms that the keyKv exchanged between two compliant
principals remains secret—that is, here, the adversary cannot compute it—even if we give
the long-term secret keysKA

− of all principals to the attacker after the end of the protocol
run. Similarly, ProVerif verifies that all signing keysKA

− for A ∈ C and Diffie-Hellman
exponentsdx for x ∈ X remain secret.
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7.3 Identity Protection

We can rely on observational equivalence also for identity protection. The intercepted
variables defined byϕ3 andϕ4 are independent fromIDA, ID′

R, andIDB ; this property is
a strong privacy guarantee for sessions between compliant principals. Further guarantees
can be obtained with particular hypotheses (see Abadi and Fournet [2004]). For instance,
if all identities in SB

I are of the formIDA for someA ∈ C (that is,B does not accept
sessions with the attacker) and there is no input oninitB (that is,B is only a responder)
then, using Theorems 4 and 2, we easily check that the identityIDB occurs only in outputs
onconnectA and otherwise cannot be observed by an active attacker.

Relying on the technique of Blanchet [2004], ProVerif can prove some identity-pro-
tection properties stated as observational equivalences.

—To show that the identity of the responder is protected against active attacks, we consider
configurations in which two responders can have their signing keys amongKA

− andKB
−

(so their identities amongPk(KA
−) andPk(KB

− )), and we show that these configurations
are observationally equivalent. Hence, an adversary cannot distinguish a configuration
in which a responder usesKA

− from one in which it usesKB
− , and it cannot tell whether

two responders use the same signing key.

—Similarly, to show that identities of compliant principals are protected against passive
attacks, we consider configurations in which two responders and two initiators can have
their signing keys amongKA

− , KB
− , KC

− , KD
− , and we show that these configurations are

observationally equivalent. In these configurations, the attacker can listen but not send
messages on channelc.

These configurations contain other responders and initiators, with other keys. The channels
acceptA andconnectA are restricted, so that an adversary cannot observe messages sent on
these channels. All responders accept connections only from compliant principals (only
for simplicity). We also prove a similar observational equivalence that shows that JFKi
protects the identity of the initiator.

On the other hand, we have also found limitations in identity protection; see Section 2.3.

8. PLAUSIBLE DENIABILITY

Plausible deniability [Roe 1997] is an explicit (and controversial) design goal for IP se-
curity. In the context of session establishment, plausible deniability entails limiting the
amount of evidence that can be gathered by an active attacker in order to prove the exis-
tence and characteristics of past sessions, including sessions with the attacker. An extreme
protocol would leak no such evidence during session establishment, leaving the choice of
any non-repudiation mechanism to the application layer. (Further discussions of plausible
deniability appear, for example, in Internet Drafts [Harkins et al. 2002] and in the work
of Mao and Paterson on interactions and trade-offs between deniability and authentica-
tion [2003].)

As is the case with privacy properties, plausible deniability depends on any a priori
knowledge of the behavior of the principals. For instance, ifA is known to use a signing
key only as a JFKr responder, and to accept sessions with at mostB, then any signature
from A proves thatA actually accepted a session withB, irrespective of the signature con-
tents. This knowledge can be formalized via contexts that define the behavior of principals
under scrutiny, as proposed by Abadi and Fournet [2004]. In our example, the context

ACM Journal Name, Vol. V, No. N, January 2007.



· 25

would representA’s behavior.
In general, a principalA can deny communicating withB if, for any given (data) ev-

idence, there exists an active attacker that could obtain the same evidence by interacting
with A althoughA did not attempt to communicate withB. Accordingly, for a given se-
ries of transitions representing the denied actions, we consider any alternative “plausible
actions” that may have led to the production of the same evidence.

Therefore, in JFKr, whenA is a compliant principal in a configurationS, we may say
that the traceS η−→ S ′ is plausibly explained bySa

ηa−→ S ′a when, for some evaluation
contextC that does not restrict variables defined inS ′, we have the static equivalence
C[S ′a] ≈s S ′. (Static equivalence, presented in Section 3.5, is observational equivalence
with respect to contexts that can use the terms exported by active substitutions, but cannot
otherwise interact with the protocol.) Informally,Sa represents an alternative to the initial
configurationS, andC defines alternative computations for the terms exported byS ′.
For instance, ifS ′ exports a message encrypted under a key that can be computed by the
context, andS ′ does not use that key at all,C may perform a computation to produce that
encrypted message. On the other hand, ifS ′ exports a message signed with the key of a
compliant principal, all plausible explanations ofS η−→ S ′ should include a corresponding
signature; the signature cannot be blamed on the context.

Since JFKr participants sign only session-specific values, rather than identities, JFKr
should offer some plausible deniability properties. (JFKi does not, by design.) The next
theorem states some such properties. Its proof, in Appendix C, relies on trace rewriting
(much as for Theorem 4).

THEOREM 5 (DENIABILITY IN JFKR). For any normal traceS η−→ S ′, there is a nor-
mal traceSa

ηa−→ S ′a for any configurationSa and actionsηa obtained fromS andη by

(1) erasing any session between compliant principals (as detailed in Theorem 4);

(2) removing fromC anyA that performs no control actions (as long asC 6= ∅);
(3) in any initA input, modifying the termsID′

R, saI (as long as the trace is normal);

(4) erasing any connectA output;

(5) in any acceptA output, modifying the termsIDI , ID
′
R, saI (as long as the trace is nor-

mal) so that the newIDI is a verification key inSI
A not equal toIDB for anyB ∈ C;

(6) replacingSA
I with any set of terms that contains allIDIs in the remaining acceptA

outputs.

and there is an evaluation contextC that does not restrict any variable defined inSa such
thatC[S ′a] ≈s S ′.

Thus, compliant principals can deny sessions among themselves, or even their presence
unless they are target of an active attack. Moreover, they can deny the parameters of any
session with a dishonest principal (but not the existence or number of such sessions).

We are currently attempting to develop a more general theory of plausible deniability.
This theory should be applicable to a broad class of protocols, including JFKr. We expect
that, a posteriori, the present results about JFKr will exemplify that theory. (We note that
the study of other security properties often proceeds similarly. Informal discussions and
specific results often precede general theories. Even afterwards, the analyses of particular
protocols often refer to those general theories only loosely.)
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9. CONCLUSION

Despite a substantial body of work on the formal analysis of security protocols, and despite
much interest in IKE and related protocols, it seems that neither IKE nor its successors has
been the subject of an exhaustive analysis until now. The conference paper that presents
JFK argues informally about some of its core properties, and calls for a formal analysis;
the later journal paper includes some more detailed arguments. Recent work by Datta et
al. [2002; 2004; 2005] explores how the STS protocol, two JFK variants, and the core of
IKE can be derived by successive refinements. In particular, it discusses the properties of
JFKr, and isolates the usage of authenticators for DOS-resistance and of encrypted signa-
tures for identity protection (without however precise claims or proofs). Further afield, the
literature contains partial but useful machine-assisted verifications of IKE and Skeme (a
protocol that influenced IKE) [Meadows 1999; Blanchet 2001; 2002], and a framework for
the study of DOS [Meadows 2001]. More broadly, the literature contains several formal
techniques for protocol analysis and many examples, e.g., [Kemmerer et al. 1994; Lowe
1996; Paulson 1998; Thayer Fábrega et al. 1998; Abadi and Gordon 1999; Lincoln et al.
1998; Bodei 2000].

While a number of those techniques could potentially yield at least partial results on JFK,
we believe that the use of the applied pi calculus is particularly appropriate. It permits a
rich formalization of the protocol; the formulation of some of its properties via process
equivalences and others in terms of behaviors; and proofs (sometimes automatic ones) that
rely on language-based methods. The effort required seems reasonable enough: our proto-
col formalization took (roughly) a few months of work, as did the proofs and the ProVerif
extensions. While some of the work was difficult and certainly not linear—formalization
and proofs required many iterations—it should be easier in future protocol analyses, partly
because the use of ProVerif should be more routine. In particular, it took only a few hours
to adapt our formalization and re-run the automated proofs for a refinement of JFKr dis-
cussed in Section 2.1 and for JFKi.

We regard the present analysis of JFK as an important case study that goes beyond
what we have previously attempted, first because JFK is an attractive and intricate “state-
of-the-art” protocol of possible practical impact (through its influence on IKEv2 and other
protocols), because JFK tightly packages many ideas that appear elsewhere in the field, and
also because our analysis explores properties that are central to JFK but that are not often,
if ever, explained rigorously. Furthermore, as noted in the introduction, this case study
contributes to the development of ideas and results for the specification and verification of
security protocols that should be useful beyond the analysis of JFK.

An obvious next problem is the analysis of IKEv2. We have not undertaken it (instead or
in addition to the analysis of JFK) because IKEv2 continued to evolve, with influence from
JFK and other sources, until relatively recently. (The RFC that describes IKEv2 is from
December 2005; our work started in 2002 and was mostly complete well before IKEv2
was stable.) Fortunately, there seems to be substantial awareness of the benefits of formal
analysis in and around the IETF, so one may look forward to rigorous studies of IKEv2
and other significant protocols.
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Appendix

The appendices give proofs for the results stated in the body of the paper. Appendix A con-
tains the proofs of two lemmas that allow us to eliminate the authenticator cache, thus fa-
cilitating other proofs. Appendix B groups the proofs of correspondence assertions, which
rely on the same methodology and lemmas. It also includes justifications and details for
our use of ProVerif. Finally, Appendix C presents the remaining proofs.

A. PROOFS ON THE TREATMENT OF COOKIES (LEMMAS 1 AND 2)

We give the proofs for the lemmas on DOS resistance stated in Section 6, Lemmas 1
and 2. Our proofs partly rely on standard pi calculus techniques such as bisimulation up to
context; see Sangiorgi and Walker [2001], Abadi and Fournet [2001] for additional details.

In order to prove Lemma 1, we first establish that any collections of tokens issued by the
receiver and protected by the keyKR are equivalent to fresh, distinct names.

LEMMA 3. Let {KR} ] N be a finite set of names, and let(V2,N )N∈N be a series of
terms whereKR does not occur. Let

S◦N = (νt.{tN = t})
SN = {tN = H{KR}(N,V2,N )}

We have the static equivalence
∏

N∈N S◦N ≈s νKR.
∏

N∈N SN .

This lemma is automatically verified by ProVerif, relying on the technique presented
by Blanchet et al. [2005]. With these definitions, in a context that bindsx2 to V2,N , the
processesR◦

2 andR2 of Lemma 1 each have only one transition, which can be written

R◦
2

νxN c〈xN 〉−−−−−−→ E2[S◦N | R◦
3] and R2

νxN c〈xN 〉−−−−−−→ E2[SN ]

respectively, for the same evaluation contextE2[ ] = νN, tN .({xN = M2} | [ ]).
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PROOF OFLEMMA 1. We use the notationsR◦
2, R◦

3, R2, R3, andP of Lemma 1 and
S◦N , SN of Lemma 3. We writeR◦

3,N andR3\V instead ofR◦
3 andR3 to make explicit the

free nameN and the contents of the cacheV (with V = ∅ initially). After desugaring, we
have

R◦
3,N = νl.

(
l〈〉 | !c(z).let {x3 = F3

4(z)} in
if z = 3(tN , N, x2, x3) then l().R4

)

R3\V = νs.


s〈V 〉 | !c(z).let {tN , N, x2, x3 = F3

1(z),F3
2(z),F3

3(z),F3
4(z)} in

if z = 3(tN , N, x2, x3) then
if tN = H{KR}(N,x2) then
s(z′).(s〈z′.tN 〉 | if z′ = z′.tN then 0 else R4)


Let A andO be finite, disjoint subsets of names (indexing active and dead tokens, re-

spectively) and let

S◦ =
∏

N∈A∪O S◦N |
∏

N∈A R◦
3,N | P

S =
∏

N∈A∪O SN | R3\tO | P

where the cache contentstO in R3\tO is a term that represents the set{tN | N ∈ O}.
We build the relationR as follows: R relates all extended processesS◦ | R◦ and

νKR.(S | R) whereKR does not occur inS◦ | R◦ and whereR is obtained fromR◦

by substitutingR2{x2 = V2} for R◦
2{x2 = V2}, for some termsV2 and subprocesses

R◦
2{x2 = V2} of R◦.
First, we show thatR ⊆ ≈s. We apply Lemma 3 for the set{KR} ] A ] O, remark

that, by definition,R◦ ≈s R, and obtain the static equivalence of the frames associated
with S◦ | R◦ andνKR.(S | R) by parallel composition. In the rest of the proof, we show
thatR ⊆ ≈. In the following case analyses for transitions, we rely onR ⊆ ≈s to relate
the outcome of tests on each side ofR.

In S◦ andS, we say that an input onc fails when it is either an input inP or an in-
put followed by a test that will always fail: inR◦

3,N with N ∈ A because matching
3(=tN ,=N,=x2, x3) fails; in R3, because matching3(tN , N, x2, x3) or testingtN =
H{KR}(N,x2) fails, or becauseN ∈ O.

By comparing the definitions ofR◦
3 andR3, we verify that failing inputs coincide for all

messages. If matching or testing inR3 fails, then matching inR◦
3,N fails for all N ∈ A.

Conversely, if matching and testing succeed inR3, then we must havetN = tN ′ for some
N ′ ∈ A ] O. EitherN ∈ O, and the freshness test ontN fails, orN ∈ A, the freshness
test ontN succeeds, and matching succeeds inR◦

3,N .
For eachN ∈ A, there may be several inputs onc that do not (necessarily) fail, with a

race condition on reading the messagel〈〉 in R◦
3,N and reading the messages〈tO〉 in R3,

respectively. Accordingly, we letR′ be the smallest relation that containsR and is closed
by matching input transitions onc that may not fail. We represent pairs inR′ as pairs inR
plus sets of inputs indexed byN ∈ A. We show thatR′ is a weak labelled bisimulation
up to context and deterministic reduction steps (for failed tests, and for reading the state of
the cache).

The conditionR′ ⊆ ≈s follows fromR ⊆ ≈s and the fact that, in the applied pi cal-
culus, input transitions never affect static equivalence between extended processes. In the
case analysis for transitions, we can omit internal communication steps on channelc—
those steps can be decomposed into an output followed by an input. This leaves the fol-
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lowing cases:

(1) Transitions that affectR◦ andR are in direct correspondence, except for the transitions
of R◦

2 and R2 displayed below Lemma 3. For these transitions, we use structural
equivalence, add a fresh nameN toA, and discard the contextE2[ ] on both sides.

(2) Input transitions onc that fail (on either side) leave the abstract state of the protocol
unchanged; they are simulated by an input inP on the other side.

(3) Input transitions onc that may succeed are simulated on both sides using the closure
condition ofR′, by recording an additional input for someN ∈ A.

(4) Inputs on a singlel or onf , following an input onc that may succeed for the nonce
N ∈ A, lead to the same processR4 being triggered on both sides. We discard
processes resulting from any other non-failed input onc for N . (These inputs now
fail.) We discard the replicated input forN in R◦ (now equivalent toP ). We transferN
fromA toO, reflecting the new state of the cache inR3.

Thus,R ⊆ R′ ⊆ ≈. Finally, the equivalence stated in the lemma is included inR, up to
structural equivalence, forA = ∅,O = ∅, R◦ = C[R◦

2], andR = C[R2].

PROOF OFLEMMA 2. This is a corollary of Lemma 1, with auxiliary equivalences to
relate our two variants of JFKr configurations to instances of the more abstract statement
of Lemma 1.

(1) We insert the replicated inputP = !c(z) in parallel withS andS◦. SinceC andX are
not empty, we can use the replicated inputs on Messages 1 and 3 to showS | P ≈ S
andS◦ | P ≈ S◦. Informally, any message onc fails to match (at least) one message
pattern1(. . . ) or 3(. . . ), so it can always be received then silently discarded.

(2) We use simple bisimilarities to reorder the fields in Message 3, substituting the tuples
(NI , xR) and(xI , eI , hI) for the variablesx2 andx3, and to reorder the tuple of terms
in the keyed hash to match the format of Lemma 1.

(3) For eachA ∈ C in turn, Lemma 1 applied with

R4 =
∏

x∈X if x = xR then let κR in . . . (as inRA
3 )

C[ ] =
∏

xR∈X !c(1(NI , xI)).[ ]

yields the equivalenceRA | P ≈ R?A | P whereR?A is

R?A =
∏

xR∈X

!c(1(NI , xI)).
νNR, tR.c〈2(NI , NR, xR, gR, tR)〉.
?c(3(=NI ,=NR, xI ,=xR,=tR, eI , hI)).∏

x∈X if x = xR then (?)

let κR in . . . (as inRA
3 )

that is,R◦A of Lemma 2 with an additional product at line(?). In particular, this
equivalence holds in the evaluation context that gathers the rest ofS◦ | P andS | P
for eachA.

(4) Finally, the evaluation contextDX within S◦ andS binds the variablesxR ∈ X to
pairwise-distinct values, so the test in the product ofR?A at line(?) succeeds exactly
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once, forx = xR, and we can replace eachR?A with R◦A using a simple bisimilar-
ity.

B. PROOFS OF CORRESPONDENCE PROPERTIES

We give proofs of several correspondence properties: Theorem 1, Theorem 3, and part
of Theorem 4. For this purpose we also elaborate on our use of ProVerif, on which the
proofs partly rely. Specifically, we discuss events (used for signaling important protocol
steps) and correspondence properties; most of this material is not specific to JFK. We also
discuss details of our scripts for JFK.

B.1 Events and Normal Traces

In order to keep track of protocol runs precisely using ProVerif, we rely on the insertion
of specific actions, named events, that mark important steps of the protocol under study
but do not otherwise affect its behavior. In the applied pi calculus, events are just message
outputsf〈M〉 wheref is an “event channel” (a name in a particular setE , disjoint from
the set of names of ordinary channels). In labelled transitions, output labels for events use
“event variables”e. Event variables are not allowed to appear in input labelsa(M), so the
adversary cannot use them. (This condition is important so that an eventf〈M〉 does not
revealM to the adversary.) Hence, the execution of the processP after inserting events is
the execution ofP without events, plus the recording of events using labelsf〈e〉 and active
substitutions{e = M}. We extend the conventions on normal traces given in Section 3.6
accordingly:

(1) Event names occur only in outputs; they are neither communicated nor used for inputs
in processes and in transitions.

(2) Names and variables extruded in events do not appear in inputs unless they have also
been sent on other output channels.

B.2 Correspondence Properties Provable by ProVerif

DEFINITION 1. A correspondence propertyp is defined by a series of nested corre-
spondences

p
el = [inj] α

el  

n
el∧

k=1

p
elk

indexed by sequences of indicesl̃ = l1 . . . lm with li ∈ [1, . . . , nl1,...,li−1 ], where[inj] is an
optionalinj marker, and whereα

el is an action.

The normal traceP0
η−→ Q satisfies propertyp if and only if there exists a series of

partial functionsχ
el on indices of actions inη such that:

(1) for every indexι in η, if the actionη(ι) matchesα, then
(a) χ(ι) = ι;
(b) there exists a substitutionσ such that, for all̃l, the actionη(χ

el(ι)) equalsα
elσ;

(c) χ
el(ι) ≤ χ

em(ι) for any l̃ and any prefixm̃ of l̃ (that is, η(χ
el(ι)) occurs before

η(χ
em(ι)));

(2) if p
el has theinj marker, thenχ

el is injective.

The processP0 satisfies propertyp if and only if all normal tracesP0
η−→ Q of P0 satisfyp.
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This definition of correspondence properties generalizes the ones of Blanchet [2002] in
order to capture series of related events in traces. As usual,

∧
is conjunction, while and

inj are our notations for writing correspondence properties. Intuitively, a correspondence
is a tree of actions, and̃l is a path in the tree. The index̃l represents the nesting of corre-
spondence functionsχ

el that record occurrences of actionsα
el in the trace; in particularχ

records the occurrences ofα. Starting fromp, if α appears in the trace, thenα1, . . . , αn

also occur beforehand. When theinj marker is present beforeαi, the correspondence is
required to be injective, that is, a distinctαi must correspond to eachα. Moreover, if for
examplen1 > 0, from p1 we also have thatα11, . . . , α1n1 appear beforeα1. (We rely on
compound correspondences instead of multiple, simpler correspondences so that we can
index the injective functions from the top-level actionα.)

For example, the correspondence property

acceptB〈IDA, ID′
R, saI , saR,Kv〉 inj accept〈acceptB , IDA, ID′

R, saI , saR,Kv〉

means that each output of messageIDA, ID′
R, saI , saR,Kv on channelacceptB is preceded

by a distinct eventaccept〈acceptB , IDA, ID′
R, saI , saR,Kv〉. More formally, there exists

an injective functionχ1 that maps the execution step of the outputacceptB〈IDA, ID′
R, saI ,

saR,Kv〉 to the execution step of the eventaccept〈acceptB , IDA, ID′
R, saI , saR,Kv〉 and

χ1(ι) ≤ ι.
Similarly, using the actions of Theorem 1, the correspondence

$〈NI〉 
(
inj c(2(NI , , , , )) 

(
inj c〈1(NI , )〉 inj initA( , )

))
means that each output$〈NI〉 is preceded by actionsinitA( , ), c〈1(NI , )〉, andc(2(NI ,
, , , )) in that order, and that different outputs$〈NI〉 correspond to different preceding

actions. The correspondence

$〈NI〉 inj c(2(NI , , , , )) ∧ inj c〈1(NI , )〉 ∧ inj initA( , )

means that each output$〈NI〉 is preceded by actionsinitA( , ), c〈1(NI , )〉, andc(2(NI ,
, , , )) in any order, and that different outputs$〈NI〉 correspond to different preceding

actions.
ProVerif can prove such properties when the actionsα

el range over events that include
list membership testsM

el ∈ M ′
el

in addition to regular eventsf
el〈Mel〉. (We say that the

actions of a trace matchM ∈ M ′ simply whenM is an element of the listM ′.)

B.3 ProVerif Scripts for JFK

The ProVerif scripts that we use for JFKr and JFKi are available athttp://www.di.
ens.fr/ ∼blanchet/crypto/jfk.html . Below we also provide a pi calculus de-
finition of the script for JFKr. This process, writtenSe, corresponds to the processS of
Figure 2, except for the differences explained below.

(1) Tagged messages and other tuples rely on primitive constructors and selectors, instead
of equations. Similarly, sets rely on primitive operations instead of equations.

(2) Optionally, we eliminate the cache of anti-DOS cookies (in order to get injective cor-
respondences), as detailed in Lemma 2.

(3) A ProVerif script cannot express parallel compositions of subprocesses parameterized
by sets, as in

∏
A∈C and

∏
xI∈X (because this defines a family of processes, one for
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each setC andX, instead of a single process). So, instead of a static configuration
of compliant principalsA ∈ C, we give an API so that the attacker can allocate and
configure compliant principals. Similarly, the script outputs exponents and exponen-
tials on the restricted channelexp and the parallel compositions

∏
xI∈X in IA and∏

xR∈X in RA are replaced with replicated inputs!exp(dxI
, xI) and!exp(dxR

, xR),
respectively. This is strictly more general, as shown by Lemma 4 below.

We obtain the following definitions:

IA′ = !exp(dxI
, xI).IA

0

RA′ = νKR.(!exp(dxR
, xR).RA

1 | RA
3

′
)

RA
3

′
= !c(3(NI , NR, xI , xR, tR, eI , hI))\∅.

if tR = H{KR}(xR, NR, NI) then if tR fresh then
?exp(dxR

,=xR).
let κR in . . . (as inRA

3 )

Se = νexp.νcp.

( !Dx[getexp〈x〉.!exp〈dx, x〉]
| !PKA[ νconnectA, acceptA, initA, channelSA

I .

getprinc〈IDA, initA, acceptA, connectA, channelSA
I 〉.

channelSA
I (SA

I ).
princ〈KA

− , IDA, initA, acceptA, connectA, SA
I 〉.

( !cp〈IDA〉 | IA′ | RA′ ) ])

The scriptSe uses an event channelprinc. Informally, we have one eventprinc〈KA
− ,

IDA, initA, acceptA, connectA, SA
I 〉 for every compliant principalA ∈ C. In addition, we

send all identitiesIDA of compliant principalsA ∈ C on a restricted channelcp. In some
proofs, auxiliary processes use these messages to test whether an identity corresponds to a
compliant principal ofC, by testing equality with any value input fromcp.

For any given JFKr configurationS parameterized by the setsC, X, and(SA
I )A∈C , we

define an “initialization” trace forSe that yields a similar configuration, using a series of
labels(C, X) = (ηx)x∈X(η′A)A∈C(η′′A)A∈C where

ηx = getexp〈x〉
η′A = getprinc〈IDA, initA, acceptA, connectA, channelSA

I 〉
η′′A = channelSA

I (SA
I ).princ〈KA

− , IDA, initA, acceptA, connectA, SA
I 〉

and where(ηx)x∈X is the concatenation ofηx for all x ∈ X, and similarly for(η′A)A∈C
and(η′′A)A∈C . Hence, we allocate all principalsA ∈ C, then provide all their setsSA

I , in
order to enable those sets to include cross-references to compliant principals.

Our next lemma relates the traces of the extended processS to traces of the scriptSe

that include initialization:

LEMMA 4. For every configurationS and normal traceS η−→ S ′, there exists a normal

traceSe (C,X)−−−−→ Q
ηe

−→ Q′ withS ′ ≈s Q′ such that the actionsηe are those inη interleaved
with events, andηe does not containprinc events.
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An analogous statement holds forS◦ instead ofS and for a script without cache instead
of Se, as well as for scripts with additional events inIA′ andRA′.

PROOF. We detail a processQ obtained after running the traceSe (C,X)−−−−→ Q.

Q = νexp.νcp.DX [PKA1 [. . . PKAn [
(

∏
x∈X !exp〈dx, x〉

|
∏

A∈C( !cp〈IDA〉 | IA′ | RA′ )
| !Dx[getexp〈x〉.!exp〈dx, x〉]
| !PKA[ νconnectA, acceptA, initA, channelSA

I .

getprinc〈IDA, initA, acceptA, connectA, channelSA
I 〉.

channelSA
I (SA

I ).
princ〈KA

− , IDA, initA, acceptA, connectA, SA
I 〉.

( !cp〈IDA〉 | IA′ | RA′ ) ])]]]

To simulate the normal traceS η−→ S ′, we rely only on the processes in the first two
products, particularlyIA′ andRA′, which closely mirrorIA andRA within S. The main
difference is the introduction of a communication step on restricted channelgetexp to
dynamically binddx, x instead of relying on a static product

∏
x∈X .

The proof is easily adapted toS◦ and other variants of the script (without cache, with
additional actions), as these variants do not interfere with the initialization trace.

B.4 Extending Correspondences from Events to Actions

Lemmas 5 and 8 are not specific to JFK. Lemma 5 can be used to order series of events
and actions for a given protocol, depending only on the structure of the protocol. Lemma 8
allows us to infer a correspondence on actions from a correspondence on events. Lemmas 6
and 7 are more specific to JFK, since they depend on the interface for creating compliant
principals, but they could also be adapted to other protocols.

The next lemma states that, if a protocolP0 syntactically contains a series of nested
actionsα1, . . . , αn with no replication between them, then every actionαn that occurs in
a trace ofP0 is preceded by a series of actionsα1, . . . , αn−1. The last two hypotheses
of this lemma guarantee that no other action inP0 can be an instance ofαn. In this and
subsequent lemmas, we associate with each patternX the open term obtained by replacing
all subpatterns of the form=M with M .

LEMMA 5. LetP0 be a process of the formC1 [α1σ.C2[α2σ . . . Cn[αnσ.P ]]] where

—C1 is any context;C2, . . . ,Cn are contexts with no replication above the hole;

—for all i ≤ n, eitherαi = ci〈Mi〉, and we letα′i = αi; or αi = ci(Xi), and we let
α′i = ci(Mi) whereMi is the term associated withXi;

—for all j ≤ i ≤ n, Cj does not bind the names ofαi;

—for all i < j ≤ n, Cj does not bind the names and variables ofαiσ;

—all output channels inP0 are names (not variables);

—αn is an output action;cn does not occur elsewhere as output channel.

ThenP0 satisfies the correspondence propertyα′n  (inj . . . (inj α′2  inj α′1)).
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PROOF. We show the following invariant: ifP0
η−→ Q is a normal trace, thenQ ≡ Q′

for someQ′ of the form

C ′′[αkσjk.Ck+1,j,k[αk+1σjk . . . Cnjk[αnσjk.Pjk]]
]k∈{1,...,n},j∈{1,...,lk}

where

—C ′′ is any context (withl1 + · · · + ln holes) that contains no replication above the
l2 + · · · + ln holes with indicesk, j such thatk ≥ 2; Ci′jk is any context with no
replication above the hole;

—for all i, i′, j, k such thatk < i′ ≤ i ≤ n andj ≤ lk, C ′′ andCi′jk do not bind the
names ofαi;

—for all i, j, k such thati < k ≤ n andj ≤ lk, C ′′ does not bind the names and variables
of αiσjk ; for all i, i′, j, k such thatk < i′ ≤ n, j ≤ lk, andi < i′, Ci′jk does not bind
the names and variables ofαiσjk;

—all output channels inQ′ are names (not variables);
—all other occurrences ofcn as output channel inQ′ are in the “then” branch of tests that

fail (that is, tests of the formif M1 = M2 then P whereM1 andM2 are closed terms
andΣ ` M1 6= M2);

—there existn− 1 injective functions(χi)i<n that map all indices of actionsα′nσ in η to
indices of actionsα′iσ in η such that, for allι, χ1(ι) < . . . < χn−1(ι) < ι; there exist
n − 1 injective functions(χ′i)i<n that map all indicesj, k such thati < k ≤ n and
j ≤ lk to indices of actions inη such thatχ′i(j, k) is the index of an actionα′iσjk in η,
χ′1(j, k) < . . . < χ′k−1(j, k), and the images of allχi andχ′i are pairwise disjoint.

The proof is by induction on the traceP0
η−→ Q, starting withP0 = Q for l1 = 1 and

lk>1 = 0. In the inductive case, for eachk ≤ n, the contextC ′′ haslk holes filled with
processes of the formαkσjk.R.

—When we unfold a replication ofC ′′ above a hole filled with a process of the form
α1σj1.R, we increasel1 by one.

—When we execute an actionck〈M〉 by reducingαkσjk for k < n, we decreaselk by
one, increaselk+1 by one, and put the contextCk+1,j,k in C ′′. The remaining process
is indexedlk+1, k + 1. We let σlk+1,k+1 be a substitution equal toσjk (modulo the
equational theory and the frame ofQ′) such that, after the reduction,C ′′ does not bind
the variables and names ofα1σlk+1,k+1, . . . , αkσlk+1,k+1 = ck〈M〉. (This is possible
because the variables and names ofM are not bound by the contextC ′′ obtained after
reduction.) The functionχ′k is extended so thatχ′k(lk+1, k+1) is the index of the action
ck〈M〉 = α′kσlk+1,k+1 in η. For eachi < k, the domain ofχ′i is reindexed fromj, k
before the reduction tolk+1, k + 1 after the reduction.

—When we execute an actionck(M) by reducingαkσjk for k < n, andM is an instance
of Mkσjk, we decreaselk by one, increaselk+1 by one, and put the test in the syntactic
sugar forαkσjk and the contextCk+1,j,k in C ′′. The remaining process is indexed
lk+1, k + 1. We let σlk+1,k+1 be a substitution equal toσjk (modulo the equational
theory and the frame ofQ′) on the domain ofσjk such thatMkσlk+1,k+1 = M and
C ′′ does not bind the variables and names ofα1σlk+1,k+1, . . . , αkσlk+1,k+1. (This is
possible because the variables and names ofM are not bound byC ′′.) The functionχ′k
is extended so thatχ′k(lk+1, k + 1) is the index of the actionck(M) = α′kσlk+1,k+1
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in η. For eachi < k, the domain ofχ′i is reindexed fromj, k before the reduction to
lk+1, k + 1 after the reduction.

—When we execute an actionck(M) by reducingαkσjk for k < n, andM is not an
instance ofMkσjk, we decreaselk by one, and put the test in the syntactic sugar for
αkσjk and the process that followsαkσjk in C ′′. This transformation adds an occurrence
of cn as output channel inC ′′, in the “then” branch of a test that fails.

—When we executecn〈M〉, we must reduceαnσjn for somej since all other occurrences
of cn as output channel inQ′ are in the “then” branch of tests that fail. In this case,
we decreaseln by one, and put the processPjn in the contextC ′′. For all i ≤ n, the
functionsχi are extended byχi(ι) = χ′i(j, n) whereι denotes the index of the action
αnσjn in η, andχ′i(j, n) becomes undefined after the execution ofαnσjn.

—When we execute another input or output transition, the reduced input or output occurs
in C ′′, so the contextC ′′ is modified. In the case of an input transition, variables may
be instantiated; this instantiation preserves the invariant.

—When we execute an internal communication, the communication channel is not free
in Q′ by definition of normal traces, so the reduced input and output are notαkσjk, so
they occur inC ′′. We can then apply the same reasoning as in the previous case.

—When we execute a conditional, we decreaselk for each context in the branch of the
conditional that is discarded by the reduction.

The lemma follows from the existence ofχ1, . . . , χn−1 for all P0
η−→ Q.

The next lemma treats events that record the unfolding of compliant principalsA ∈ C.

LEMMA 6. LetQ be a process of the form

Q ≡ νcp.C
[∏

A∈C !cp〈IDA〉
|
∏

A∈C C ′
A[cA〈ID′

A,MA〉.(PA | cp(=ID′
A).f〈cA, ID′

A,MA〉)]
]

where

—C is an evaluation context;C ′
A is any context for eachA ∈ C;

—f is an event channel;f andcp do not occur anywhere else;

—all output channels are names;

—for all A ∈ C, cA does not occur anywhere else as output channel, andC andC ′
A do not

bind cA.

Assume that we have a normal traceQ
ηe

−→ Q′, with no internal communication step on
channelcp. Then there is an extended normal trace

Q
ηe

−→ Q′ f〈c1,ID′1,M1〉...f〈cn,ID′n,Mn〉−−−−−−−−−−−−−−−−−−→ Q′′

and an injective functionχ that maps all indices of actions inηe matchingcA〈IDB ,M〉
with B ∈ C to indices of the additional actionsf〈cA, IDB ,M〉.

Relying on correspondence properties of the formf〈c, ID′,M〉 . . . for the extended
normal trace, we can thus establish properties of the form “for each actionc〈IDB ,M〉 such

thatB ∈ C, . . . ” for the traceQ
ηe

−→ Q′.
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PROOF. With a proof similar to that of Lemma 5, we show the following invariant:

Q′ ≡ νcp.C0

[∏
A∈C !cp〈IDA〉

| C ′ [ci〈ID′
i,Mi〉.(Pi | cp(=ID′

i).f〈ci, ID
′
i,Mi〉)

]1≤i≤k

|
∏

k<i≤k+l cp(=ID′
i).f〈ci, ID

′
i,Mi〉

]
where

—C0 is an evaluation context;C ′ is a context withk holes;
—f andcp do not occur anywhere else;
—all output channels are names;
—ci = cA for someA ∈ C, for eachi = 1 . . . k + l; for all A ∈ C, cA does not occur

anywhere else as output channel, andC0 andC ′ do not bindcA;
—there exists an injective functionχ′′ mapping indices of actionscA〈ID′,M〉 in η to

indicesi such thatk < i ≤ k + l, cA = ci, ID′ = ID′
i, andM = Mi.

In Q′, thek processes within contextC ′ keep track of all instances of outputs oncA for
all A ∈ C; the l processes in the final product keep track of all inputs oncp in evaluation
context (released after communications oncA in C ′).

Using the invariant, we complete the proof as follows. For eachcA〈IDB ,M〉 that occurs
in η at stepι, χ′′(ι) is an indexi such thatk < i ≤ k + l, cA = ci, IDB = ID′

i, and
M = Mi, so the processcp(=IDB).f〈cA, IDB ,M〉 occurs inQ′. If B ∈ C, then!cp〈IDB〉
also occurs inQ′ and we reduceQ′ into Q′′ by executing

!cp〈IDB〉 | cp(=IDB).f〈cA, IDB ,M〉 →→ !cp〈IDB〉 | f〈cA, IDB ,M〉
νe.f〈e〉−−−−→ !cp〈IDB〉 | {e = (cA, IDB ,M)}

in some evaluation context. We letχ mapι to the index of the actionf〈cA, IDB ,M〉.
The next lemma exploits the structure of the interface for creating compliant principals

and theprinc events to infer a correspondence property with fixed compliant principals
A1, . . . , An from a correspondence property in which compliant principals are represented
by variables.

LEMMA 7. Suppose thatSe (C,X)−−−−→ Q and thatSe satisfies the correspondence prop-
erty α  p1 ∧

∧n
i=1 princ〈Ki

−, IDi, initi, accepti, connecti, Si
I〉 whereα and p1 con-

tain only events but noprinc events,α contains no function symbol with ProVerif equa-
tions, and, for eachi ≤ n, eitherKi

− or IDi or initi or accepti or connecti occurs inα.
Let Q′ be Q after replacing theprinc events and their guarded processes with0. For
each Ã = (A1, . . . , An) ∈ Cn, the processQ′ satisfies the correspondence property
ασ

eA  p1σ eA, whereσ
eA =

∏n
i=1({Ki

− = KAi
− } | {IDi = IDAi

} | {initi = initAi} |
{accepti = acceptAi} | {connecti = connectAi} | {Si

I = SAi

I }).

PROOF. Assume thatp1 is of the formp
el = [inj] α

el  
∧n

el

k=1 p
elk. Let Q′ η−→ be a

normal trace ofQ′. ThenQ
η−→ is also a normal trace ofQ without princ events, hence

Se (C,X)−−−−→ Q
η−→ is a normal trace ofSe, so it satisfies the correspondence propertyα  

p1 ∧
∧n

i=1 princ〈Ki
−, IDi, initi, accepti, connecti, Si

I〉. Thus, since(C, X) contains only
princ events andη contains noprinc events, there exists a series of partial functionsχ

el
on indices of actions inη such that:
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(1) for every indexι in η, if the actionη(ι) matchesασ
eA, then it matchesα, so

(a) χ(ι) = ι;
(b) there exists a substitutionσ′ such that, for all̃l empty or beginning with 1, the

actionη(χ
el(ι)) equalsα

elσ
′ and, for alli ≤ n, the action(C, X)(χi+1(ι)) equals

princ〈Ki
−, IDi, initi, accepti, connecti, Si

I〉σ′; so by the form ofprinc events in

(C, X), there existsÃ′ = (A′
1, . . . , A

′
n) such thatprinc〈Ki

−, IDi, initi, accepti,
connecti, Si

I〉σ′ = princ〈Ki
−, IDi, initi, accepti, connecti, Si

I〉σ eA′ , hence there
existsσ′′ such thatσ′ = σ

eA′σ
′′; so,ασ

eA′σ
′′ matchesασ

eA; soAi = A′
i for all

i ≤ n, since for eachi ≤ n, Ki
− or IDi or initi or accepti or connecti occurs inα;

so for all l̃ empty or beginning with 1, the actionη(χ
el(ι)) equalsα

elσ
′ = α

elσ eAσ′′;

(c) χ
el(ι) ≤ χ

em(ι) for any l̃ and any prefix̃m of l̃;
(2) if p

el has theinj marker, thenχ
el is injective.

Therefore, by definition,Q′ satisfies the correspondence propertyασ
eA  p1σ eA.

The next lemma allows us to infer a correspondence on input and output actions from a
correspondence on events proved by ProVerif. The root action of the inferred correspon-
dence must still be the same event as in the correspondence proved by ProVerif; we use
Lemma 5 or Lemma 6 to change the root action.

LEMMA 8. Let P0 be a process. Consider a partial functionφ from events to actions
defined by a finite number of cases of one of the three following forms:

—φ(α) = α.

—φ(α) = α′ = c(M), such that all variables ofα′ also occur inα, α contains no function

symbol with ProVerif equations, and eitherP0 = C ′′[c(Xσj).Cj [ασj .Pj ]
]j∈{1,...,l}

or

P0 = C ′′[?c(Xσj).Cj [ασj .Pj ]
]j∈{1,...,l}

whereM is the term associated with the pat-
tern X; C ′′ is a context that does not bind the names ofα andα′; eachCj is a context
that consists of any number of tests above the hole; and no other event inP0 unifies
with α.

—φ(α) = α′ = c〈M〉, such that all variables ofα′ also occur inα, α contains no function

symbol with ProVerif equations, andP0 = C ′′[ασj .α
′σj .Pj

]j∈{1,...,l}
whereC ′′ does

not bind the names ofα andα′ and no other event inP0 unifies withα.

We assume that, when two casesφ(α1) = α′1 andφ(α2) = α′2 occur in the definition ofφ,
α1 andα2 have different event channels. We extendφ byφ(ασ) = α′σ if φ(α) = α′, and
extendφ to correspondences by applyingφ to each action in the correspondence.

Letp be a correspondence with events in the domain ofφ and such thatφ(α0) = α0 for
the root actionα0 of p. If P0 satisfiesp, thenP0 also satisfiesφ(p).

PROOF. We consider a subsetT of the normal traces ofP0 such that

—if α is an event such thatφ(α) is an input action, andα is executed, then the input action
φ(α) occurs in the trace just beforeα (with only internal actions in between);

—if α is an event such thatφ(α) is an output action, andα is executed, then the output
actionφ(α) occurs in the trace just afterα (with only internal actions in between).

SinceP0 satisfiesp, all traces ofP0 in T satisfyp and, by construction ofT , these traces
also satisfyφ(p). Let us now consider any normal traceP0

η−→ Q of P0. By commuting
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internal actions and events with other actions, we build a normal traceP0
η′−→ Q′ in T such

that the actions in the image ofφ occur in the same order inη′ as inη.
For each caseφ(α) = α′ of the definition ofφ with α′ 6= α, starting from a trace

P0
η−→ Q, we build a traceP0

η′′−−→ Q′′ such thatη′′ is equal toη except that instances ofα
may have been moved or deleted, and every instance ofα in the resulting trace satisfies the
conditions for being inT . The construction distinguishes input cases and output cases:

—Caseφ(α) = α′ = c(M), such that all variables ofα′ also occur inα, α contains no

function symbol with ProVerif equations, andP0 = C ′′[c(Xσj).Cj [ασj .Pj ]
]j∈{1,...,l}

whereM is the term associated with the patternX; C ′′ is a context that does not bind the
names ofα andα′; eachCj is a context that consists of any number of tests above the
hole; and no other event inP0 unifies withα. (The case?c(Xσj) instead ofc(Xσj) can
be handled in a similar way, though the syntactic sugar for?c(Xσj) requires keeping
track of additional reductions after the input.) For each actionα′′ = ασ′′ that occurs

in η, we show thatφ(α′′) is executed beforeα′′ in η, and we build a traceP0
η′′−−→ Q by

executing internal actions followed byα′′ just afterφ(α′′). To this end, we establish the
following invariant by induction on the length of the traceP0

η−→ Q (as in Lemma 5): if
P0

η−→ Q, then

Q ≡ C ′′[c(Xσj).Cj [ασj .Pj ]
]j∈{1,...,l}[

C ′
j [ασ′j .P

′
j ]

]j∈{1,...,l′}

where
—C ′′ is a context (withl + l′ holes) that does not bind the names ofα andα′, with only

restrictions and parallel compositions above thel′ holes filled withC ′
j [ασ′j .P

′
j ];

—C ′′ does not bind the variables and names ofc(Xσ′j) for anyj ≤ l′;
—Cj for all j ≤ l andC ′

j for all j ≤ l′ are contexts that consist of any number of tests
above the hole;

—all other events inQ that unify withα are in the “then” branch of tests that fail;

—there exists a traceP0
η′′−−→ Q such thatη′′ is equal toη except that some instances

of α have been moved so that the actionsασ′ for anyσ′ are immediately preceded
by α′σ′; there exists an injective functionχ that maps each indexj ≤ l′ to the index

of an actionc(Mσ′j) in the traceP0
η′′−−→ Q not immediately followed by an instance

of α in η′′; and there exists an injective functionχ′ that maps each indexj ≤ l′

to the index of the transition that putsC ′
j [ασ′j .P

′
j ] in evaluation context, such that

χ(j) ≤ χ′(j) and all steps betweenχ(j) (excluded) andχ′(j) (included) are silent
reduction steps.

For any step that does not involve any process in thel′ last holes ofC ′′, we carry over the
same step to theη′′ trace. In particular, when an inputc(Xσj) in one of the firstl holes
is reduced, we incrementl′, letC ′

j be an instance ofCj guarded by the pattern-matching
test introduced by the syntactic sugar for the patternX, and setχ(l′) andχ′(l′) to the
current index.
For j ≤ l′, if a test inC ′

j succeeds, we updateC ′
j by removing this test; if a test inC ′

j

fails, we decrementl′; if C ′
j is empty and the eventασ′j is executed, we decrementl′.

For any step of one of these three forms, the step commutes with all preceding steps in
theη′′ trace, up to the stepχ′(j) that putsC ′

j [ασ′j .P
′
j ] in evaluation context; we move

the new step there, and incrementχ′(j) if this step is a test that succeeds.
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—Caseφ(α) = α′ = c〈M〉 such that all variables ofα′ also occur inα, α contains no

function symbol with ProVerif equations, andP0 = C ′′[ασj .α
′σj .Pj

]j∈{1,...,l}
where

C ′′ does not bind the names ofα andα′ and no other event inP0 unifies withα.

We build a traceP0
η′′−−→ Q′′ by delaying the execution of all actionsα′′ = ασ′′ that

occur inη until just before the execution of the correspondingφ(α′′), if that correspond-

ing φ(α′′) is executed inη. Otherwise,α′′ is not executed inP0
η′′−−→ Q′′. To this end,

we establish the following invariant by induction on the length of the traceP0
η−→ Q: if

P0
η−→ Q, then

Q ≡ C ′′[ασj .α
′σj .Pj

]j∈{1,...,l}[
α′σ′j .P

′
j

]j∈{1,...,l′}

where no other event inP0 unifies with α; C ′′ is a context (withl + l′ holes) that
does not bind the names ofα andα′, with only restrictions and parallel compositions

above thel′ holes filled withα′σ′j .P
′
j ; there exists a traceP0

η′′−−→ Q′′ such thatQ′′ ≡
C ′′[ασj .α

′σj .Pj

]j∈{1,...,l}[
ασ′j .α

′σ′j .P
′
j

]j∈{1,...,l′}
whereη′′ is equal toη except that

some instances ofα have been moved or deleted so that the actionsασ′ for anyσ′ are
immediately followed byα′σ′.

(Whenασj is reduced inP0
η−→ Q, we do not execute that reduction inP0

η′′−−→ Q′′.

Whenα′σ′j is reduced inP0
η−→ Q, we reduceασ′j andα′σ′j in P0

η′′−−→ Q′′. For all other

reductions, we execute the same reduction inP0
η−→ Q andP0

η′′−−→ Q′′.)

After applying this construction for all cases, the resulting traceP0
η′−→ Q′ is in T , so

P0
η′−→ Q′ satisfiesφ(p). The actions in the image ofφ occur in the same order inη andη′,

soP0
η−→ Q satisfiesφ(p), and thusP0 satisfiesφ(p).

B.5 Proofs for JFK (Theorems 1, 3, and part of 4)

We detail the proofs of Theorems 1, 3, and the first point of Theorem 4.

PROOF OFTHEOREM 1. Theorem 1 is a direct consequence of Lemma 5, in combina-
tion with Lemma 2 to remove the cache. For the first part of Theorem 1, Lemma 5 applied
to S$ yields the correspondence

$〈NI〉 
(
inj c(2(NI , , , , )) 

(
inj c〈1(NI , )〉 inj initA( , )

))
For the second part of Theorem 1, letS◦$ be S◦ with an additional output$〈NI , NR〉
before the Diffie-Hellman computation ofκR in R◦A. Lemma 5 applied toS◦$ yields the
correspondence

$〈NI , NR〉 
(
inj c(3(NI , NR, , , , , )) (

inj c〈2(NI , NR, , , )〉 inj c(1(NI , ))
))

A variant of Lemma 2 (with the additional$ outputs) shows thatS◦$ andS$ have the same
normal traces, so the same correspondence holds forS$.

PROOF OFTHEOREM 3. The proof of this theorem and of the first point of Theorem 4
uses the following technique. Since ProVerif cannot prove correspondences directly on
input and output actions, we instrument the ProVerif script with events after each relevant

ACM Journal Name, Vol. V, No. N, January 2007.



· 41

input and before each relevant output. We use ProVerif to show that the obtained script
satisfies a correspondence propertyp on events. Next, we consider a traceS η−→ S ′ of

the systemS. By Lemma 4, we obtain a corresponding traceSe (C,X)−−−−→ Q
ηe

−→ S ′′ of
the ProVerif script. We show by Lemma 7 that the processQ′, obtained by removing the
princ events and processes under them inQ, satisfies an adapted correspondencep′. By
Lemma 8, we infer thatQ′ also satisfies a correspondenceφ(p′) in which some events have
been replaced with input or output actions (if needed). By Lemma 5 or 6, the root event of
the correspondenceφ(p′) is executed, so, by the correspondenceφ(p′), we conclude that
the desired actions have been executed in the trace.

(1) The proof of the first part of Property 1 relies on a scriptSe instrumented with an
eventaccept〈acceptA, IDI , IDR′ , saI , saR,Kv〉 just beforeacceptA〈IDI , IDR′ , saI ,
saR,Kv〉 in RA

3 . ProVerif shows thatSe satisfies the correspondence property

accept〈accept, ID1, IDR′ , saI , saR,Kv〉 
princ〈K−, ID, init, accept, connect, SI〉 ∧ (ID1 ∈ SI)

(1)

For some givenC, X, and(SA
I )A∈C , assume that we have a normal traceS η−→ S ′. By

Lemma 4, we also have a normal traceSe (C,X)−−−−→ Q
ηe

−→ S ′′ with S ′′ ≈s S ′ where the
actionsηe are those inη interleaved with events andηe does not containprinc events.
Let Q′ be Q after replacing theprinc events and their guarded processes with0.
By the correspondence property (1) and Lemma 7,Q′ satisfies the correspondence
property

accept〈acceptB , ID1, IDR′ , saI , saR,Kv〉 ID1 ∈ SB
I (2)

For anyB ∈ C, if acceptB〈IDA, ID′
R, saI , saR,Kv〉 appears inη, it also occurs in

(C, X)ηe. We apply Lemma 5 to the processQ. Since all output channels ofQ are
names andacceptB is not used anywhere else as a channel,Q satisfies

acceptB〈IDA, ID′
R, saI , saR,Kv〉 inj accept〈acceptB , IDA, ID′

R, saI , saR,Kv〉

Henceaccept〈acceptB , IDA, ID′
R, saI , saR,Kv〉 occurs inηe, which is also a trace

of Q′. So, by the correspondence property (2),IDA ∈ SB
I .

(2) The proof of the second part of Property 1 relies on a scriptSe, without cache and
with an extra eventinit〈initA, ID′

R, saI〉 just after the inputinitA in IA
0 and an ex-

tra processcp(= IDI).accepthonest〈acceptA, IDI , ID
′
R, saI , saR,Kv〉 just after the

output onacceptA in RA
3 , in parallel with the continuation that sends Message 4.

ProVerif shows thatSe satisfies the correspondence property

accepthonest〈accept2, ID1, ID
′
R, saI , saR,Kv〉 

inj init〈init1, ID′
R, saI〉

∧ princ〈K1
−, ID1, init1, accept1, connect1, S1

I 〉
∧ princ〈K2

−, ID2, init2, accept2, connect2, S2
I 〉

(3)

For some givenC, X, and(SA
I )A∈C , assume that we have a normal traceS η−→ S ′. By

Lemma 2, we have a normal traceS◦ η−→ S ′◦. By Lemma 4, we also have a normal

traceSe (C,X)−−−−→ Q
ηe

−→ S ′′ with no internal communications on channelcp and with

ACM Journal Name, Vol. V, No. N, January 2007.



42 ·

S ′′ ≈s S ′◦. The actionsηe are those inη interleaved with events, andηe does not
containprinc events.
Let Q′ be Q after replacing theprinc events and their guarded processes with0.
By the correspondence property (3) and Lemma 7,Q′ satisfies the correspondence
property

accepthonest〈acceptB , IDA, ID′
R, saI , saR,Kv〉 inj init〈initA, ID′

R, saI〉

By Lemma 8 applied withφ(init〈initA, ID′
R, saI〉) = initA(ID′

R, saI) andφ equal to
the identity onaccepthonest events,Q′ satisfies the correspondence property

accepthonest〈acceptB , IDA, ID′
R, saI , saR,Kv〉 inj initA(ID′

R, saI) (4)

The actionsηe also label a trace ofQ′, Q′ ηe

−→. By Lemma 6 applied toQ′, the trace

Q′ ηe

−→ can be extended with an eventaccepthonest〈acceptB , IDI , ID
′
R, saI , saR,

Kv〉 for eachacceptB〈IDI , ID
′
R, saI , saR,Kv〉 in (C, X)ηe with IDI = IDA for some

A ∈ C. (The lemma is applied withcA = acceptA andf = accepthonest.) By the
correspondence property (4), a distinct preceding inputinitA(ID′

R, saI) occurs in the
extended trace, so inηe since the extended trace adds onlyconnecthonest events,
so inη.

(3) The proof of Property 2 is done similarly, by adding the eventsinit〈initA, ID′
R, saI〉

just after the init message andconnect〈connectA, IDR, ID′
R, saI , saR,Kv〉 just before

the connect message, for the first part, and by addingaccept〈acceptA, IDI , ID
′
R, saI ,

saR,Kv〉 just before the accept message andcp(= IDR).connecthonest〈connectA,
IDR, ID′

R, saI , saR,Kv〉 just after the connect message, for the second part.

PROOF OF FIRST POINT OFTHEOREM 4. The proof is done by considering a scriptSe

without cache and with additional events after inputs and just before outputs:

—init〈initA, ID′
R, saI〉 (added just after the inputinitA) records thatI receives the init

messageID′
R, saI on channelinitA.

—mess1〈IDA, NI , xI , initA, ID′
R, saI〉 (added just before sending Message 1) records that

I sends the message1(NI , xI).
—mess1rec〈IDA, NI , xI〉 (added just after receiving Message 1) records thatR receives

the message1(NI , xI).
—mess2〈IDA, NI , NR, xI , xR, gR, tR〉 (added just before sending Message 2) records that

R sends the message2(NI , NR, xR, gR, tR).
—mess2rec〈IDA, NI , NR, xR, gR, tR, xI , ID

′
R, saI〉 (added just after receiving Message

2) records thatI receives the message2(NI , NR, xR, gR, tR).
—mess3〈IDA, NI , NR, xI , xR, tR, eI , hI , gR, ID′

R, saI ,Kv〉 (added just before sending
message 3) records thatI sends the message3(NI , NR, xI , xR, tR, eI , hI).

—mess3rec〈IDA, NI , NR, xI , xR, tR, eI , hI〉 (added just after?c(3(= NI ,= NR, xI ,
= xR,= tR, eI , hI))) records thatR receives the message3(NI , NR, xI , xR, tR, eI ,
hI).

—accept〈acceptA, IDI , ID
′
R, saI , saR,Kv〉 (added just before sending the accept mes-

sage) records thatR executesacceptA〈IDI , ID
′
R, saI , saR,Kv〉.

—mess4〈IDA, IDI , eR, hR, NI , NR, xI , xR, tR, eI , hI〉 (added just before sending Mes-
sage 4) records thatR sends the message4(eR, hR).
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—mess4rec〈IDA, eR, hR, connectA, IDR, ID′
R, saI , saR,Kv〉 (added after receiving, de-

crypting, and verifying Message 4) records thatI received the message4(eR, hR).
—cp(= IDR).connecthonest〈connectA, IDR, ID′

R, saI , saR,Kv〉 is added just after the
connect message. The event records thatI executesconnectA〈IDR, ID′

R, saI , saR,Kv〉
with A ∈ C andIDR = IDB for someB ∈ C.

We sometimes mention in events more variables than those that occur in the corresponding
input or output. These additional variables allow us to store in the event more information
on the state of the principal, and help ProVerif perform its proof.

Let us define the following actions:

αconnecthonest = connecthonest〈connect1, ID2, ID
′
R, saI , saR,Kv〉

αprinc1 = princ〈 , ID1, init1, accept1, connect1〉
αprinc2 = princ〈 , ID2, init2, accept2, connect2〉

αconnect= connect1〈ID2, ID
′
R, saI , saR,Kv〉

αmess4rec = mess4rec〈ID1, eR, hR, connect1, ID2, ID
′
R, saI , saR,Kv〉

αc(4) = c(4(eR, hR))
αc〈4〉 = c〈4(eR, hR)〉
αmess4 = mess4〈ID2, ID1, eR, hR, NI , NR, xI , xR, tR, eI , hI〉

αaccept= accept2〈ID1, ID
′
R, saI , saR,Kv〉

αaccept = accept〈accept2, ID1, ID
′
R, saI , saR,Kv〉

αmess3rec = mess3rec〈ID2, NI , NR, xI , xR, tR, eI , hI〉
αc(3) = c(3(NI , NR, xI , xR, tR, eI , hI))
αc〈3〉 = c〈3(NI , NR, xI , xR, t′R, eI , hI)〉
αmess3 = mess3〈ID1, NI , NR, xI , xR, t′R, eI , hI , gR, ID′

R, saI ,Kv〉
αmess2rec = mess2rec〈ID1, NI , NR, xR, gR, t′R, xI , ID

′
R, saI〉

αc(2) = c(2(NI , NR, xR, gR, t′R))
αc〈2〉 = c〈2(NI , NR, xR, gR, tR)〉
αmess2 = mess2〈ID2, NI , NR, x′I , xR, gR, tR〉
αmess1rec = mess1rec〈ID2, NI , x

′
I〉

αc(1) = c(1(NI , x
′
I))

αc〈1〉 = c〈1(NI , xI)〉
αmess1 = mess1〈ID1, NI , xI , init1, ID′

R, saI〉
αinit = init〈init1, ID′

R, saI〉
αinit = init1(ID′

R, saI)

ProVerif shows thatSe satisfies the following correspondence property:

αconnecthonest  αprinc2 ∧ αprinc1 ∧ (inj αmess4rec  (inj αmess4  

(inj αaccept  (inj αmess3rec  (inj αmess3  (inj αmess2rec  

(inj αmess2  inj αmess1rec) ∧ (inj αmess1  inj αinit)))))))
(5)
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For some givenC, X, and(SA
I )A∈C , assume that we have a normal traceS η−→ S ′. By

Lemma 2, we have a normal traceS◦ η−→ S ′◦. By Lemma 4, we also have a normal trace

Se (C,X)−−−−→ Q
ηe

−→ S ′′ with no internal communications oncp and withS ′′ ≈s S ′◦, where
the actionsηe are those inη interleaved with events andηe does not containprinc events.

Let Q′ beQ after replacing theprinc events and their guarded processes with0. By
the correspondence property (5) and Lemma 7,Q′ satisfies the correspondence property

αconnecthonestσ  (inj αmess4recσ  (inj αmess4σ  

(inj αacceptσ  (inj αmess3recσ  (inj αmess3σ  (inj αmess2recσ  

(inj αmess2σ  inj αmess1recσ) ∧ (inj αmess1σ  inj αinitσ)))))))

whereσ = {K1
− = KA

−} | {ID1 = IDA} | {init1 = initA} | {accept1 = acceptA} |
{connect1 = connectA} | {S1

I = SA
I } | {K2

− = KB
−} | {ID2 = IDB} | {init2 =

initB} | {accept2 = acceptB} | {connect2 = connectB} | {S2
I = SB

I }. We apply
Lemma 8 withφ(αmess4recσ) = αc(4)σ, φ(αmess4σ) = αc〈4〉σ, φ(αacceptσ) = αacceptσ,
φ(αmess3recσ) = αc(3)σ, φ(αmess3σ) = αc〈3〉σ, φ(αmess2recσ) = αc(2)σ, φ(αmess2σ) =
αc〈2〉σ, φ(αmess1recσ) = αc(1)σ, φ(αmess1σ) = αc〈1〉σ, φ(αinitσ) = αinitσ, andφ equal
to the identity onconnecthonest events. ThenQ′ satisfies the correspondence property

αconnecthonestσ  (inj αc(4)σ  (inj αc〈4〉σ  

(inj αacceptσ  (inj αc(3)σ  (inj αc〈3〉σ  (inj αc(2)σ  

(inj αc〈2〉σ  inj αc(1)σ) ∧ (inj αc〈1〉σ  inj αinitσ)))))))

ProVerif cannot show automatically that Message 1 is received byR after it is sent byI, but
a simple manual argument shows it: the nonceNI is created just before sending Message 1,
and appears in the Message 1 received byR, so it must indeed have been received afterI
has sent it. SoQ′ satisfies the correspondence property

αconnecthonestσ  (inj αc(4)σ  (inj αc〈4〉σ  

(inj αacceptσ  (inj αc(3)σ  (inj αc〈3〉σ  (inj αc(2)σ  

(inj αc〈2〉σ  (inj αc(1)σ  (inj αc〈1〉σ  inj αinitσ)))))))))
(6)

The actionsηe also label a trace ofQ′, Q′ ηe

−→. By Lemma 6 applied toQ′, the trace

Q′ ηe

−→ can be extended with an eventconnecthonest〈connectA, IDR, ID′
R, saI , saR,Kv〉

for eachconnectA〈IDR, ID′
R, saI , saR,Kv〉 with A ∈ C andIDR = IDB for someB ∈ C.

(The lemma is applied withcA = connectA andf = connecthonest.)
In the extended trace, for eachconnectA〈IDB , ID′

R, saI , saR,Kv〉 with A ∈ C and
B ∈ C, we haveconnecthonest〈connectA, IDB , ID′

R, saI , saR,Kv〉. Then the corre-
spondence property (6) shows that the actions required by Theorem 4 have been executed
in order in the extended trace, therefore also inηe since the extended trace adds only
connecthonest events, and therefore inη, sinceηe adds only events toη.

C. OTHER PROOFS OF SECRECY, AUTHENTICITY, AND DENIABILITY

Finally, we give proofs of the remaining results of Section 7 and the theorem of Section 8.
These rely on an analysis of configurations.
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I0 = !initA(ID′
R, saI).I1

I1 = νNI .(ϕI | c〈1(NI , xI)〉.I2)
I2 = c(2(=NI , NR, xR, gR, tR)).I3

I3 = νKa, Ke, Kv, sI , eI , hI .(κI | σI | c〈3(NI , NR, xI , xR, tR, eI , hI)〉.I4)
I4 = c(4(eR, hR)).if H{Ka}(r, eR) = hR then I5

I5 = νIDR, saR, sR.(τI | if V{IDR}(sR, (NI , NR, xI , xR)) then I5a)

I5a = connectA〈IDR, ID′
R, saI , saR, Kv〉

I ′5 = ϕI | νsI , sR, Ka, Ke.(κI | σI | τI)

ϕI = νN.{NI = N}
κI =

Q
u=a,e,v{Ku = H{xR ˆdxI}(NI , NR, u)}

σI = {sI = S{KA
−}(NI , NR, xI , xR, gR)} |

{eI = E{Ke}(IDA, ID′
R, saI , sI)} |

{hI = H{Ka}(i, eI)}
τI = {IDR, saR, sR = D{Ke}(eR)}

R1 = !c(1(NI , xI)).R2

R2 = νNR, tR.
�
ϕR | c〈2(NI , NR, xR, gR, tR)〉.R3[l〈〉]

�

R3[ ] = νl.([ ] | !c(3(=NI , =NR, xI , =xR, =tR, eI , hI)).l().R3a)
R3a = νKa, Ke, Kv.(κR | if H{Ka}(i, eI) = hI then R′′

3b)
R3b = νIDI , ID′

R, saI , sI .
(τR | if IDI ∈ SA

I then if V{IDI}(sI , (NI , NR, xI , xR, gR)) then R3c)

R3c = acceptA〈IDI , ID′
R, saI , saR, Kv〉.R4

R4 = νsR, eR, hR.(σR | c〈4(eR, hR)〉)
R′

4 = ϕR | νsI , sR, Ka, Ke.(κR | τR | σR)

ϕR = νN.{NR = N} | νN.{tR = N}
κR =

Q
u=a,e,v{Ku = H{xI ˆdxR}(NI , NR, u)}

σR = {sR = S{KA
−}(NI , NR, xI , xR)} |

{eR = E{Ke}(IDA, saR, sR)} |
{hR = H{Ka}(r, eR)}

τR = {IDI , ID′
R, saI , sI = D{Ke}(eI)}

S[ ] = DX

�
PKC �Q

A∈C(I
A | RA) | [ ])

��

IA =
Q

xI∈X I0

RA =
Q

xR∈X R1

PKC [ ] = ν(KA
−)A∈C .(

Q
A∈C{IDA = Pk(KA

−)} | [ ])

Dx[ ] = νdx.({x = g ˆdx} | [ ])
DX [ ] = Dx1 [. . . Dxn [ ]] whereX = {x1, . . . , xn}

Fig. 3. Linearized JFKr protocol, with auxiliary notations for the session state
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C.1 Running Configurations: Definition

We set up notations to decompose arbitrary tracesS◦ η−→ S ′ into parallel sessions with an
explicit representation of their respective states. (The configurationS◦ is the sequential
variant of JFKr, obtained by Lemma 2.) Figure 3 restates the definition of the protocol
without the responder cache, with auxiliary definitions for various sub-processes. (For
convenience, some active substitutions appear in guarded contexts, always under a restric-
tion on their domain; they stand for ordinary substitutions applied within the scope of the
restriction.) With these notations,S◦ ≡ S[0].

Since both roles of the protocol are now sequential, we index the state for each session
in each role using a series of action labels that represent the messages processed and gen-
erated so far. In a few cases, these labels do not entirely determine the internal state of
the session (for instance the internal choice of an exponentialxI ∈ X when receiving an
initA message); in those cases, we annotate the trace with that state (for instance writing
((xI)) after theinitA action). In the state, we also do not keep track of unimportant inter-
nal reduction steps, such as tests that will always fail or succeed in their given evaluation
contexts.

We first describe abstract configurations obtained by interleaving the resulting extended
traces, with no formal correspondence withS ′ at this stage. Then we study the equational
properties of these abstract configurations, as a prerequisite to the equivalences of Theo-
rem 2 and to the case analysis on transitionsS◦ η−→ S ′, which depends on equality tests
on terms. In particular, we show how to simplify the final state of sessions between com-
pliant principals, which involve exponentials inX. By induction onη, we then show that
every normal traceS◦ η−→ S ′ is an interleaving of extended traces that matchη, leading to
S ′′ ≈ S ′ (up to structural equivalence and deterministic internal steps).

In the following definition, the cases are numbered according to the messages to which
they pertain. For example, for the initiator, case (1) corresponds to the session state just
before Message 1; case (×3) corresponds to a session that fails before Message 3, after
a bad Message 2. For the responder, we distinguish cases (3), (3,1), (3,2), . . . . The case
(3, n) corresponds to a responder that has receivedn instances of Message 3, and has not
selected one of them yet. The case (3a) corresponds to a responder just after the selection
of one of those instances. We identify (3,0) and (3).

DEFINITION 2 (EXTENDED TRACES). For the initiator, extended traces range over:

(1)
initA(ID′R,saI)((xI))−−−−−−−−−−−−→ for anyA ∈ C, xI ∈ X, and termsID′

R, saI , with stateI1.

(2)
initA(ID′R,saI)((xI))νNI .c〈1(NI ,xI)〉−−−−−−−−−−−−−−−−−−−−−−→ (which we abbreviate

η2−→), with stateϕI | I2.

(3)
η2−→ c(2(=NI ,NR,xR,gR,tR))−−−−−−−−−−−−−−−→ for any termsNR, xR, gR, tR, with stateϕI | I3.

(×3)
η2−→ c(M2)−−−−→ with stateϕI , for any other messageM2.

(4)
η2−→ c(2(=NI ,NR,xR,gR,tR))νeI ,hI .c〈3(NI ,NR,xI ,xR,tR,eI ,hI)〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (which we abbreviate

η4−→),
with stateϕI | νKa,Ke,Kv, sI .(κI | σI | I4).

(5)
η4−→ c(4(eR,hR))−−−−−−−→ for any termseR andhR such that the two tests inI4 andI5 succeed,

with stateϕI | νKa,Ke,Kv, sI , IDR, saR, sR.(κI | σI | τI | I5a).

(×5)
η4−→ c(M4)−−−−→ for any other messageM4, with stateϕI | νKa,Ke,Kv, sI .(κI | σI).
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(5′)
η4−→ c(4(eR,hR))νIDR,saR,Kv.connectA〈IDR,ID′R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ with stateI ′5.

For the responder, extended traces range over:

(2)
c(1(NI ,xI))((B,xR))−−−−−−−−−−−−→ for anyB ∈ C, xR ∈ X, and termsNI , xI , with stateR2.

(3)
c(1(NI ,xI))((B,xR))νNR,tR.c〈2(NI ,NR,xR,gR,tR)〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (which we abbreviate

η3−→), with state
ϕR | R3[l〈〉].

(3, n)
η3−→ c(M3,1)...c(M3,n)−−−−−−−−−−−→ for any termsM3,i for i = 0..n, with stateϕR | R3[l〈〉 |∏

i l().R3a,i] with a product of instances ofR3a, which we writeR3a,i, for eachi such
that the messageM3i matches3(=NI ,=NR, xI ,=xR,=tR, eI , hI).

(3a)
η3−→ c(M3,1)...c(M3,n)((m))−−−−−−−−−−−−−−→ for any1 ≤ m ≤ n such that (?) M3,m matches3(=NI ,

=NR, xI ,=xR,=tR, eI , hI) for some subtermsxI , eI , hI ; and (??) the three tests in
the resulting processR3a succeed, with stateϕR | R3a | R′

3.
(R′

3 = R3[
∏

i 6=m l().R3a,i] is a replicated input onc in parallel with deadlocked processes.
In its context,R′

3 is inert, and could be discarded up to equivalence.)

(×3a) as above, except for (??), with stateϕR | R′
3 after failing a test.

(4)
η3−→ c(M3,1)...c(M3,n)((m))νIDI ,ID′R,saI ,Kv.acceptB〈IDI ,ID′R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (which we abbreviate

η4−→), with stateϕR | νsI ,Ka,Ke.(κR | τR | R4 | R′
3).

(4′)
η4−→ νeR,hR.c〈4(eR,hR)〉−−−−−−−−−−−−−→, with stateR′

4 | R′
3.

For discarding input messages that do not match a pattern listed above, extended traces

finally include inputs
c(M)−−−→ and

initA(M)−−−−−→ for any messageM andA ∈ C, with no state.
To any interleavingη of the extended traces listed above, involving any principals ofC

in any role (with distinct session indices for the variables exported by different sessions),
we associate theabstract configurationS[Q], whereQ is the parallel composition of all
session states.

We first consider the equational net effect of abstract configurations, by analyzing their
frames. Letϕ( ) be the function on processes that erases any plain process, keeping only
restrictions and active substitutions. We compute the frame

ϕ(S[Q]) = DX

[
PKC [∏

A∈C ϕ(Q)
]]

whereϕ(Q) is a parallel composition of active substitutions given by Definition 2 (with
distinct session indices for each session).

For each case of an initiator extended trace, the frame is:

(1) 0
(2), (3), (×3) ϕI which exportsNI

(4), (5), (×5) ϕI | νKa,Ke,Kv, sI .(κI | σI) which exportsNI , eI , hI

(5′) I ′5 which exportsNI , eI , hI , IDR, saR,Kv

For each case of a responder extended trace, the frame is:

(2) 0
(3, n), (3a), (×3a)ϕR which exportsNR, tR

(4) ϕR | νsI ,Ka,Ke.(κR | τR) which exportsNR, tR, IDI , ID
′
R, saI ,Kv

(4′) R′
4 which exportsNR, tR, IDI , ID

′
R, saI ,Kv, eR, hR
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As a special case, consider an abstract configurationS ′ with two extended traces, (5′)
with initiator A andIDR = IDB and (4′) with responderB andIDI = IDA, with matching
outputs and inputs on channelc. Intuitively, these two extended traces form a successful
run of the protocol betweenA andB. Using equational simplifications (notably the Diffie-
Hellman equation), the frames for the two extended traces areI ′5 | R′

4 ≡ ϕ | ϕ′ where

ϕ = ϕI | ϕR | νsI , sR,Ka,Ke.(κI | σI | σR)

defines the exchanged messages andϕ′ = {KB
v = Kv} | {IDB

I = IDA} | {IDA
R = IDB} |

{ID′B
R = ID′

R} | {saB
I = saI} | {saA

R = saR} accounts for duplicate variable definitions.
Our next lemma relates an abstract configuration that contains the outcome of these two

extended traces (ϕ) to an abstract configuration that defines instead fresh, distinct names
(ϕ4 of Section 7.1) using observational equivalence:

LEMMA 9. If S◦ η−→ S[Q] is an interleaving of extended traces, then

S[Q | ϕ] ≈ ϕ4 | S[Q]

PROOF. The proof relies on ProVerif for showing observational equivalences [Blanchet
et al. 2005]. We automatically establish an equivalence by using a script derived from
Se of Appendix B.3, as explained below; the full definition of the script is available at
http://www.di.ens.fr/ ∼blanchet/crypto/jfk.html . Then we use stan-
dard pi calculus arguments to relate this equivalence to the one stated in the lemma. Our
script is derived from the linear variant ofSe as follows:

(1) We replaceR3a with d〈NR, IDA〉 | R3a, whered is an additional public channel.
(This additional message reveals commitment to a Message 3 in a given receiver ex-
tended trace.) We also letS◦′, S ′[ ], andQ′ beS◦, S[ ], andQ with these additional
messages.

(2) We replaceνexp.νcp with νexp.νcp.νids and add a replicated output!ids〈KA
− , IDA〉

in parallel with!cp〈IDA〉.
(3) We obtainSe

i for i = 1, 2 from the resulting script by adding within the scope of
νexp.νcp.νids one of the additional processesT ′

i defined as follows:

T ′
i = ids(KA

− , IDA).ids(KB
− , IDB).exp(dxI

, xI).exp(dxR
, xR).Ti

Ti = init(ID′
R, saI ,=IDA,=IDB ,=xI ,=xR).

νsI , sR,Ka,Ke.νNI , NR, tR,Kv, eI , eR, hI , hR.

public〈NI , NR, tR,Kv, eI , eR, hI , hR〉 |
{

ϕI | ϕR | κI | σI | σR for i = 1
ϕ4 for i = 2

(4) We split the linear processes for the initiator and the responder by separating the sig-
nature computations from the rest of the processing: for the initiator, we split just
after the computation of the signaturesI and before the computation ofeI , hI and the
sending of Message 3; for the responder, we move the signature computation before
the MAC check, then split just before this check. We reassemble the resulting pieces
as follows. For each principalA ∈ C, we specify messages on new private channels
getIA andgetRA that carry a value for every variable used in the rest of the process-
ing, we guard the rest of the processing with replicated inputs on these channels, and
we place this (the rest of the processing plus the replicated inputs) in parallel with
the remainders ofIA′ andRA′ (which include signature computations). LetSe

i
′ for

i = 1, 2 be the resulting processes.
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(5) The processes used in the ProVerif script for this proof areSe
i
′′, whereSe

i
′ ≡ E[Se

i
′′]

for i = 1, 2 and some evaluation contextE. (Intuitively, the contextE collects the
parts ofSe that do not affect the equivalence but complicate its automated proof; the
splitting step (4) prepares this simplification.)

ProVerif automatically establishesSe
1
′′ ≈ Se

2
′′. Since equivalence is preserved by appli-

cation of evaluation contexts, we haveSe
1
′ ≈ Se

2
′ by applyingE. After applyingE, the

auxiliary channelsgetIA andgetRA are private, and used only to pass continuations to the
rest of the initiator and responder processes, so we can undo Step (4) by using equivalences
Se

i ≈ Se
i
′ for i = 1, 2. Hence we haveSe

1 ≈ Se
2 .

We apply the initialization traceSe
i

(C,X)−−−−→ Se[Ti], as detailed in the proof of Lemma 4,
followed by four communication steps leading fromT ′

i to Ti, for the parametersC, X,
IDA, IDB , xI , andxR used in the statement of the lemma. By bisimulation, and since this
initialization trace determines the resulting processesSe[Ti], we haveSe[T1] ≈ Se[T2].

We now apply the contextνgetexp, getprinc.[ ] then perform simplification steps:

—The channelsgetprinc, getexp, andcp are now restricted, and used only for output, so
we can replace those outputs and their guarded processes with0 up to equivalence.

—Exponents and exponentials are bound by parametric products
∏

x∈X in S ′[Ti], and are
bound by inputsexp(dx, x) in Se[T ′

i ], in the presence of a replicated output!exp〈dx, x〉
for eachx ∈ X. Sinceexp does not appear anywhere else, the two variants are equiva-
lent. We thus obtain the equivalenceS ′[T1] ≈ S ′[T2].

We carry over the traceS◦ η−→ S[Q] in the hypothesis of the lemma, and obtainS ′[Ti]
η′−→

S ′[Q′ | Ti] for i = 1, 2, whereη′ is η with additional outputs ond , and we finally useTi:

S ′[Q′ | Ti]
init(ID′R,saI ,xI ,xR,IDA,IDB)−−−−−−−−−−−−−−−−−→
νNI ,NR,tR,Kv,eI ,eR,hI ,hR.public〈NI ,NR,tR,Kv,eI ,eR,hI ,hR〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{
S ′[Q′ | ϕ]
S ′[Q′ | ϕ4]

By bisimulation, and since the actions on the trace determine the resulting processes, we
still haveS ′[Q′ | ϕ] ≈ S ′[Q′ | ϕ4].

Finally, we apply the contextνd . and use the equivalenceνd .S ′[Q′ | ϕ] ≈ S[Q | ϕ]
(and similarly forϕ4). By transitivity, we conclude thatS[Q | ϕ] ≈ ϕ4 | S[Q].

C.2 Running Configurations: Transition Invariant

Partly relying on the static equivalences above to determine the outcome of tests, we can
now relate extended traces and abstract configurations to arbitrary normal traces and their
resulting configurations:

LEMMA 10. Every normal traceS◦ η−→ S ′ is an interleaving of extended traces with
final stateS[Q] that matchesS ′ up to structural equivalence and deterministic steps.

PROOF. The proof is by induction on the length of the normal traceη. In the base case,
the initial configuration coincides with the initial abstract configuration:S◦ ≡ S[0].

For the inductive case, assume that we have a normal traceS◦ η−→ S ′ α−→ S ′′. By
inductive hypothesis, we can perform the case analysis on the final transitionα on the
abstract configurationS[Q] associated withη, instead ofS ′. We enumerate all transitions
enabled inS[Q] from its structure, given by Figure 3 and Definition 2:

ACM Journal Name, Vol. V, No. N, January 2007.



50 ·

—Replicated input onc in I0, for someA ∈ C andxI ∈ X. If the message matches the
pattern(ID′

R, saI) of I0, then we create a new initiator extended trace in case (1) with

action
initA(ID′R,saI)((xI))−−−−−−−−−−−−→. Otherwise, we use action

initA(M)−−−−−→ to discard the message.
—Replicated input onc in R1, for someA ∈ C andxI ∈ X. If the message matches the

input pattern ofR1, then we create a new responder extended trace, using case (2) with

matching parameters. Otherwise we use action
c(M)−−−→ to discard the message.

—Output onc in I1 for an initiator in stage (1). We move to the next stage, (2), by the
same action. The cases for output onc in I3, output onconnectA in I5a, output onc in
R2, output onacceptB in R3c, and output onc in R4 are handled similarly.

—Input onc in I2 for an initiator in stage (2). We move to stage (3) if the message matches
the input pattern, and to stage (×3) otherwise.

—Input onc in I4 for an initiator in stage (4). We move to stage (5) if the two tests inI4

andI5 succeed, and to stage (×5) otherwise.
—Replicated input onc in R3[ ] for a responder in stage (3, n), (3a), (×3a), (4), or (4′).

In all these stages, we record the input message asM3,n+1 and, if this message matches
the pattern3(=NI ,=NR, xI ,=xR,=tR, eI , hI), we add a new process that inputs onl
for i = n + 1. If we are at stage (3, n), we move to stage (3, n + 1); otherwise, we stay
in the current stage. (Informally, the received message is discarded.)

—Replicated input onc in some processR′
3 for a responder in stage (3a), (×3a), (4),

or (4′). We extendR′
3 with a new deadlocked input onl if the message matches the third

message pattern; the rest of the state is unchanged.
—Internal communication on channell for a responder is stage (3, n). We move to stage

(3a) if its conditions are met, to stage (×3a) otherwise.

C.3 Proofs of the Theorems of Section 7 (Theorem 2, part of Theorem 4)

PROOF OFTHEOREM 2. Assume that we have a normal traceS η−→ S ′. By Lemma 2,
we haveS ≈ S◦, henceS◦ η−→ S ′. By Lemma 10, we interpret this trace as an interleaving
of extended transitionsS◦ η−→ S ′′ for some abstract stateS ′′ = S[Q] that matchesS ′ up to
structural equivalence and deterministic reduction steps.

FromS[Q], the existence of the transitions made explicit in the statement of the theorem,
and the characterization of the resulting configuration in terms of additional session states,
are obtained as an interleaving of an initiator extended trace forA usingxI with a responder
extended trace forB usingxR. From Definition 2 and Figure 3, we verify that each of the
transitions is enabled in turn:

—WhenIDA ∈ SB
I , we use the interleaving

S[Q]
initA(ID′R,saI)((xI))−−−−−−−−−−−−→ νNI .c〈1(NI ,xI)〉−−−−−−−−−−→ c(1(NI ,xI))((B,xR))−−−−−−−−−−−−→
νNR,tR.c〈2(NI ,NR,xR,gR,tR)〉−−−−−−−−−−−−−−−−−−−−→ c(2(=NI ,NR,xR,gR,tR))−−−−−−−−−−−−−−−→
νeI ,hI .c〈3(NI ,NR,xI ,xR,tR,eI ,hI)〉−−−−−−−−−−−−−−−−−−−−−−−→ c(3(NI ,NR,xI ,xR,tR,eI ,hI))−−−−−−−−−−−−−−−−−−→ ((1))−−→
νIDI ,ID′R,saI ,Kv.acceptB〈IDI ,ID′R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
νeR,hR.c〈4(eR,hR)〉−−−−−−−−−−−−−→ c(4(eR,hR))−−−−−−−→
νIDR,saR,Kv.connectA〈IDR,ID′R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S[Q | I ′5A | R′

4
B | R′

3]
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By definition,R′
3 is inert in this context, and can be discarded up to equivalence. Finally,

we apply the equivalence of Lemma 9 to replaceI ′5
A | R′

4
B with ϕ4.

—WhenIDA /∈ SB
I , we use the interleaving

S[Q]
initA(ID′R,saI)((xI))−−−−−−−−−−−−→ νNI .c〈1(NI ,xI)〉−−−−−−−−−−→ c(1(NI ,xI))((B,xR))−−−−−−−−−−−−→
νNR,tR.c〈2(NI ,NR,xR,gR,tR)〉−−−−−−−−−−−−−−−−−−−−→ c(2(=NI ,NR,xR,gR,tR))−−−−−−−−−−−−−−−→
νeI ,hI .c〈3(NI ,NR,xI ,xR,tR,eI ,hI)〉−−−−−−−−−−−−−−−−−−−−−−−→ c(3(NI ,NR,xI ,xR,tR,eI ,hI))−−−−−−−−−−−−−−−−−−→ ((1))−−→
S[Q | (ϕI | νKa,Ke,Kv, sI .

(
κI | σI | IA

4

)
) | (ϕR | RB

3 )]

The simplification of the resulting process is obtained as a corollary of Lemma 9: the
equivalence for complete, accepted sessions implies the corresponding equivalence for
complete, rejected sessions, by applying a context that restricts variables not exported
in the latter case. Finally, the tests in subprocessesIA

4 andRB
3 always fail, so these

processes can be discarded up to bisimilarity (since any abstract configuration can re-
ceive and discard messages onc anyway).

PROOF OF SECOND POINT OFTHEOREM 4. By Lemma 10, the normal trace in the
statement of the theorem can be decomposed into an interleaving of extended traces. Since
there is aconnectA action for someA ∈ C, the trace comprises (at least) one initiator ex-
tended trace forA in case (5′) with that action. Using the first point of Theorem 4 (verified
by ProVerif), there exists anacceptB action for someB ∈ C with matching parameters,
henceη comprises (at least) one responder extended trace forB in case (4) or (4′) with that
action. Hence, we have

S◦ η−→ connectA〈IDB ,ID′R,saI ,saR,Kv〉−−−−−−−−−−−−−−−−−−→ S[Q | I ′5 | R′
4 | R′

3] (7)

whereI ′5 andR′
4 | R′

3 result from those two extended traces andQ corresponds to all other
extended traces. We check that the two extended traces share the same parameters, so as
to match the series of actions listed in Theorem 4:

—Matching parameters betweenacceptB andconnectA actions directly include the terms
IDR = IDB , IDA = IDI , ID′

R, saI , saR, andKv.

—The key computationsκI andκR of Definition 2 yield equal terms if and only if they
use matching parametersNI , NR, xI , andxR. So matching keysKv implies matching
termsNI , NR, xI , xR, Ka, andKe.

—By inspection of abstract states in Definition 2, signatures underKA
− use distinct names

as first signed parameter, so there is only one such verifiable signature forNI . Similarly,
there is only one verifiable signature underKB

− with NR as second signed parameter.
Thus, the sent and received signatures coincide, and moreover the responder extended
trace must have exported this signature and therefore be in case (4′).

—The remaining termseI , hI , eR, andhR depend only on matching terms listed above.

SinceI ′5 andR′
4 | R′

3 share the same parameters andR′
3 is inert in this context, we have

S[Q | I ′5 | R′
4 | R′

3] ≈ S[Q | ϕ]. By Lemma 9, we haveS[Q | ϕ] ≈ ϕ4 | S[Q]. Finally,
let η′ beη minus the actions for the two extended traces. Relying on our analysis of the

transitions (7) as an interleaving of extended traces, we obtainϕ4 | S◦
η′−→ ϕ4 | S[Q].
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C.4 Proof of the Theorem of Section 8 (Theorem 5)

In order to prove our plausible deniability results, we explain how to simplify the frame
associated with an abstract configuration, so as to replace most of the terms defined in
past sessions by terms that do not use any name restricted inS[ ] (signing keys and secret
exponents).

The next lemma describes how an active attacker can get access to keys and signatures
by running ordinary sessions with compliant principals.

LEMMA 11 (TRANSPARENTSESSIONS). We say that an extended trace istransparent
when the peer exponential provided by the environment (xR in Message2 for the initiator,
xI in Message3 for the responder) equalsg ˆD for some termD.

(1) Let S[Q | I ′5] be an abstract configuration whereI ′5 is the state of a transparent ex-
tended trace in case (5′), which definesσsI

= {sI = S{KA
−}(NI , NR, xI , xR, gR)}.

There are evaluation contextsE andF that do not restrict the variables ofS[Q] such
that

S[Q | I ′5] ≡ E[S[Q | ϕI | σsI
]] and S[Q | ϕI | σsI

] ≡ F [S[Q | I ′5]]

(2) Let S[Q | R′
4] be an abstract configuration whereR′

4 is the state of a transparent
extended trace in case (4′), which definesσsR

= {sR = S{KA
−}(NI , NR, xI , xR)}.

There are evaluation contextsE andF that do not restrict the variables ofS[Q] such
that

S[Q | R′
4] ≡ E[S[Q | ϕR | σsR

]] and S[Q | ϕR | σsR
] ≡ F [S[Q | R′

4]]]

PROOF. We give a proof of the first part of the lemma; the other part is established
similarly. Relying on the Diffie-Hellman equation and structural equivalence, we replace
each occurrence of the keysKu for u = a, e, v defined byκI with the corresponding term
H{xI ˆD}(NI , NR, u). Hence, for someκ′I , τ ′I , andσ′eI ,hI

variants ofκI , τI , andσI for
eI , hI that do not use names restricted byS[ ], we have

S[Q | I ′5] = S[Q | ϕI | νsI , sR,Ka,Ke.(κI | σI | τI)]
≡ νsI , sR,Ka,Ke.

(
κ′I | τ ′I | σ′eI ,hI

| S[Q | ϕI | σsI
]
)

Conversely, we useF [ ] = νeI ,Ke.(κKe
| τR,sI

| νKv, IDR, saR, sR, hI . ) whereκKe

definesKe as inκ′I andτR,sI
definessI as inτR of Figure 3.

Next we deal with non-transparent extended traces. Sessions with identical parameters
NI , NR, xI , andxR can be simplified by using Lemma 9. The next lemma deals with the
key computation for any other sessions.

LEMMA 12. For a given abstract configuration, letηI andηR range over non-trans-
parent extended traces with different tuples of terms(NI , NR, xI , xR) for any two extended
traces. Letκ′ =

∏
u=a,e,v νN.{Ku = N}. We have:

DX

[∏
ηI

(ϕI | κI) |
∏

ηR
(ϕR | κR)

]
≈s DX

[∏
ηI

(ϕI | κ′) |
∏

ηR
(ϕR | κ′)

]
PROOF. The active substitutionsκI andκR in the session states define keysKI,u =

H{xR ˆdxI
}(NI , NR, u) and KR,u = H{xI ˆdxR

}(NI , NR, u). SinceH{ }( ) has no
equation and at least some of the parameters used as second argument are different in
any two of these definitions, these keys are pairwise distinct. Since the extended traces
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are not transparent, the variablexR is bound either tox ∈ X or to a term that is not an
exponential. In both cases, the computed Diffie-Hellman termxR ˆdxI

is different from
any term available to the environment, so each key is also different from any other term
available to the environment.

We can now rewrite the frame associated with any abstract configuration to a frame that
exports signatures on transparent extended traces, plus distinct fresh names:

LEMMA 13. For any normal traceS◦ η−→ S ′, we haveS ′ ≈s Φ | S[Q′] whereΦ is an
active substitution that exports fresh, distinct names andQ′ is a parallel composition of
the states associated with transparent extended traces in the abstract configurationS ′.

PROOF. LetS[Q] ≈ S ′ be the abstract configuration provided by Lemma 10. We apply
Lemma 9 to every pair of extended traces with matching parametersNI , NR, xI , xR, thus
rewriting their state into a frame that defines fresh, distinct names, then collect all session
states that define only fresh, distinct names into a single active substitutionΦ.

LetQ′ andQ′′ be the parallel compositions of the states for all remaining transparent and
non-transparent extended traces, respectively. By applying Lemma 11 to every transparent
extended trace, we can rewriteQ′ into Q′

E where none of the secret exponents(dx)x∈X

occur. Hence, we have

S[Q] ≈s Φ | S[Q′ | Q′′] ≡ Φ | PKC [Q′
E | DX [Q′′]]

We apply Lemma 12 (in some evaluation context) to simplifyDX [Q′′] so as to replace
all key computationsκR andκI within Q′′ with instances ofκ′. Then, using simple sta-
tic equivalences, we further simplify the state for all non-transparent extended traces by
replacing any exported termseI , eR, hI , hR with exported fresh names (since each of
these terms is keyed with the only occurrence of a restricted name). LetΦ′ collect all the
resulting fresh, distinct name definitions. We thus have

Φ | PKC [Q′
E | DX [Q′′]] ≈s Φ | Φ′ | PKC [Q′

E | DX [0]] ≡ Φ | Φ′ | S[Q′]

PROOF OFTHEOREM 5. For each transformation described in the theorem, we verify
that the normal traceSa

ηa−→ S ′a is enabled, describe the effect of the transformation on the
frame obtained by Lemma 13, and exhibit an evaluation contextC that does not restrict the
variables ofSa such thatC[S ′a] ≈s S ′.

(1) The existence of the trace is given by the second part of Theorem 4. After applying
Lemma 13, sessions between compliant principals only export fresh, distinct names.
Let ϕ4 define these extra names; we use the contextC[ ] = ϕ4 | [ ].

(2) SinceA performs no control action, no session associated withA produces any signa-
ture. We erase fromη any session associated withA, letϕ define instead fresh, distinct
names, and letC be the contextPKA [0] | ϕ | [ ].

(3) Those parameters do not affect the existence of the trace and, if they occur in non-
transparent extended traces, they are erased by Lemma 13. Otherwise, we detail the
case (5′): relying on Lemma 11, we letC[ ] = E[Fa[ ]] whereE uses the parameters
of the original extended trace andFa is F with the rewritten parameters.

(4) We erase theconnectA from the trace and obtain a session in case (5) instead of (5′).
Relying on the first part of Lemma 11, we letC[ ] = E[F ′[ ]], whereF ′ is F without
the restriction onKv, IDR, andsaR.
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(5) Those parameters do not affect the existence of the trace. In particular, for trans-
parent extended traces for the responder, the hypothesis onIDI guarantees that the
environment can provide a valid Message 3 that includes a signature associated with
the rewritten verification key. We detail the case (4′): relying on the second part of
Lemma 11, we letC[ ] = E[Fa[ ]] whereE uses the parameters of the original ex-
tended trace andFa is F with the rewritten parameters.

(6) This change affects neither the existence of the trace nor the frame obtained after
applying Lemma 13.
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