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JFK is a recent, attractive protocol for fast key establishment as part of securing IP commu-
nication. In this paper, we analyze it formally in the applied pi calculus (partly in terms of
observational equivalences, partly with the assistance of an automatic protocol verifier). We treat
JFK’s core security properties, and also other properties that are rarely articulated and studied
rigorously, such as plausible deniability and resistance to denial-of-service attacks. In the course
of this analysis we found some ambiguities and minor problems, such as limitations in identity
protection, but we mostly obtain positive results about JFK. For this purpose, we develop ideas
and techniques that should be useful more generally in the specification and verification of security
protocols.
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1. INTRODUCTION

The design of security mechanisms for the Internet has been the focus of much activity. In
particular, IP security has received much attention; in this area, we have seen some progress
but also some disappointment and some controversy. The Internet Key Exchange (IKE)
protocol [Harkins and Carrel 1998], an important method for establishing cryptographic
keys for secure IP communication, has been the subject of considerable and reasonable
criticisms. Those criticisms tend to concern not the core authenticity and secrecy properties
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that IKE offers but rather the complexity of IKE, some of its inefficiencies, and its poor
resistance against denial-of-service (DOS) attacks. Several recent protocols aim to address
IKE’s shortcomings. These include the JFK protocol [Aiello et al. 2002b; 2002a] (for “just
fast keying”) and the IKEv2 protocol [Kaufman 2005].

In some respects, IKE and its successors are fairly classical security protocols. They
all employ common pieces in the standard arsenal of modern cryptography, and aim to
guarantee the integrity and secrecy of IP communication. They are all subject to common
efficiency considerations, which limit the use of expensive cryptographic operations and
the number and size of messages. Beyond such basic aspects, however, these protocols—
and JFK in particular—exhibit a number of interesting features because they address other
security objectives. These other objectives are sometimes subtle; they are seldom articu-
lated precisely. Moreover, they give rise to new tensions and delicate compromises. For
instance, in the name of privacy, a protocol may attempt to hide the identities of the par-
ticipants (that is, to provide identity protection) and to guarantee the plausible deniability
of their actions, and may accordingly avoid or delay the authentication of the participants.
On the other hand, strong, early authentication can simplify DOS resistance. Of course,
such tensions are not unique to JFK and its close relatives. Rather, they seem to be increas-
ingly important in the design of modern security protocols. JFK exemplifies them well and
resolves them nicely.

In this paper we analyze JFK, relying on the applied pi calculus, an extension of the
standard pi calculus with functions. Specifically, we present a formalization of JFK in the
applied pi calculus; we focus on a variant of JFK known as JFKr (which is the closer one to
IKEv2), but we also consider its other major variant, JFKi, more briefly. While fairly short
and abstract, our formalization gives a fine level of detail in the modelling of contexts and
parallel sessions. It also covers aspects of the protocol beyond the “messages on the wire”,
such as protocol interfaces, the checks performed by the participants, and other delicate
features such as the treatment of duplicate requests.

We treat the core security properties of the protocol, and also other properties that are
rarely articulated and studied rigorously, such as plausible deniability and DOS resistance.
(We consider all the properties with a single model of the protocol: we do not need to define
special, partial models for particular properties.) We also provide proofs for those prop-
erties. Some of the proofs were done by hand, while others were done with an automated
protocol verifier, ProVerif [Blanchet 2001]. In some cases, there are overlaps between the
two kinds of proofs; those overlaps provide extra assurance about the correctness of the
formalization and the proofs. Moreover, while ProVerif can be used for establishing stan-
dard security properties such as correspondence assertions, it is still limited when it comes
to subtler properties, which we therefore prove partly by hand.

In the course of this analysis, we identified some minor limitations and weaknesses of
JFK. In particular, we discovered that JFK does not provide as much identity protection as
one might have expected on the basis of informal descriptions of the protocol. However,
we did not discover fatal mistakes. That is comforting but not surprising, since the authors
of JFK have substantial experience in protocol design and since JFK benefited from careful
review and prolonged discussion in the IETF context.

Beyond observations and results on JFK, this study contributes to the specification and
verification of security protocols in several ways. Our basic approach and tools come from
recent work; it is pleasing to confirm their effectiveness. On the other hand, the approach
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to formalizing several of the protocol’s less mundane facets is largely new, and should be
applicable elsewhere. Similarly, the proofs are non-trivial and motivate some new develop-
ments of our techniques. These novelties include a formulation of plausible deniability, a
general lemma about state elimination, and extensions in ProVerif. The proofs also provide
an opportunity for integrating manual and automatic methods in the applied pi calculus.
This integration relies on new results on the correctness of ProVerif proofs.

Contents.The next section is a review and informal discussion of JFK. Section 3 in-
troduces the applied pi calculus. Section 4 then presents a model of JFKr in the ap-
plied pi calculus. Section 5 discusses ProVerif, its extensions, and its use. Section 6
treats DOS resistance. Section 7 concerns core security properties (secrecy and authen-
ticity). It also briefly addresses identity protection. Section 8 deals with plausible de-
niability. Section 9 mentions some related work and concludes. The appendix includes
details on our use of ProVerif and proofs. Our ProVerif scripts are on-lingftpt
[hwww.di.ens.fr/ ~blanchet/crypto/jfk.html

2. THE JFK PROTOCOL

The JFK protocol has been discussed in a series of five Internet Drafts [Aiello et al. 2002b],
starting in 2001, and it is also described in a conference paper [Aiello et al. 2002a] and
in a journal paper [2004]. While our work is based on all those documents, we tend to
privilege the contents of the papers, since they should have more permanence than the
Internet Drafts. Primarily we follow the presentation of the conference paper; we also
discuss minor changes introduced in the journal paper. We refer to the papers for additional
material on the protocol and its motivation.

JFK involves two principals that play the roles of an initiatdy &nd a respondelR).

As in many other protocols, these two principals wish to open a secure communication
channel, and they attempt to accomplish it by establishing a shared secret. This shared
secret serves as the basis for computing session keys. The two principals should associate
the shared secret with each other, verify each other’s identities, and also agree on various
communication parameters (for example, what sort of session keys to employ). Attackers
may eavesdrop, delete, and insert messages; they may also attempt to impersonate princi-
pals [Needham and Schroeder 1978]. Therefore, the communications between the initiator
and the responder are cryptographically protected.

JFK has two major variants, JFKr and JFKi. These differ in their protection of identity
information. JFKr aims to protect the identity of the responder against active attacks, and
also the identity of the initiator against passive attacks. JFKi aims to protect the identity of
the initiator against active attacks.

2.1 The JFKr Variant
The JFKr protocol consists of the following four messages:

Messagd I - R: Np,zy

Message R—1T: Nj,Ng,TRr,gr,tr
Message I - R: Nj,Ng,xr,2R,lR,€1,h1
Messagel R—1: egrhgp
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z=1,R one of the two roles in the protocol: initiator or responder.

ir two distinct constants used to tag initiator and responder MACs.

N, random fresh nonce for the session.

d, Diffie-Hellman secret exponents.

z, = g d. Diffie-Hellman exchange valueg(andg” in [Aiello et al. 2002a]).

g Diffie-Hellman group (possibly obtained from a previously receiggdl

gr responder’s choice of groypand algorithmsGRPINFOy in [Aiello et al. 2002a]).
tr authenticator cookie used by the responder against DOS.

Kr responder’s secret hash key for authenticataréHK r in [Aiello et al. 2002a]).

u = a,e,v one of the three usages for keys: authentication, encryption, and main session secret.
aev three distinct constants used to tag usages for keys.

K, shared key obtained by a Diffie-Hellman computation, specialized.for

E shared-key encryption function.

H keyed hash function for MACs (message authentication codes).

ez, h encrypted payload messages and their MACs (proteetmiglentity and signature).
S public-key signature function.

Sz signed nonces and exponentials.

Kz private signature key for the principal playing rale

ID. identity for the principal playing role, and its public signature-verification key.
ID: “hint” of the responder identity, provided by the initiator.

IP; IP source address for the initiator (hashedi.

sa, additional parameters for IP security associatieasaidsa’ in [Aiello et al. 2002a)).
A, B principals taking part in the protocol (in either or both roles).

Fig. 1. Main notations

where:
xy = gd; TR = g dr
tr = H{KRr}(vr, Nr, N1,IP;)
K, = H{zr"d;}(N1,Ng,u) foru=a,e,v
ey = E{Ke}(|DI,|D/R,Sa[,S]) ER = E{KE}ODR,SaR,SR)
hr = H{K.}(i,er) hr = H{K.}(r,er)

sy = S{K'}(N;,Ng,z1,%R,8R) sp = S{K®Y(xr, Ng, v, N)

Figure 1 summarizes the notations of this exchange, adapted from Aiello et al. [2002b]. In
particular, keyed cryptographic primitives take a key as first argument in braces, followed
by other arguments in parentheses—for instdfidE } (T') is the encryption of plaintext
under keyK.

The first pair of messages establishes a shared secret via a Diffie-Hellman exchange.
Each principal generates and communicates a fresh ndpceEach principal also se-
lects or generates a secret exponéntand communicates the corresponding exponential
x, = g d,. Relying on the equationg "d; = x; "dg, three independent shared keys are
derived from nonces and exponentials; and K. are used in Messages 3 and 4, while
K, is returned to each principal as the newly established session secret. The reuse of ex-
ponentials is allowed, with a trade-off between forward secrecy and efficiency; in any case,
the freshness of nonces suffices to guarantee that the generated shared secrets differ for all
sessions.

Message 2 includes an authenticator coakiekeyed with a secret local to the respon-
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der, K. The responder expects to see this cookie in Message 3, as proof of a successful
round-trip (Messages 1 and 2), and it need not perform any expensive cryptography or
allocate resources before validating the cookie. Furthermore, after receiving Message 3,
the responder can remember handling so as to avoid expense in the event thats
replayed.

The second pair of messages provides authentication. Specifically, Messages 3 and 4
include encrypted signatures of the nonces, exponentials, and other material. The encryp-
tions protect identity information. The signatures can be interpreted as delegations from
the principals that control the signature keys (possibly users) to the protocol endpoints that
control the secret exponents. Only transient protocol data is signed—not identities or long-
term keys associated with users. In this respect, the protocol is in tune with concerns about
plausible deniability that have appeared from time to time in this context.

A recent refinement of JFK uses a hashN\gf instead ofN; in the first two messages
and within signatures [Aiello et al. 2004]. This change “raises the bar” for DOS attacks in
certain environments where the attacker can eavesdrop and inject messages but not modify
them in flight. We have redone our automated proofs with this change, both for JFKr and
JFKi; we have not revisited our manual proofs.

2.2 The JFKi Variant
JFKi uses the following messages:

Message I - R: Nypz5,ID%

Message R—1T: N[,NR,JIR,gR,|DR,SlR,tR
Messagé3 I - R: Nj,Ngp,x;,xR,tr,e5,hr
Messagel R—1: ep,hgr

wherexy, xzg, tr, and K, for u = a,e,v are computed as in JFKr, but with different
encrypted and signed fields:

s = S{KZ}(zr,gr)
ey = E{Ke}(lD],SabSI) ER = E{Ke}(sR,saR)
hr = H{Ka}(i,e[) hr = H{Ka}(LeR)
sr = S{KL}(Nr,Ng,z1,zr,|Dg,sar) sg = S{KZ}(Nr,Ng, 21, 2g,
ID;,say,sag)

The hintID’; appears in clear in the first message, rather than.imhe second message
also contains a signatusg, of the responder’s parameters. The form of the last two mes-
sages is unchanged, but the parties sign each other’s identity. This design choice implies
that the parties cannot later deny their intent to communicate.

Although this paper presents a formal model only for JFKr, we also developed a model
for JFKi and conducted all the corresponding automated proofs.

2.3 Discussion: Ambiguities and Limitations

The protocol specification, although clear, focuses on the messages exchanged in a single
successful run of the protocol. It does not say much on the local processing that the parties
perform, on the deployment of the protocol, and other subjects relevant for security. For
instance, it does not prescribe how principals should use the protocol (and especially what
is the sharing of signing keys and Diffie-Hellman exponentials); how messages should be
checked; and how the responder should manage state in order to resist DOS attacks. We
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have reason to believe that implementations differ in some of these respects, sometimes
with unfortunate consequences. The protocol specification does however state several se-
curity objectives. We discuss them all and study them formally below.

In the course of the analysis of JFK, we found some ambiguities and limitations, which
we document here. These are generally minor in comparison with the positive results of
the rest of the paper.

Identity Protection.ldentity protection is discussed only informally in the published de-
scriptions of JFK. Those descriptions do not provide a precise definition of identity protec-
tion, and several are possible (see Abadi and Fournet [2004]). Apparently, JFK primarily
aims to conceal the identities of participants, much like one would try to hide a password or
any other secret value. On the other hand, identities (for example, the name of a long-lived
server) are often widely known, and JFK provides only limited protection for the fact that
certain known principals communicate. We note the following leaks of information:

—A passive attacker can perform traffic analysis on JFK exchanges. For instance, if prin-
cipals are associated with fixed or long-lived IP addresses, then the attacker may link
their sessions.

—Similarly, if exponentials are reused at most by a single principal, then all sessions that
share the same exponential must involve the same principal, and information on that
principal can be correlated. In particular, when a principalses JFKi as both initiator
and responder with a single exponential, an attacker may eavesdrop the exponential
whenA acts as initiator, then discovdr's identity by initiating another session in which
A is the responder.

—In JFKr, the identity hiniD', provided in Message 3 can be obtained by an active at-
tacker that impersonates a responder, and may leak information on the inténged
The attacker learns only the initiator’s intent, rather than the presenéezofut this
presence may then be inferred, for instance by observing a successful retry.

—More remarkably, even when exponentials are not reudg,is left empty, and IP
addresses are not linked to identities, an active attack against JFKr can reveal that two
particular principalsA and B are communicating. This attack may be hard to detect. It
relies on an indirect equality test on authenticator keys, as detailed below.

(1) A initiates a session with3.

(2) C (the attacker) plays the role of respondeiis place, thus learningl’s identity
from Message 3 (as permitted in JFK€).does not send any Message 4; the session
fails.

(3) A retries, initiating a second session with with a nonceV;.

(4) C intercepts Messages 1 and 2 of this session, then initiates yet another session
with B, using the same nond€; but its own exponential and identity.

(5) C “swaps” these two sessions, continuing its session with the Message 24fsom
session, and forwarding té the other Message 2.

(6) If the two sessions succeed—that 13,is willing to respond to bottd and C—
thenC can infer that another principal has just established a sessionByitin
addition, C' may infer that the principal is, from the retry behavior or by other
means. In short)’ learns thatd and B are communicating.

This attack succeeds because the hash computatigrkekeps track ofV; but not ofx ;.

The omission ofc; in the computation of; is a deliberate performance optimization.
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Fortunately, the same effect can be achieved by udiWy; } (z;) instead ofN; (or the

hash ofN; [Aiello et al. 2004]) in Message 1, and possibly omittingin that message.

With this change, the scenario above becomes impossible: the two swapped sessions
always fail.

Of course, any limitations of identity protection should be kept in perspective, taking into
account the relative importance of various identity-protection properties.

Despite these limitations, we do get some strong, formal identity-protection guarantees,
as corollaries of the theorems of Section 7. We refer to previous work on another proto-
col [Abadi and Fournet 2004] for a more thorough study of identity protection that relies on
observational equivalences between protocol configurations with different identities. We
have applied the approach developed there to JFK, finding the issues discussed above. In
particular, we discovered the attack based on indirect equality tests of authenticator keys
when we attempted to prove such an observational equivalence by bisimulation.

A Brief Negotiation.Protocols such as IKE and SSL include the capability of negotiat-
ing options, including cryptographic algorithms and their parameters. Some options may
be weaker than others, for a variety of legal and technical reasons; principals may prefer
strong options but be prepared to use weaker ones if their interlocutors require it. Since
preferences can be falsified before they are authenticated, negotiation can be a source of
concerns and subtle vulnerabilities (see e.g. Wagner and Schneier [1996]). In reaction, the
presentations of JFK emphasize the absence of negotiation. Nevertheless, the choice of
a particular Diffie-Hellman group and cryptographic algorithms by the responder can be
construed as a minimal negotiation (called a “ukase” by Aiello et al. [2004]).

In JFKi, the choice is signed in Message 2; this signature is a relatively recent precaution
not present in early drafts of the protocol. An analogous precaution has been omitted from
JFKr because it would break identity protection. Therefore, an attacker may tamper with
Message 2 in JFKr, and then either the initiator rejects the attacker’s choice, interrupting
communications, or the initiator sends poorly protected identity information in Message 3.
(After the fact, the tampering is detected when the responder fails to verify Mes-
sage 3.) In short, the tampering appears as a minor risk; hence we have decided not to
model negotiation below.

Caching Answers to Message Bhe responder caches answers to Message 3, so as to
answer only once for every valid authenticator cookie received in an instance of Message 3.
The descriptions of JFK are somewhat ambiguous on this point. Where they refer to a
duplicate Message 3, we should probably read a Message 3 with a duplicate cookie, for
otherwise several problems appear. In particular, a blind DOS attack may effectively reuse
a single valid cookie in numerous, cheaply generated instances of Message 3. Moreover,
a responder that processes several different instances of Message 3 with the same cookie
(but for example for different initiator identities) could end up with the same key for several
sessions; confusion may result.

3. AN APPLIED PI CALCULUS FOR JFK

In this section, we present the instance of the applied pi calculus that we use for modelling
JFKr. This calculus is an extension of the pi calculus with function symbols, for instance

for tupling and for encryption, that can be assumed to satisfy particular equations. So
we first select function symbols and an equational theory for modelling the messages of
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JFKr. We also review the syntax and semantics of processes in the applied pi calculus.
(We refer to prior work [Abadi and Fournet 2001] for additional definitions, motivations,
and examples.) Finally, we introduce a few technical notations and concepts based on the
operational semantics of the applied pi calculus.

3.1 An Equational Theory

In general, asignatureX consists of a finite set of function symbols, suclgasdH, each
with an integer arity. Given a signaturg an infinite set of names, and an infinite set of
variables, the set dérmsis defined by the grammar:

UV .= terms
c,d,n,s,... name
oY, variable
f(Uy,....U) function application

wheref ranges over the function symbolsXfandi matches the arity of. We use meta-
variables, andv to range over both names and variables. Furthermore, given a sighature
we equip it with an equational theory (that is, with an equivalence relation on terms with
certain closure properties). We write - U = V when the equatio® = V is in the
theory associated with. We usually keep the theory implicit, and abbrevigte U =V
to U = V whenX is clear from context or unimportant.

For the study of JFK, we pick in such a way that we have the following grammar for
terms:

M, T .UV = Terms
c,d,n, s name
N, K, k,z,y,z variable
E{U}(T) shared-key encryption
D{UNT) shared-key decryption
H{U}(T) keyed cryptographic hash function
g Diffie-Hellman group
v Diffie-Hellman exponentiation
Pk(U) public key (and identity) from private key
S{UHT) public-key signature
V{U}(V,T) public-key signature verification
RecoverKey (V) public-key recovery (for the attacker)
RecoverText(V) text recovery (for the attacker)
true true
eav,i,r constant tags for keyed-hash specialization
cons(V1, V3) pairing
Fons(T), Fses(T) projections for pairs
1(V1, Va),...,4(V1, Vo) constructors for formatted messages
FIT),...,F3(T) projections for formatted messages
empty set
uv set extension

where we put some arguments in braces only as a syntactic convenience (so, for example,
H{U}(T) stands forH(U,T')), and use " and as infix function symbols. These terms
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include names and variables, cryptographic constructs, and auxiliary constructs for tags,
pairs, formatted messages, and sets, as follows:

—JFKr uses formatted IP messages, each with a fixed number of fields. Accordingly, we
introduce function symbol$(_, ), 2(., ., -, -, ), 3(, ., -, -, -, -, -), 4(_, ) in the signa-
ture 3; these symbols represent the message constructors. In addition, we introduce
inverse, unary function symboRs (_) andFi(_) to select the fields in Message 1, and
similarly for the other messages. Finally, we describe the intended behavior of formatted
messages with the evident equations:

F?(n(zy,...,24,...)) = x;  projections for formatted messages
(n=1,2,3,4)

Similarly, for pairing, we have the equations:
Fso"s(cons(z1,x2)) = x;  projections for pairs

When we use formatted messages (rather than pairing and tupling), it is only for clarity:
1,2, 3, and4 are convenient tags. It might appear that the use of tags could have security
implications, since for instancHU, V') and4(U, V') cannot be confused, while confu-

sions between messages can sometimes facilitate attacks. However, because terms of
the forms1(_,.), 2(-, -, -, -, -), 3(+, - - - -, -, -), and4(_, -) are never cryptographically
protected, a would-be active attacker can modify the 1ags3, 4 at will, so the tags do

not provide any protection.

—In order to model symmetric cryptography (that is, shared-key cryptography), we in-

troduce binary function symbolE{_}(-) and D{_}(.) for encryption and decryption,
respectively, with the equation:

D{y}(E{y}(z)) = =  shared-key decryption

Here x represents the plaintext andthe key. This and other equations embody our
(fairly standard) hypotheses on the cryptographic primitives introduced in Section 2.
—It is only slightly harder to model public-key signatures, where the keys for signing
and verification are different. In addition to symbols for signi{g}(-) and signature
verification V{_}(_, ), we introduce the unary function symbBk(_) for deriving a

public verification key from a private signing key, and the equation:

V{Pk(y)}(S{y}(z),z) = true  public-key signature verification

—In order to model the keyed hash function used in JFK, we introduce a binary function
symbolH{_}(-) with no equations. The fact that{ K’} (V') = H{K'}(V’) only when
K = K’ andV = V' models thatH is collision-free. The absence of an inverse for
H models the one-wayness Bif In our protocol, these properties are important for
guaranteeing, for instance, that keyed hashe# r, and Kz cannot be forged.

—More interestingly, exponentiatiori_ has no inverse, but an equation accounts for the
commutativity property used for establishing a shared secret.

(g"z)"y = (g"y)"z Diffie-Hellman computation

—Some of the functions and equations are not needed in the protocol itself, but may (in
principle) weaken the protocol for the benefit of an attacker; the funcReasverKey(-)
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andRecoverText(-) can be used to extract information from signatures, as specified in
the following two equations:

RecoverKey(S{y}(z)) = Pk(y) public-key recovery from a signature
RecoverText(S{y}(x)) = = signed text recovery from a signature

We could further refine our theory by reflecting known weaknesses of the underlying
cryptographic algorithms or their interactions, by considering additional equations (for
instance refinindd{_}(-), in the spirit of Abadi and Fournet [2001, Section 6]).

—The equations for the remaining constructs are fairly mundane:

(0.z).x = 0.z idempotence of set extension
(z.y).z = (z.z).y commutativity of set extension

We have functions for constructing sets, but not a set membership relation; instead, we
letU € V abbreviatd/.U = V.
3.2 Syntax and Informal Semantics for Processes

The grammar foprocesses the applied pi calculus is similar to the one in the pi calculus,
except that messages can contain terms (rather than only names) and that names need not
be just channel names:

PQ,R:= processes (or plain processes)
0 null process
P|Q parallel composition
P replication
vn.P name restriction (“new”)
if U=V then P else Q conditional
u(x).P message input
u(V).P message output

The null proces® does nothing;P | @ is the parallel composition oP and Q; the
replication! P behaves as an infinite number of copieg’afunning in parallel. The process
vn.P makes a new namethen behaves ag. We often use as a generator of unguessable
seeds. In some cases, those seeds may directly serve as cryptographic keys; in others,
some transformations are needed for deriving keys from seeds. The conditional construct
if U =V then P else @) is standard, but we should stress thiat= V' represents equality,
rather than strict syntactic identity. We abbreviatéfitU = V then P whenQ@ is 0.
Finally, the input process(z).P is ready to input from channel, then to runP with the
actual message replaced for the formal parametevhile the output procesg(V).P is
ready to output messagdé on channek, then to runP. In both of these, we may omit
P when it is0. For instance, the (useless) proceds.c(E{K}(M)) sends the ternd/
encrypted under a fresh kdy on channet.

Further, we extend processes witttive substitutions

A B,C = extended processes
P plain process
A|B parallel composition
vn.A name restriction
vx.A variable restriction
{x =M} active substitution
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We write {x = M} for the substitution that replaces the variableith the termM. The
substitution{z = M} typically appears when the terid has been sent to the environ-
ment, but the environment may not have the atomic names that app¥aitie variabler

is just a way to refer tdl/ in this situation. The substitutiofit = M} is active in the
sense that it “floats” and applies to any process that comes into contact with it. In order to
control this contact, we may add a variable restriction: we ddfindx = M} in P as
syntactic sugar foP{x = M}. Although the substitutiodz = M} concerns only one
variable, we can build bigger substitutions by parallel composition. In particular, we can
write let {x1 =V1} | ... | {x», = V,,} in P, which is P with local variablescy, ..., z,

bound tol, ..., V,,, respectively. We always assume that our substitutions are cycle-free.
We also assume that, in an extended process, there is at most one substitution for each
variable, and there is exactly one when the variable is restricted.

Although the syntax draws a formal distinction between ordinary processes and extended
processes, we typically ignore this distinction, for simplicity. In particular we often use the
symbolsP, @, and R for extended processes, thus avoiding possible confusions between
extended processes and principals.

A frameis an extended process built up from active substitutions by parallel compo-
sition and restriction. Informally, frames represent the static knowledge gathered by the
environment after communications with an extended process. Werdatge over frames.

The frame associated with an extended process is obtained by erasing its plain process
components. AontextC[_] is a process with a hole, aii¢] P] is the result of fillingC[_]'s

hole with P. An evaluation contex€’[_] is an extended process with a hole in the place of

an extended process. As usual, names and variables have scopes, which are delimited by
restrictions and by inputs. Whefi is any expressionfu(E), bv(E), fn(E), andbn(E)

are the sets of free and bound variables and free and bound nathesespectively.

We rely on a sort system for terms and extended processes [Abadi and Fournet 2001,
section 2]. We always assume that terms and extended processes are well-sorted and that
substitutions and context applications preserve sorts.

3.3 Syntactic Sugar

In our formalization of JFK, we rely on various abbreviations for processes and data struc-
tures. We writeif M then P instead ofif M = true then P. Given a finite sef and a

family of extended processés, one for eachi € I, we let[ [, P; be the parallel compo-
sition of the extended processBs We omit pair constructors and parentheses for nested
pairs, writing for instancél{ K } (xr, Ng, N;) for H{ K }(cons(zr, cons(Ng, Ny))). We

use pattern matching on tuples as syntactic sugar for the corresponding selectors, writing
for instance

C(l(:N[,I’])).P
instead of
c(z).let {xr = F3(2)} in if z = 1(Ny,zr) then P

for some fresh variable; this process receives a message on channmehatches it with
1(Ny,T) for some subternT’, then runsP with T' substituted forz;; otherwise, the re-
ceived message is silently discarded. We also define syntax for filtering duplicate mes-
sages:

le(X)\V.CJif T fresh then P]
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stands for
vs.(5(V) | 1e(X).C[s(2).(3(z.T) | if T ¢ z then P)])

whereC|[] is a context,X is a patterns is a fresh channel name, ands a fresh variable.
We use the local channelfor maintaining a seV’ of previous values for the terrf.
The arrival of a message may cause the addition of a parti¢u{arhich may depend on
variables bound iX) to this set, and the execution Bf For instance, takingk =T = z,
the proces&e(z)\0.if x fresh then P runsP once for every distinct messagé received
on ¢, with M substituted for:, and silently drops any duplicate message received on

3.4 Operational Semantics

Structural equivalencesvritten P = @, relate extended processes that are equal by any
capture-avoiding rearrangements of parallel compositions, restrictions, and active substi-
tutions, and by equational rewriting of any terms in processes. For example, we have that

vs.(e(s) | c(x).d(x)) = c(x).d(x) | vs.E(s)
and, ifs = V' in the underlying equational theory, that

vs.(@(V) | c(x).d(z)) = c(x).d(z) | vs.e(s)
We also have that

vs.(c(E{s}(g)) | c(z).d(z)) = vy.({y = E{s}(@)} | vs.(c(y) | c(x).d()))

Reductions and labelled transitions, which we explain next, are closed by structural equiv-
alence, hence by equational rewriting on terms.

Reductionswritten P — (@, represent silent steps of computation (that is, internal
message transmissions and branching on conditionals). For example, we have that

vs.(e(s) | c(x).d(x)) — vs.d(s)

Labelled transitions writen P = (@, represent interactions between the extended
process” and its environment. Specifically, ), Q andP LN Q representinputs

and outputs, respectively, frof's viewpoint. In both,P and@ are extended processes,

¢ is a communication channel, aind is a message. The label§V’) and vu.c(V') are

the actions of these labelled transitions; an action indicates the nature and contents of an
interaction with the environment: whether a communication step is an input or an out-
put, on what channel it takes place, and the corresponding message. In general, output
actionsvu.¢(V) include restrictions on the fresh names and variablésat occur in the
message in question; after the transition, the environment gains acaessmitomay use

them to perform further actions. In contrast with other process calculi, an output transition
P ey, Q is defined only for term& that do not export restricted names (unl&ss

a name). Nonetheles§, may contain an active substitution that associates variables in
with any terms. For example, we have that

vs.(¢(s) | c(x).d{x))

vs.¢(s)

c(z).d{z)
and that
vs.(e(E{s}(g)) | e(w).d(x)) 222 vs.({y = E{s} (@)} | e(w).d(x))
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An input transitionP ), @ may use variables defined in (typically from previous
message outputs) to form the mess&gd-or example, we have that

vs.({y = E{s}@)} | e(@).d(z) <2 vs.({y = E{s}(g)} | d(y))

3.5 Observational Equivalences

In the analysis of protocols, we frequently argue that two given processes cannot be dis-
tinguished by any context, that is, that the processes are observationally equivalent. As in
the spi calculus [Abadi and Gordon 1999], the context represents an active attacker, and
equivalences capture security properties in the presence of the attacker. The applied pi
calculus has a useful, general theory of observational equivalence parameterizeay

its equational theory [Abadi and Fournet 2001]. Specifically, the following three relations
are defined for anyz and equational theory:

—Static equivalengenritten =, relates frames that cannot be distinguished by any term
comparison. In the presence of theonstruct, the relatior:; is somewhat delicate and
interesting. For instance, we hawv&.{x = H{N}(V)} ~; vN.{a = H{N}(V')} for
any terms/ andV’, since the noncé&/ guarantees that both terms substituted:fbave
the same (null) equational properties, bi.{z = 1(V,V)} #, vN.{z = 1(N,V")},
as soon a3/ and V" differ, since the comparisoR}(z) = V succeeds only with the
first frame. We say that two extended processes are statically equivalent when their
associated frames are.

—More generallyobservational equivalencevritten ~, relates extended processes that
cannot be distinguished by any evaluation context in the applied pi calculus, with any
combination of messaging and term comparisons; this relation is used to state some of
our main results on JFKTr.

—Labelled bisimilarity written ~;, coincides with observational equivalence, but it is
defined in terms of labelled transitions instead of arbitrary evaluation contexts, and it is
the basis for standard, powerful proof techniques.

3.6 Traces and Related Notions

We close this section with a few technical notations and concepts based on the operational
semantics of the applied pi calculus. These are not specific to JFK, but we use them in its
study.

As discussed in Section 4.1 below, eavesdropping amounts to a message interception
followed by a re-emission of the same message. Formally, the interception corresponds to
an output labelu.¢(V'), and the re-emission corresponds to an input lafé). We write

P M P’ as a shorthand for the two transitioﬁsMﬂ P’

AtraceP L Q represents a sequence of computation steps, from prédessrocess)
with the sequence of labels possibly interleaved with internal computation steps, which
are kept implicit. In what follows, and especially when relying on automated proofs, we
often consider a particular class of traces. For a given sequence ofabedsay that the
traceP - () is normalwhen:

(1) The free names and variablesifand the extruded names and variableg ob not
clash. (Such clashes can be prevented by renaming names and variables.) Hence, there
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can be a binding?” in front of anz or n in an output ofy only whenx or n does not
appear free in any process or transition preceding that output.

(2) There is no internal communication step on any free channel. (This condition does
not entail any loss of generality, since every communication step on a free channel can
be represented as a series of two transitions, an output immediately followed by an
identical input, as in our model of eavesdropping.)

Those conditions are technically convenient, but not essential.

We also often compare actions in traces up to equational rewriting. For any trace
P 5L Q, we haveQ = vii.(¢ | R) where= is the structural-equivalence relatioR, is
a process with no active substitutions, antdy is a frame associated with) that defines
the variables exported in Assuming that? - @ is normal and that the namésdo not
occur free inP or inn, we can disregard the location of restrictions in labels, and consider
labels up to equality under the substitutipn This comparison “after;” depends ornQ,
but not on a particular choice far. Informally, it represents term comparison as observed
from R.

4. A MODEL OF JFK IN THE APPLIED PI CALCULUS

Next we discuss our representations for the IP network, attackers, and principals, and we
assemble processes that represent configurations of principals.

4.1 The Network and the Attacker

In our model, all IP messages are transmitted on a free pi calculus communication channel,
¢, which represents a public IP network in which message contents serve for differentiating
traffic flows. An arbitrary environment (an arbitrary evaluation context) represents the
attacker. This environment can interact with other principals by inputs and outputs on any
free channel, including.

As a special case, we sometimes consider a weaker, passive attacker that only eavesdrops
on messages but does not modify them. An attack step against a pfo@Esssists in
eavesdropping on a message senthyand amounts to a message interception followed
by a re-emission of the same message.

4.2 Configurations of Principals

Our model allows an arbitrary number of principals. Each principal may run any number
of sessions, as initiator and as responder, and may perform other operations after session
establishment or even independently of the protocol. Only some of these principals follow
the protocol. We are interested in the security properties that hold for them.

For the present purposes, the essence of a principal lies in its ability to produce signatures
verifiable with its public key. Accordingly, we refer to each principal by its public key,
using variablesD 4, IDg,... for both identities and public keys. We also associate the
context

PKA[] = vKA.({ID4 = Pk(K4)} | [)

with every principalA. This context restricts the use of the signing K€y to the process

in the context and it exports the corresponding verification lliey. Since there is no
inverse forPk(_), the verification key can be passed to the environment without giving
away the capability to sign messages with' to the environment. Whenever we put a
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processk in this context, our intent is thak never communicates “ to the environment.

By definition of well-formed configurations in the applied pi calculus, a process of the form
Q | PKA[R] exportsID 4; both@ and R can accestD 4; only R can acces& *; and no
context may change the binding ki 4 to Pk(K ). On the other hand, the context may
define any number of other principals. Thus, we obtain a fairly generous and convenient
model when we represent an attacker by an arbitrary context.

We letC range over sets of compliant principals—that is, principals that entirely delegate
the use of their signing keys to JFKr. While some properties will obviously hold only
for compliant principals, the initiator and responder code do not assume knowledge of
indeed, compliant and non-compliant principals can attempt to establish sessions.

Compliant principals rely on an implementation of JFKr, written as a proSes3he
notation S stands for “system”.) In addition, each compliant principbhas a “user
process”, writteriP4. The user process defines any additional behavior, such as when
protocol runs are initiated and what happens to the shared dégiater each session es-
tablishment. While we defing below, we treaP“ as an abstract parameter, in the context
that encloses, possibly under the control of the attacker. Each user process interacts with
S through the following control interface:

—As initiator, P4 sends a messagﬁAUD’R, say) to initiate a new session, with respon-
der hintID’; and security associatiasa;. When the protocol completes successfully,
S sendsconnect (IDg, ID';, saz, sag, K,,) to notify P4 that the session has been ac-
cepted, and thatl now shared(,, with a principal with identifiedD z.

—As responderS sendsaccept'(IDg, ID’;,sar,sar, K,) to notify P4 that it has ac-
cepted a session initiated by a principal with identifief;, parametersD’;, sas, sag
and shared secréf,. To control who can initiate a session with S is parameterized
by a setSs! of acceptable initiator identities. (We do not need a set suc$y'aat the
initiator: after completion of the protocol, the initiator’s user process can decide what to
do with the new session depending on the responder identity indieectmessage.)

For simplicity, S;* andsar are fixed; we also assume that these terms do not contain
any name or variable restrictedh

Thus, the interface between each princigadnd JFKr consists of three communication
channelsnit?, accept', andconnect' plus a set of identitiess;*. The channelsnit”,
accept', andconnect' can be restricted (witk) in order to hide the interface from the
environment.

For example, the user proceBs' of a principalA may be:

it (ID, sar).connect (=ID 5, =ID g, =sar, sar, K,).S(E{ K, } (true))

This code initiates a single session, specifically withafter connecting, it sends the term

true encrypted under the resulting session K€y on the channet that represents the
public IP network. A variant of this code can also accept a session and then send the term
true encrypted under the resulting session k&yon c:

WAGDB, sas).connect (=IDg,=IDp, =sas, sag, K,).¢(E{K, } (true))
| accept(=IDg, D'y, sar, sar, K,).¢(E{ K, }(true))

Another principalB may have a similar user proceB, for example:

accept (=ID 4, =IDp, saz,sag, K,).c(z).¢(D{K,}(z))
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Putting P4 and PP together withS, and letting the se€ of compliant principals be

{A, B}, we obtain a configuratio®4 | PP | S. Provided thatd € SZ, this sample
configuration can execute one run of JFKr. We may also add restrictions on the chan-
nelsinit4, accept' connect, init?, accepf, andconnect, thus ensuring that onip“
andP® controlS.

4.3 The Protocol

Figure 2 shows our implementation of JFKr in the applied pi calculus. It includes defini-
tions of processes for each role: a single procég3 for the initiator, and two processes
(R, R4 that do not share session state for the responder. For each pridgifiatse
replicated processes perform tests on incoming messages and compute outgoing messages.
(Here, we give processes fdrin both roles; elsewhere, when describing an exchange be-
tween two principals, we often uskas initiator and3 as responder.) The code &, R{',

and R4 represents the steps in the informal protocol narration of Section 2.1. Comments
in the figure explain the code. As further explanation, we paraphrase the cdtl, ak

an example. This code starts with the reception of a mess@gg «;) on the public IP
network. The reception is replicated, because this code is expected to run whenever it
is triggered by an input; several instances of the code may execute in parallel. Then the
code generates a fresh non¥g and computes an anti-DOS cookig. Finally, it sends
2(Ny, Ng, xR, gr,tr) on the public IP network.

The figure also includes the definition of a configuratfiran assembly of an arbitrary
but fixed set of compliant principatsthat potentially share an arbitrary but fixed pool of
exponentialsX. We always assume thé@tand X are not empty.

The design of JFK allows reusing Diffie-Hellman exponents for several sessions, prin-
cipals, and roles, and does not impose a particular policy for changing them. For each
exponent, one can decide when to stop using that exponent in new sessions. For instance,
an exponent may expire once the first session established using that exponent terminates,
so that discarding session keys prevents their later compromise. In our model, all compli-
ant principals may use any number of shared exponentials, in both roles, for any number
of parallel sessions. Results for configurations with less sharing are immediate corollaries
of ours.

The contextD,.[] represents a Diffie-Hellman part, the corresponding secret expo-
nent,z the derived exchange value (the exponential), arlde group (the same one for
all compliant principals). The seX contains the exponentials shared by the compliant
principals. The contexb x[_] consists of context®,.[ | for eachx € X. For simplicity,
according to the code, compliant principals never disclose exponents.

In contrast with actual implementations of JFK, our model treats abstractly several as-
pects of the protocol. In particular, it uses an unambiguous format for all messages, thereby
assuming, for instance, that the wire format for messages does not leak additional informa-
tion, and that ill-formed messages are safely ignored. (In our model, ill-formed messages
cause pattern matching or other tests to fail, thereby discarding the message and, except
for Message 3, aborting the session.) Furthermore, it does not cover IP addressing, rout-
ing, and fragmentation concerns, the contents of the security-association parameters
the handling oiD’,, the potential usage of several grogpsspects of caching, and error
messages. We made such simplifications partly by choice, partly by necessity; the resulting
model remains quite informative and rich.
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I§' = linit*(ID’;,sar). Initiator for each messageinit
vNy. create a fresh nonce
¢(1(Ny,z1)). send Message 1
c(2(=Nr, Nr, TR, gr,tR)). wait for Message 2
let k1 in compute shared keys (see below)
let {S[ ZS{Ké}(NI,NR,JZI,xR,gR)} in  sign
let {er = E{K.}(IDa,|D;,sar,s1)} in encrypt
let {h; = H{K.}(i,er)} in compute MAC
¢(3(N1, Ng,z1, 2R, tr, €1, h1)). send Message 3
c(4(er, hr)). wait for Message 4
if H{K.}(r,er) = hr then check MAC
let {IDgr,sar,sr = D{K.}(er)} in decrypt
if V{IDr}(sr, (N1, Nr,z1,2R)) then check signature
connect (IDg, ID’;, sar,sar, Ky) complete keying

R{t = 1e(1(Nt,zr)). Responder for each Message 1
vNRg. create a fresh nonce
let {tr = H{Kr}(xr, Nr,N1)} in compute anti-DOS token
E<2(N[7NR,IR,gR,tR)> send Message 2

R{ = 1¢(3(N1,Ng,x1,z,tr, er, hr))\0. Responder for each Message 3
if tr = H{Kgr}(z, Nr, N1) then check anti-DOS token
if tr fresh then accept token only once
HwREX if © = xR then branch on DH exponential
let kr in compute shared keys (see below)
if H{K.}(i,er) = hr then check MAC
let {IDy,1D%,sar, st = D{K.}(er)} in decrypt
if ID; € SP then authorize
if V{ID1}(s1, (N1, Nr,2z1,2R,8R)) then — check signature
accept' (D1, 1D, saz, sar, K., ). accept the session
let {SR:S{Ké}(N],NR,:E[,l’R)} mn sign
let {er = E{K.}(IDa,sar,sr)} in encrypt
let {hr = H{K.}(r,er)} in compute MAC
¢(4(er, hRr)) send Message 4

S = Dx [[I4cc PK* [T*|R]] Compliant principal configuration
I =11, ex I¢ A as initiator
R* = vKr.([],,cx Ri' | RS) A as responder
PKA[] = vK2.({ID4 = Pk(K*)} | []) A’s signing and verification keys
Dy[] = vde.({x=g"ds} | []) DH secretd and exchange value
Dx[] = Dg,|...Ds,[]] whereX = {z1,...,2z,}  shared exponentials
K1 = [ly—q.eolBu =H{zr ds; }(N1, Nr,u)} key computations fof
kR = [li—gco{8ue =H{z1 dey }(N1, Nr,u)} key computations faRk

Fig. 2.

JFKTr in the applied pi calculus
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5. PROVERIF AND ITS USE

In this section, we briefly describe ProVerif and explain how we use it in the analysis of
JFK. In particular, we outline our interpretation of the outcome of automated script verifi-
cations as proofs of trace properties for JFK configurations expressed in the pi calculus.

5.1 ProVerif and its Extensions for JFK

ProVerif was first designed for proving secrecy properties, which mean that the adversary
cannot compute certain values [Blanchet 2001; Abadi and Blanchet 2005a]. ProVerif was
then extended for proving correspondence assertions of the form: if somecageste-
cuted, then some events, . . . , e,, must have been executed before [Blanchet 2002; Abadi
and Blanchet 2005b]. Also treated were injective correspondences, which furthermore re-
quire that if the event is executedn times, then the corresponding eveats. . . , e,, must
have been executed at leastimes. More recently, ProVerif was extended for proving ob-
servational equivalences of the form,, ..., a,.Poc ~ vay,...,a,.Pc’ wheres ands’
are any substitutions that map the free variable$db terms in a given set [Blanchet
2004], as well as observational equivalences between processes that differ only in the terms
they contain [Blanchet et al. 2005].

Further extensions were added for analyzing JFK:

(1) In previous versions, the events added in the protocol description were either “begin”
or “end” events, and the correspondence assertions were always of the form “if some
end event has been executed, then some begin events must have been executed”. As
a result, for proving different properties, we often had to modify events in the proto-
col description. Now, the protocol description contains only one kind of event, and
ProVerif determines automatically from the property of interest which events should
be “begin”, which should be “end”, which should be both, and which should simply
be ignored.

(2) In previous versions, for a given “end” event, ProVerif returned a set of Horn clauses
from which the user could infer which “begin” events must be executed to execute the
“end” event. While this mode is still available, we have introduced a rich specification
language for correspondence assertions, and ProVerif can tell the user whether a given
correspondence property is proved or not, without manual inspection of the clauses.

(3) We have added an optimization that yields dramatic speedups when the property in
guestion contains many events. More specifically, ProVerif now removes redundant
hypotheses from Horn clauses when they contain “begin” events: if the clause is of
the formH A H' — C and there exists such thatHo C H' ando does not op-
erate on variables off’ andC, then ProVerif replaces the clause with the equivalent
clauseH’ — C. This transformation considerably speeds up the subsumption test for
clauses.

(4) We have added support for scenarios with several phases, such as publishing secret
keys after the end of the execution of some sessions of the protocol. This extension
has been used in proving perfect forward secrecy properties of JFK.

(5) We have extended the treatment of equations proposed by Blanchet [2001] for Diffie-
Hellman to more general equations [Blanchet et al. 2005]. This extension allows us to
represent encryption and signatures using equations rather than destructors.
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5.2 Scripts for Proof Automation

We rely at least partially on ProVerif in most proofs. For that purpose, we code JFK
configurations § in Figure 2) in the input syntax of ProVerif, which is an ASCII syntax
for the applied pi calculus, then we specify the properties to prove and simply run ProVerif.
Additional justifications and details on ProVerif appear in Appendix B.

As noted in the introduction, our ProVerif scripts are availablbtgd://www.di.
ens.fr/  ~blanchet/crypto/jfk.html . The script for JFKr differs superficially
from S: whereas configurationS are parameterized by fixed sets of compliant principals
and shared exponents, the script gives an interface to the adversary that enables the creation
of compliant principals (and provides their identities and control interfaces) and of shared
exponents (and provides their exponentials). These unfoldings are best omitted in the state-
ments of theorems. For a given configurati®rone can apply an evaluation context to the
process defined in the script so that the resulting process becomes observationally equiva-
lent toS after exporting the exponentials, the principal identities, and the control channels
init*, accept!, andconnect'. A lemma in Appendix B justifies this transformation.

6. RESISTANCE TO DENIAL-OF-SERVICE ATTACKS

In our formal analysis, we first consider the security mechanisms at the early stages of the
protocol, before mutual authentication. These mechanisms aim at hardening JFK against
certain DOS attacks relevant in IP security (see e.g., Karn and Simpson [1999]). Our for-
mal analysis relies on an understanding of the costs incurred at these stages (much as in
Meadows’s cost-based framework [2001]). This understanding is based on discussions in
the protocol specification. We characterize the occurrences of operations deemed expen-
sive, without a formal measure of their cost.

In JFK, protocol-based DOS is a concern mostly for the responder. By design, until
the computation ok g, the processing of Messages 1 and 3 is fast and involves almost
no state. From this point, the protocol performs CPU-intensive operations (including a
Diffie-Hellman exponentiation and two public-key operations), and allocates some session
state.

Since in general, in any protocol, the processing of a message may depend on the con-
tents of previously received messages, each principal may maintain some local state for
each session of a protocol. This state can be problematic for servers that are willing to
start a session whenever they receive a first client message, before adequate authentica-
tion. Indeed, an attacker may send (or redirect) first-message traffic to the server, filling
its buffers, and eventually causing valid session attempts to be dropped. This concern mo-
tivates a common protocol transformation: instead of keeping state for every session in
progress, one or both parties MAC (or encrypt) the state, append the result to outgoing
messages, and check (or decrypt) the corresponding values in later incoming messages
before processing them. Next, we show that this transformation is correct (i.e., preserves
equivalence) for a general class of protocols coded as processes.

We relate a sequential implementation of a protocol to a more complex but stateless
implementation, using the observational-equivalence relationThis relation is closed
by application of evaluation contexts, which can represent active attackers.

LEmMMA 1. LetC[] be a context that binds at most the variablg let Kz be a fresh
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name, letP = l¢(z), and
R; = vN.wt.e(Msy).R3
Rg = 76(3(:t, :N, =T, ZC3)).R4

Ry = vN.et {t = H{KRr}(N, z2)} in ¢(Ms)
Rs = c(3(t, N, zo,x3))\ 0.if t = H{Kg}(N, x2) then if t fresh then Ry
We haveC'[R3] | P ~ vKg.(C[Rs] | R3) | P.

In the statement of the lemm#&S and R$ define the sequential implementation of the
protocol, whereast, and R3 define its stateless implementation. &3, we rely on syn-
tactic sugar for pattern-matching with a retry until a message that matches the pattern
received, writing

2(X).R for  vl.(I{) | le(X).1().R)

where! does not occur inX or R. (In the ProVerif scripts, we use instead the more
verbose encodingl.(!c(X).I{z) | I(Z).R), whereZ collects the variables bound K.

The two encodings are equivalent, but the latter encoding facilitates automated proofs.)
The processR; is triggered each time a first message of the protocol is received; the pair
N, x5 represents the state of the protocol at the en&kgothat is used later iRRy; My
represents a second message of the protocol carrying (at éastilt, andx3 represents

new data received in Message 3. The presence of the same/state) (n the message
received inR3 is checked using the authenticator The inclusion of a fresh nonc¥
guarantees that all generated authenticators are differerRs(lithe generation of a fresh

and the matching=t do not serve any functional purpose; they are performed only so that
the two implementations of the protocol behave similarly.) The additional praéess
necessary to account for the possibility of receiving any messagel discarding it after

a failed test.

The proof of Lemma 1 appears in Appendix A, it relies on standard bisimulation tech-
niques. The lemma is reminiscent of classical replication laws in process calculi, such as
Q2 |1Qs3) = Q2 | 'Q3, sinceR3 and R; contain replications an@'[_] typically will.

Our next lemma applies this protocol transformation to JFKTr. It relates our main i§odel
(see Figure 2), which features a stateless responder till reception of a Message 3 with a
valid token, to a simplified, linear modé&F. The lemma enables us to prove properties of
JFKr preserved by (such as trace properties) 611 instead ofS.

LEMMA 2. We haveS® ~ S, whereS° is S after replacing eactR” by
ROA = HQTREX
!C(].(N],,ZE[)).
V]VR7 tR.
¢(2(N1, NR, TR, &R, tR))-
?¢(3(=N1,=Ngr,x1,=xR, =tR, €1, h1)).
let kg in ... (aSinRg‘)
The lemma is essentially a corollary of Lemma 1; its proof appears in Appendix A.

Our next theorem expresses that the responder commits session-specific resources only
once an initiator has established round-trip communication, that is, sent a Message 1, re-

ACM Journal Name, Vol. V, No. N, January 2007.



21

ceived a Message, and returned a Messagewith matching nonces (Property 2). This
property helps because the responder controls the emission of tokens and can cheaply in-
validate old ones by rekeying g, and because a “blind” attacker (weaker than a typical
Needham-Schroeder attacker [1978]) may send Messhgeth fake IP addresses, but

then may not be able to eavesdrop on the corresponding Meszadé®w theorem also
includes a similar guarantee for the initiator (Property 1).

THEOREM 1 (PROTECTION FROMDOS). Let A € C.

(1) LetSg beS with an additional outpus(N;) before the Diffie-Hellman computation

of kg in Ig'.
For any normal traceSs — S’, each outpus(N;) in 7 is preceded by distinct, suc-
cessive actions that match iflit, ), ¢(1(Ny, ), andc(2(Ny, -, -, -, ).

(2) LetSs beS with an additional outpu!B(Nb Ng) before the Diffie-Hellman computa-
tion of kp in R4

For any normal traceSg 1, &', each outpuﬁ(NI, Ng) in n is preceded by distinct,
successive actions that mateti (Ny, ), ¢(2(Ny, Ng, -, -, -)), andc(3(Ny, Ng, -, -,
o))

The additional outputs ofiserve as markers for the start of expensive processing (public-
key operations and session-state allocation). The theorem formulates “round-trip authen-
tication” as injective correspondences between actions. Property 1 is almost obvious for
JFKr, as the initiator§' sequentially processes all messages and receives a single Mes-
sage 2 for each session. Property 2 is more interesting and depends on the authenticator,
but its proof becomes easy after applying a variant of Lemma 2 to obtain an equivalent,
linear protocol. (As discussed in Section 2.3, many Messages 3 may be processed for the
same authenticator in incorrect interpretations of JFKr, for which Property 2 is false.) The
proof of the theorem appears in Appendix B.

7. CORE SECURITY PROPERTIES: SECRECY AND AUTHENTICITY

Next, we consider session-key secrecy and mutual authentication. We establish fundamen-
tal secrecy and authenticity results. Then, more briefly, we discuss perfect forward secrecy
and identity-protection properties, which partly follow from those fundamental results.

7.1 Secrecy and Authenticity

Let S be a JFKr configuration with compliant principalssharing exponentialX'. We
study arbitrary runs of the protocol by examining transitiéhs> S’, wherey, is an arbi-
trary sequence of labels. In these labelled transitions, as usual, we omit internalsteps
Informally, S’ represents any reachable state of the configuration in the presence of an
attacker that controls both the low-level IP netwoek énd the control interfaces for the
principals inC.

The following theorem characterizes runs of the protocol that involve two compliant
principals, A and B, in terms of what can be observed by an eavesdropper. We write

1,2,3 L
LN for the eavesdropped communications

VNIA[I(NI,w[)] vNgr tR.[Z(N[,NR,a:R,gR,tR)] ver h].[3(NI,NR7€EI;$R:tR;eI7hI)]
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and similarly write 2L for 22 lenhr)l e a1s0 writeps andg, for the frames that

map the variable®;, Ng, tg, er, hy and Ny, Ng, tg, €1, hy, er, hr, K,, respectively,

to distinct restricted names. These frames represent the simplified “net effect” of the runs

123, ang L2, 14, (including the passing aK’,). Next we examine sessions between

compliant principals starting from any reachable s&tef the protocol.

THEOREM 2 (SECRECY FORCOMPLETE SESSIONS. For any normal traceS - S,
principals A, B € C, exponentialst;,rr € X, and termsID’;,sa;, there existsS;
such that

init* (ID’;,sar) [1,2,3]
Sl R 14

S3
and either (i)ID4 € SP and

vK,.accept (ID4,ID% sar,sar,K,) [4] connect (IDg,ID%,sar,5ar, Ky
5

Ss3 >“S/|904

or (i) ID4 ¢ SP andS; ~ &' | 3.

The proof of these properties is given in Appendix C; it relies on an analysis of the config-
urationsS’ and on auxiliary equivalences established by ProVerif.

Theorem 2 first expresses the functioning of the protocol, with two normal outcomes
depending oD 4 € SPZ; the first disjunct is for acceptance, the second for rejection. The
two outcomes are not observationally equivalent, informally because an attacker that ob-
serves network traffic may be able to tell whether a session succeeds or fails. The theorem
also uses observational equivalence to give a simple, abstract characterization of the proto-
col outcomes: we are (apparently) back to the state of the protocol just before the session
began,S’, except forps and g4 which export variables bound to distinct, plain names
(vN.{z = N}), our representation of independent, fresh values in the pi calculus. Hence,
from the viewpoint of an attacker that can eavesdrop:@md communicate on control
interfaces, the intercepted message fields and the session key appear to be fresh, indepen-
dent names, rather than computed values. In particular, the attacker carklgamly
through the control interfaces, aagd ander leak nothing about their encrypted contents.
Furthermore, the equivalences ensure that the session does not depend on (or affect) any
other session i&%’. Although the statement of the theorem deals only with a (temporarily)
passive attacker, its combination with Theorem 4 (below) does cover all cases of complete
sessions.

We also have complementary authentication properties, expressed as correspondence
properties on control actions (that is, messages on the control interfaces), now with an
active attacker.

THEOREM 3 (AUTHENTICITY FOR CONTROL ACTIONS). Forany normal traceS a,
&’, the actions appearing in have the following properties:

(1) Foreachaccepf(ID 4, D%, sas,sar, K,), we havdD4 € SP and, if A € C, there is
a distinct init* (1D, saz).
(2) For eachconnect (IDg, 1D, sar,sar, K,,) there is a distinct init (ID,, sa;) and, if
B € C, there is a distincRccept (ID 4, ID', sar, sar, K.,).
The proof of these properties partly relies on ProVerif (see Appendix B). For Property 1, we
analyze the linear variant of JFKr, then extend the result to JFKr by Lemma 2; in contrast,
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the direct automated analysis of JFKr yields only a weaker, non-injective correspondence,
because ProVerif does not keep track of the linearity enforced by the authenticator cache.
ProVerif also yields proofs of these properties for variants of the protocol—with or without
sharing of exponentials, for JFKr and for JFKi.

The next theorem also deals with an active attacker. It says that, whenever a normal
trace includes a control acti@onnect (ID s, ... ) for somed, B € C, the trace essentially
contains a complete, successful run of the protocol, as described in Theorem 2.

THEOREM 4 (AUTHENTICITY FOR COMPLETE SESSIONS. Let A, B € C and as-
sume that we have a normal trace

S connect' (ID,ID,,sar,5a R, Ky)
—

S/

(1) L contains a series of transitions that match

init* (ID,sar) [1,2,3] vK,.accept (IDa,IDy,sar,sar,Ky) [4]
—

in the same order, except possibly for argumentin the first input onc and for
argumentt i in the second input and third output en

(2) Letn’ ben after erasure of these transitions. We havg o, I S,

We rely on ProVerif for establishing the first point of this theorem, via Lemma 2 (see
Appendix B), and on an analysis of the normal trace under consideration for establishing
the second point of the theorem (see Appendix C).

Theorem 3 is simpler and more abstract than Theorem 4, as it deals only with the inter-
face of the protocol, through control actions. Theorem 4 is more complex, as it expresses
properties on both control actions and lower-level IP messages exchanged by the protocol.
These properties imply that certain protocol inputs match previous protocol outputs, so
these inputs are authentic. In general, we would not expect an exact match of all message
fields (even if such matches facilitate a formal analysis): some fields are not authenticated.
Here, the absence of authenticationagfin the first message weakens identity protec-
tion; see Section 2.3. The absence of authenticatiap bfy the initiator seems harmless,
inasmuch asp is used only byR.

7.2 Perfect Forward Secrecy

As a corollary of Theorems 4 and 2, the session k&), exported in the control ac-
tions, is equivalent to a variable bound to a fresh, independent name,sinmntains
vN.{K, = N}. Hence, up to observational equivalensg, is syntactically independent
from S and the values intercepted by the attacker. As previously discussed [Abadi and
Fournet 2001], this provides a characterization of perfect forward secrecy for the session
key. We obtain this property even with our liberal reuse of exponentials. We also derive a
more specific (but still comforting) property thad, is distinct from any key established in
another session of the protocol.

Independently, ProVerif confirms that the kég;, exchanged between two compliant
principals remains secret—that is, here, the adversary cannot compute it—even if we give
the long-term secret keys“ of all principals to the attacker after the end of the protocol
run. Similarly, ProVerif verifies that all signing keys4 for A € C and Diffie-Hellman
exponentsl, for z € X remain secret.
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7.3 Identity Protection

We can rely on observational equivalence also for identity protection. The intercepted
variables defined bys andy, are independent fronD 4, ID;, andID z; this property is
a strong privacy guarantee for sessions between compliant principals. Further guarantees
can be obtained with particular hypotheses (see Abadi and Fournet [2004]). For instance,
if all identities in S are of the formlD 4 for someA € C (that is, B does not accept
sessions with the attacker) and there is no inpuinit? (that is, B is only a responder)
then, using Theorems 4 and 2, we easily check that the idébtjfyoccurs only in outputs
onconnect and otherwise cannot be observed by an active attacker.

Relying on the technique of Blanchet [2004], ProVerif can prove some identity-pro-
tection properties stated as observational equivalences.

—To show that the identity of the responder is protected against active attacks, we consider
configurations in which two responders can have their signing keys afidnand K 2
(so their identities amonBk (K “) andPk(K )), and we show that these configurations
are observationally equivalent. Hence, an adversary cannot distinguish a configuration
in which a responder usd€* from one in which it usedZ, and it cannot tell whether
two responders use the same signing key.

—Similarly, to show that identities of compliant principals are protected against passive
attacks, we consider configurations in which two responders and two initiators can have
their signing keys among 4, K2, K¢, KP, and we show that these configurations are
observationally equivalent. In these configurations, the attacker can listen but not send
messages on channel

These configurations contain other responders and initiators, with other keys. The channels
accept! andconnect are restricted, so that an adversary cannot observe messages sent on
these channels. All responders accept connections only from compliant principals (only
for simplicity). We also prove a similar observational equivalence that shows that JFKi
protects the identity of the initiator.

On the other hand, we have also found limitations in identity protection; see Section 2.3.

8. PLAUSIBLE DENIABILITY

Plausible deniability [Roe 1997] is an explicit (and controversial) design goal for IP se-
curity. In the context of session establishment, plausible deniability entails limiting the
amount of evidence that can be gathered by an active attacker in order to prove the exis-
tence and characteristics of past sessions, including sessions with the attacker. An extreme
protocol would leak no such evidence during session establishment, leaving the choice of
any non-repudiation mechanism to the application layer. (Further discussions of plausible
deniability appear, for example, in Internet Drafts [Harkins et al. 2002] and in the work
of Mao and Paterson on interactions and trade-offs between deniability and authentica-
tion [2003].)

As is the case with privacy properties, plausible deniability depends on any a priori
knowledge of the behavior of the principals. For instancel i known to use a signing
key only as a JFKr responder, and to accept sessions with atindken any signature
from A proves thatd actually accepted a session with irrespective of the signature con-
tents. This knowledge can be formalized via contexts that define the behavior of principals
under scrutiny, as proposed by Abadi and Fournet [2004]. In our example, the context
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would representl’s behavior.

In general, a principald can deny communicating witk if, for any given (data) ev-
idence, there exists an active attacker that could obtain the same evidence by interacting
with A althoughA did not attempt to communicate witB. Accordingly, for a given se-
ries of transitions representing the denied actions, we consider any alternative “plausible
actions” that may have led to the production of the same evidence.

Therefore, in JFKr, whent is a compliant principal in a configuratia$, we may say
that the traceS > S’ is plausibly explained by, S! when, for some evaluation
contextC that does not restrict variables definedSh we have the static equivalence
C[S.] =s S’. (Static equivalence, presented in Section 3.5, is observational equivalence
with respect to contexts that can use the terms exported by active substitutions, but cannot
otherwise interact with the protocol.) Informall§, represents an alternative to the initial
configurationS, and C' defines alternative computations for the terms exportedhy
For instance, ifS’ exports a message encrypted under a key that can be computed by the
context, andS’ does not use that key at afl, may perform a computation to produce that
encrypted message. On the other hand iexports a message signed with the key of a
compliant principal, all plausible explanations®f-- S’ should include a corresponding
signature; the signature cannot be blamed on the context.

Since JFKr participants sign only session-specific values, rather than identities, JFKr
should offer some plausible deniability properties. (JFKi does not, by design.) The next
theorem states some such properties. Its proof, in Appendix C, relies on trace rewriting
(much as for Theorem 4).

THEOREM 5 (DENIABILITY IN JFKR). For any normal traceS - &', there is a nor-
mal traceS, S for any configurationS,, and actions, obtained fromS andn by

(1) erasing any session between compliant principals (as detailed in Theorem 4);
(2) removing fronC any A that performs no control actions (as long @s# 0);

(3) inany init! input, modifying the termkD’,, sa; (as long as the trace is normal);
(4) erasing any conneétoutput;

(5) inany accept output, modifying the termi®;, ID’, sas (as long as the trace is nor-
mal) so that the newD; is a verification key ir6; not equal tdD for any B € C;

(6) replacing S7* with any set of terms that contains &D;s in the remaining acceft
outputs.

and there is an evaluation contextthat does not restrict any variable definedSp such
that C[S)] =, S'.

Thus, compliant principals can deny sessions among themselves, or even their presence
unless they are target of an active attack. Moreover, they can deny the parameters of any
session with a dishonest principal (but not the existence or number of such sessions).

We are currently attempting to develop a more general theory of plausible deniability.
This theory should be applicable to a broad class of protocols, including JFKr. We expect
that, a posteriori, the present results about JFKr will exemplify that theory. (We note that
the study of other security properties often proceeds similarly. Informal discussions and
specific results often precede general theories. Even afterwards, the analyses of particular
protocols often refer to those general theories only loosely.)
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9. CONCLUSION

Despite a substantial body of work on the formal analysis of security protocols, and despite
much interest in IKE and related protocols, it seems that neither IKE nor its successors has
been the subject of an exhaustive analysis until now. The conference paper that presents
JFK argues informally about some of its core properties, and calls for a formal analysis;
the later journal paper includes some more detailed arguments. Recent work by Datta et
al. [2002; 2004; 2005] explores how the STS protocol, two JFK variants, and the core of
IKE can be derived by successive refinements. In particular, it discusses the properties of
JFKr, and isolates the usage of authenticators for DOS-resistance and of encrypted signa-
tures for identity protection (without however precise claims or proofs). Further afield, the
literature contains partial but useful machine-assisted verifications of IKE and Skeme (a
protocol that influenced IKE) [Meadows 1999; Blanchet 2001; 2002], and a framework for
the study of DOS [Meadows 2001]. More broadly, the literature contains several formal
techniques for protocol analysis and many examples, e.g., [Kemmerer et al. 1994; Lowe
1996; Paulson 1998; Thayeabrega et al. 1998; Abadi and Gordon 1999; Lincoln et al.
1998; Bodei 2000].

While a number of those techniques could potentially yield at least partial results on JFK,
we believe that the use of the applied pi calculus is particularly appropriate. It permits a
rich formalization of the protocol; the formulation of some of its properties via process
equivalences and others in terms of behaviors; and proofs (sometimes automatic ones) that
rely on language-based methods. The effort required seems reasonable enough: our proto-
col formalization took (roughly) a few months of work, as did the proofs and the ProVerif
extensions. While some of the work was difficult and certainly not linear—formalization
and proofs required many iterations—it should be easier in future protocol analyses, partly
because the use of ProVerif should be more routine. In particular, it took only a few hours
to adapt our formalization and re-run the automated proofs for a refinement of JFKr dis-
cussed in Section 2.1 and for JFKi.

We regard the present analysis of JFK as an important case study that goes beyond
what we have previously attempted, first because JFK is an attractive and intricate “state-
of-the-art” protocol of possible practical impact (through its influence on IKEv2 and other
protocols), because JFK tightly packages many ideas that appear elsewhere in the field, and
also because our analysis explores properties that are central to JFK but that are not often,
if ever, explained rigorously. Furthermore, as noted in the introduction, this case study
contributes to the development of ideas and results for the specification and verification of
security protocols that should be useful beyond the analysis of JFK.

An obvious next problem is the analysis of IKEv2. We have not undertaken it (instead or
in addition to the analysis of JFK) because IKEv2 continued to evolve, with influence from
JFK and other sources, until relatively recently. (The RFC that describes IKEv2 is from
December 2005; our work started in 2002 and was mostly complete well before IKEv2
was stable.) Fortunately, there seems to be substantial awareness of the benefits of formal
analysis in and around the IETF, so one may look forward to rigorous studies of IKEv2
and other significant protocols.
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Appendix

The appendices give proofs for the results stated in the body of the paper. Appendix A con-
tains the proofs of two lemmas that allow us to eliminate the authenticator cache, thus fa-
cilitating other proofs. Appendix B groups the proofs of correspondence assertions, which
rely on the same methodology and lemmas. It also includes justifications and details for
our use of ProVerif. Finally, Appendix C presents the remaining proofs.

A. PROOFS ON THE TREATMENT OF COOKIES (LEMMAS 1 AND 2)

We give the proofs for the lemmas on DOS resistance stated in Section 6, Lemmas 1
and 2. Our proofs partly rely on standard pi calculus techniques such as bisimulation up to
context; see Sangiorgi and Walker [2001], Abadi and Fournet [2001] for additional details.

In order to prove Lemma 1, we first establish that any collections of tokens issued by the
receiver and protected by the k&, are equivalent to fresh, distinct names.

LEMMA 3. Let{KRr} W N be afinite set of names, and 18t; v ) e be a series of
terms wherdfr does not occur. Let

S = (vt{ty =t})
Sy = {t~v = H{Kr}(N,Van)}
We have the static equivalenEgy .\, S} ~s VKR ][ yepn Sn-

This lemma is automatically verified by ProVerif, relying on the technique presented
by Blanchet et al. [2005]. With these definitions, in a context that bind® V5 x, the
processe®ts and R, of Lemma 1 each have only one transition, which can be written

RS VENEEN) pirss | RS and Ry ZNEUN) piSy]

respectively, for the same evaluation contexf.] = v N, tn.({xny = Mo} | []).
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PrROOF oFLEMMA 1. We use the notationBS, RS, Rq, R3, andP of Lemma 1 and
S%, Sy of Lemma 3. We writel;  and 3\ instead of?5 and I3 to make explicit the
free nameN and the contents of the cacke(with V' = ( initially). After desugaring, we
have

RS —ul <l<> | le(2).let {z3 = F3(2)} in >
3N ’ if z=3(tn,N,x2,23) then l().Ry
(V) | le(2).let {tn, N,xa, 23 = F3(2),F3(2),F3(2),Fi(2)} in
if z=3(tn,N,xa,23) then
Zf tN = H{KR}(N, 332) then
s(2").(5(z"tn) | if 2/ = 2/.tn then O else Ry)

R3\y =vs.

Let A andO be finite, disjoint subsets of names (indexing active and dead tokens, re-
spectively) and let

5% = HNeAuO Sy | HNeA R§,N | P
S = Inecavo Sv | Raveo | P

where the cache contentig in R\, is a term that represents the $et, | N € O}.

We build the relationR as follows: R relates all extended process&s | R° and
vKgr.(S | R) where K does not occur ir6° | R° and whereR is obtained fromR°
by substitutingRo{zo = V5} for R3{zs = V4}, for some termd/’ and subprocesses
RS{xzy = Vo } of R°.

First, we show thaR C ==;. We apply Lemma 3 for the s¢tKrz} W A W O, remark
that, by definition,R° ~, R, and obtain the static equivalence of the frames associated
with S° | R° andvKg.(S | R) by parallel composition. In the rest of the proof, we show
thatR C ~. In the following case analyses for transitions, we relyJort ~; to relate
the outcome of tests on each sideff

In S° and S, we say that an input oa fails when it is either an input if? or an in-
put followed by a test that will always fail: iR; y with N € A because matching
3(=tn,=N,=x9,x3) fails; in R3, because matching(ty, N, zo,z3) Or testingty =
H{KRr}(N,z2) fails, or becaus&v € O.

By comparing the definitions a®§ and R3, we verify that failing inputs coincide for all
messages. If matching or testing ity fails, then matching in; y fails for all N € A.
Conversely, if matching and testing succeediy) then we must havey = ¢y for some
N' € AwO. EitherN € O, and the freshness test o fails, or N € A, the freshness
test onty succeeds, and matching succeedg&jr .

For eachNV € A, there may be several inputs etthat do not (necessarily) fail, with a
race condition on reading the messagein R3 y and reading the messagéo) in Rs,
respectively. Accordingly, we lI6R’ be the smallest relation that contaiRsand is closed
by matching input transitions anthat may not fail. We represent pairsit as pairs iR
plus sets of inputs indexed by € .A. We show thafR’ is a weak labelled bisimulation
up to context and deterministic reduction steps (for failed tests, and for reading the state of
the cache).

The conditionR’ C =, follows from R C =, and the fact that, in the applied pi cal-
culus, input transitions never affect static equivalence between extended processes. In the
case analysis for transitions, we can omit internal communication steps on clannel
those steps can be decomposed into an output followed by an input. This leaves the fol-
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lowing cases:

(1)

(2)
(3)
(4)

Transitions that affed®® andR are in direct correspondence, except for the transitions
of R$ and R, displayed below Lemma 3. For these transitions, we use structural
equivalence, add a fresh naryeto .A, and discard the conte#;[_] on both sides.

Input transitions o that fail (on either side) leave the abstract state of the protocol
unchanged; they are simulated by an inpuPion the other side.

Input transitions omr that may succeed are simulated on both sides using the closure
condition of R/, by recording an additional input for someé € A.

Inputs on a singlé or on f, following an input onc that may succeed for the nonce

N € A, lead to the same process, being triggered on both sides. We discard
processes resulting from any other non-failed inputcdar N. (These inputs now
fail.) We discard the replicated input fof in R° (now equivalent ta?). We transferV

from A to O, reflecting the new state of the cachefip.

Thus,R C R’ C ~. Finally, the equivalence stated in the lemma is include® jrup to
structural equivalence, fod = 0, O = (), R° = C[R3), andR = C[R,]. U

PROOF OFLEMMA 2. This is a corollary of Lemma 1, with auxiliary equivalences to
relate our two variants of JFKr configurations to instances of the more abstract statement
of Lemma 1.

(1)

(2)

(3)

(4)

We insert the replicated inpit = l¢(z) in parallel withS andS°. SinceC and X are
not empty, we can use the replicated inputs on Messages 1 and 3 t&Sshéw S
andS° | P ~ S°. Informally, any message anfails to match (at least) one message
patternl(...) or3(...), so it can always be received then silently discarded.

We use simple bisimilarities to reorder the fields in Message 3, substituting the tuples
(N1,zg) and(zy,er, hy) for the variables:; andzs, and to reorder the tuple of terms
in the keyed hash to match the format of Lemma 1.

For eachd € C in turn, Lemma 1 applied with
Ry = [l ex if * = xR then let kg in ... (asinR%)
Cl = Ilapex ey, 1)) [
yields the equivalenc&” | P ~ R** | P whereR*4 is

R*A = HmREX
!C(l(N[,:Z?])).
VNR,tr.¢(2(N1, Ng, TR, ER,tR))-
?¢(3(=N;,=Ng,z;,=zR,=tr, e, h1)).
[Locx if © = xR then (%)
let kg in ... (as inRéq)
that is, R°“ of Lemma 2 with an additional product at lirffe). In particular, this

equivalence holds in the evaluation context that gathers the r&t pf? andS | P
for eachA.

Finally, the evaluation contexd x within S° andS binds the variablesy € X to
pairwise-distinct values, so the test in the produckof' at line (x) succeeds exactly
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once, forz = =, and we can replace eadtt” with R°4 using a simple bisimilar-
ity. O

B. PROOFS OF CORRESPONDENCE PROPERTIES

We give proofs of several correspondence properties: Theorem 1, Theorem 3, and part
of Theorem 4. For this purpose we also elaborate on our use of ProVerif, on which the
proofs partly rely. Specifically, we discuss events (used for signaling important protocol
steps) and correspondence properties; most of this material is not specific to JFK. We also
discuss details of our scripts for JFK.

B.1 Events and Normal Traces

In order to keep track of protocol runs precisely using ProVerif, we rely on the insertion

of specific actions, named events, that mark important steps of the protocol under study

but do not otherwise affect its behavior. In the applied pi calculus, events are just message

outputsf (M) where f is an “event channel” (a name in a particular Egtlisjoint from

the set of names of ordinary channels). In labelled transitions, output labels for events use

“event variables’. Event variables are not allowed to appear in input labgld ), so the

adversary cannot use them. (This condition is important so that an gy&ht does not

revealM to the adversary.) Hence, the execution of the proéeafter inserting events is

the execution of” without events, plus the recording of events using lajé$ and active

substitutions{e = M}. We extend the conventions on normal traces given in Section 3.6

accordingly:

(1) Event names occur only in outputs; they are neither communicated nor used for inputs
in processes and in transitions.

(2) Names and variables extruded in events do not appear in inputs unless they have also
been sent on other output channels.

B.2 Correspondence Properties Provable by ProVerif

DEFINITION 1. A correspondence property is defined by a series of nested corre-
spondences
nr
py = [inj ag~ /\
k=1
indexed by sequences of indides Iy .. .1, with; € [1,...,n4. . 1,_,], where[inj] is an
optionalinj marker, and wherey; is an action.
The normal traceP, - ( satisfies property if and only if there exists a series of
partial functionsy; on indices of actions i such that:

(1) for every index in 7, if the actionn(:) matchesy, then
@ x() =4 B
(b) there exists a substitutiansuch that, for all, the action;(x;(+)) equalsazo;

© xz(t) < xm(e) for any ! and any prefixn of [ (that is, n(xz(+)) occurs before
n(xm (1))

(2) if p; has theinj marker, theny; is injective.

The proces$, satisfies property if and only if all normal traces?, - @ of P, satisfyp.
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This definition of correspondence properties generalizes the ones of Blanchet [2002] in
order to capture series of related events in traces. As yAualconjunction, while-~ and
inj are our notations for writing correspondence properties. Intuitively, a correspondence
is a tree of actions, anidis a path in the tree. The indéxepresents the nesting of corre-
spondence functiong; that record occurrences of actionsin the trace; in particulag
records the occurrences of Starting fromp, if o appears in the trace, then, ..., a,
also occur beforehand. When thg marker is present before;, the correspondence is
required to be injective, that is, a distingt must correspond to eaeh Moreover, if for
examplen; > 0, from p; we also have that;, ..., a1, appear before;. (We rely on
compound correspondences instead of multiple, simpler correspondences so that we can
index the injective functions from the top-level actian

For example, the correspondence property

accept (ID 4, 1Dy, sar,sar, K,,) ~ inj accept(accept, ID 4, 1D, sas, sag, K,)

means that each output of mess#gg, ID';, sas, sar, K, on channeaccepf is preceded
by a distinct eveniccept (accepf, ID 4,1D;, saz,sag, K., ). More formally, there exists
an injective functiony; that maps the execution step of the outaetepf (ID 4, D', say,
sar, K, ) to the execution step of the everdcept(accept, ID 4, 1D’;,sas, sar, K,) and
X1(t) < e

Similarly, using the actions of Theorem 1, the correspondence

$(N) ~ (inj e(2(Nr, -, -, ) ~ (inj E(L(Ny, ) ~ inj init?(_,)))

means that each outp8tN;) is preceded by actiorisit(_, _), &(1(Ny, -)), ande(2(N7,
-, - -,-)) in that order, and that different outpuéN;) correspond to different preceding
actions. The correspondence

$(N7) ~ inj ¢(2(N7, -, -, -, ) Anj e(1(Ny, ) A inj init?(_, )

means that each outp$itN;) is preceded by actiorisit® (_, ), &(1(Ny, ), ande(2(Ny,
~, ., -, -)) in any order, and that different outputéV;) correspond to different preceding
actions.

ProVerif can prove such properties when the actiapsange over events that include
list membership testd/; < Ml.’ in addition to regular event§()M7). (We say that the
actions of a trace matchf € M’ simply whenM is an element of the list/’.)

B.3 ProVerif Scripts for JFK

The ProVerif scripts that we use for JFKr and JFKi are availabletat//www.di.

ens.fr/  ~blanchet/crypto/jfk.html . Below we also provide a pi calculus de-
finition of the script for JFKr. This process, writteff, corresponds to the proceSsof
Figure 2, except for the differences explained below.

(1) Tagged messages and other tuples rely on primitive constructors and selectors, instead
of equations. Similarly, sets rely on primitive operations instead of equations.

(2) Optionally, we eliminate the cache of anti-DOS cookies (in order to get injective cor-
respondences), as detailed in Lemma 2.

(3) A ProVerif script cannot express parallel compositions of subprocesses parameterized
by sets, as if[ 4. and][ [, cx (because this defines a family of processes, one for

ACM Journal Name, Vol. V, No. N, January 2007.



33

each seC and X, instead of a single process). So, instead of a static configuration
of compliant principalsd € C, we give an API so that the attacker can allocate and
configure compliant principals. Similarly, the script outputs exponents and exponen-
tials on the restricted channetp and the parallel compositiorf§, .  in I** and
[[. exin R# are replaced with replicated inputsep(d..,, z7) and!eap(d,,,, zr),
respectively. This is strictly more general, as shown by Lemma 4 below.

We obtain the following definitions:

= leap(dy,, xr). 15

R = vKp.(terp(day, vr).R{ | R
Rf?/ = 1e(3(Ny1, Ng,x1, TR, tr, €1, h1))\0.
if tr = H{Kgr}(zR, Ng, Np) then if tg fresh then
?exp(dey, =ZR).
let kp in ...(as inR?)
S¢ = vexp.vep.
( !'Dy[geterp(x).lezp(d., v)]
| 'PK“[vconnect,accept!,init?, channelSs.
getprinc(ID 4, init?, accept, connect, channelS?).
channelS7 (S7).
princ(K4, 1D 4,init*, accept', connect, S7').
('ep(IDa) [ 14| RA") )

The scriptS¢ uses an event channgtinc. Informally, we have one evempirinc (K4,
ID 4, init*, accept!, connect', S7*) for every compliant principalt € C. In addition, we
send all identitiesD 4 of compliant principalsd € C on a restricted channep. In some
proofs, auxiliary processes use these messages to test whether an identity corresponds to a
compliant principal of’, by testing equality with any value input froop.
For any given JFKr configuratiof parameterized by the sefs X, and(S#') acc, we
define an “initialization” trace fo5¢ that yields a similar configuration, using a series of
labels(C, X) = (nz)zex (s) acc(ns) acc Where

N = getexp(x)
n'y = getprinc(ID 4, init*, accept', connect', ChannelS’;‘)
n's = channelS7(S7').princ(K*,ID 4, init*, accept', connect', 57)

and where(n, )< x is the concatenation of, for all z € X, and similarly for(n/y) acc
and(n'}) acc. Hence, we allocate all principal$ € C, then provide all their setS7', in
order to enable those sets to include cross-references to compliant principals.

Our next lemma relates the traces of the extended pragesdraces of the scripf®©
that include initialization:

LEMMA 4. For every configuratiors and normal traceS - &', there exists a normal

traceS® €, Q 5 Q' withS’ ~, Q' such that the actions® are those im interleaved
with events, ang® does not contaiprinc events.
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An analogous statement holds 8 instead ofS and for a script without cache instead
of S¢, as well as for scripts with additional eventsirt’ and R4’
(€, X)

=L Q.

PrROOF We detail a proces9 obtained after running the tra&

Q = vexp.vep.Dx[PKA[... PK4n|

( Iliex'ezp(ds, )

| Tlace('ep(IDA) | 14" | RAT)

| !D.[getexp(x).'ezp(d,, )]

| 'PKA[vconnect, accept, init?, channelSy.
getprinc(ID 4, init?, accept, connect, channelS?).
channelS7 (S7).
princ(K4, 1D 4,init*, accept', connect, S7').

(fep(IDa) [ I | RY") D]

To simulate the normal trac8§ - S’, we rely only on the processes in the first two
products, particularly4’” and R4’, which closely mirror/4 and R4 within S. The main
difference is the introduction of a communication step on restricted chaprnhetp to
dynamically bindd,., = instead of relying on a static produgk, . -

The proof is easily adapted t8° and other variants of the script (without cache, with
additional actions), as these variants do not interfere with the initialization trace.

B.4 Extending Correspondences from Events to Actions

Lemmas 5 and 8 are not specific to JFK. Lemma 5 can be used to order series of events
and actions for a given protocol, depending only on the structure of the protocol. Lemma 8
allows us to infer a correspondence on actions from a correspondence on events. Lemmas 6
and 7 are more specific to JFK, since they depend on the interface for creating compliant
principals, but they could also be adapted to other protocols.

The next lemma states that, if a protod@ syntactically contains a series of nested
actionsa, . . ., i, With no replication between them, then every actignthat occurs in
a trace ofP, is preceded by a series of actions, ..., «,_1. The last two hypotheses
of this lemma guarantee that no other actiomPjncan be an instance af,,. In this and
subsequent lemmas, we associate with each paXi¢he open term obtained by replacing
all subpatterns of the formM with M.

LEMMA 5. Let P, be a process of the fordi; [a10.Cs[aq0o . .. Cy[ay,0.P)]] where

—(1 is any context(s, ..., C,, are contexts with no replication above the hole;

—for all i < n, eitheroy; = & (M;), and we lete}, = a;; or o; = ¢;(X;), and we let
af = ¢;(M;) wherelM; is the term associated withi;;

—for all j < i < n, C; does not bind the names of;

—foralli < j < n, C; does not bind the names and variableswof,

—all output channels i, are names (not variables);

—a, IS an output actiong,, does not occur elsewhere as output channel.

ThenP, satisfies the correspondence propetfy ~ (inj ... ~ (inj o ~ inj o).
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PROOF We show the following invariant: i, - @ is a normal trace, the@ = Q’
for someQ’ of the form

ke{l,...n},je{l,....1
C" [arojk-Cri1jklari1ojn - - - Cnjrlonoji-Pitl]] Elbmhaetle bl

where

—(C" is any context (withl; + --- 4 [,, holes) that contains no replication above the
ly + -+ + 1, holes with indicesk, j such thatt > 2; Cj/;;, is any context with no
replication above the hole;

—for all 4, 7/, j, k such thatt < i < i < nandj < [, C" andCy j; do not bind the
names ofy;;

—forall 7, j, k such that < & < n andj < I, C" does not bind the names and variables
of a0 ; forall ¢, ¢/, j, k such thatc < ¢ < n, j <, andi < i, Cy;, does not bind
the names and variables @fo j;

—alll output channels i)’ are names (not variables);

—all other occurrences @f, as output channel iy’ are in the “then” branch of tests that
fail (that is, tests of the formyf M, = M, then P whereM; and M, are closed terms
andY - M1 7é Mg),

—there exist» — 1 injective functionsx;);<, that map all indices of actions,o in ) to
indices of actiong,o in 7 such that, for all, x1(¢) < ... < xn—1(t) < ¢; there exist
n — 1 injective functions(x}).<. that map all indiceg, k such that < k£ < n and
J <l to indices of actions im such thaty}(j, k) is the index of an actiono . in 7,
X1(4, k) < ... <x%_,(4, k), and the images of ajf; andy; are pairwise disjoint.

The proof is by induction on the trade, - @, starting withP, = Q for {; = 1 and
lr~1 = 0. In the inductive case, for eaé¢h< n, the contexiC” hasi; holes filled with
processes of the form,ojx. R.

—When we unfold a replication of” above a hole filled with a process of the form
aq0j1.R, we increasé, by one.

—When we execute an actiai (M) by reducingayoji, for k& < n, we decreasé, by
one, increasé,; by one, and put the contegt,; ;; in C”. The remaining process
is indexedly41,k + 1. We letoy,, r4+1 be a substitution equal te;; (modulo the
equational theory and the frame @f) such that, after the reductio@;’ does not bind
the variables and names @foy, ., k41, ..., k01, k41 = Ck(M). (This is possible
because the variables and namegbfare not bound by the conte&t” obtained after
reduction.) The functioty), is extended so that; (/;+1, k+1) is the index of the action
(M) = ajoy, ., k+1 In 7. For eachi < k, the domain ofy; is reindexed fromy, &
before the reduction th, 1, k£ + 1 after the reduction.

—When we execute an actief(M) by reducingxyo . for £ < n, andM is an instance
of Mo ;i, we decreasg, by one, increasé, 1 by one, and put the test in the syntactic
sugar foragoj, and the contextCy41 5,1 in C”. The remaining process is indexed
lk+1,k + 1. We letoy, , x+1 be a substitution equal te;; (modulo the equational
theory and the frame af’) on the domain otr;;, such thatMj.oy, ., x+1 = M and
C" does not bind the variables and namesvof;, ., k41, ..., axoy, k1. (Thisis
possible because the variables and naméed aire not bound by’”.) The functiony;,
is extended so that) (Ix+1, k + 1) is the index of the action,. (M) = ooy, k+1
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in . For eachi < k, the domain ofy; is reindexed frony, k& before the reduction to
lk+1, k + 1 after the reduction.

—When we execute an actian (M) by reducingaio ;i for & < n, and M is not an
instance ofM;0;,, we decreasé, by one, and put the test in the syntactic sugar for
a0k, and the process that followes, o, in C”. This transformation adds an occurrence
of ¢,, as output channel i@, in the “then” branch of a test that fails.

—When we execute, (M), we must reduce.,, 0 ;,, for somej since all other occurrences
of ¢,, as output channel i’ are in the “then” branch of tests that fail. In this case,
we decreasé, by one, and put the procesy,, in the contextC”. For alli < n, the
functionsy; are extended by;(:) = x}(j,n) where. denotes the index of the action
anojy inn, andy’(j,n) becomes undefined after the executiomg? ;..

—When we execute another input or output transition, the reduced input or output occurs
in C”, so the contex€” is modified. In the case of an input transition, variables may
be instantiated; this instantiation preserves the invariant.

—When we execute an internal communication, the communication channel is not free
in Q' by definition of normal traces, so the reduced input and output areywj;, SO
they occur inC”. We can then apply the same reasoning as in the previous case.

—When we execute a conditional, we decregsér each context in the branch of the
conditional that is discarded by the reduction.

The lemma follows from the existence pf, ..., x,_1 forall P, Lo 0O
The next lemma treats events that record the unfolding of compliant principal§.

LEMMA 6. LetQ@ be a process of the form

Q=vep.Cl[]aec'@p(IDA)
| TTace Cal@a(IDly, Ma).(Pa | ep(=1DYy).fca, 1D, Ma))]]
where

—C'is an evaluation context,’, is any context for eacll € C;
—f is an event channelf and cp do not occur anywhere else;
—all output channels are names;

—forall A € C, c4 does not occur anywhere else as output channel @addC’, do not
bindc4.

Assume that we have a normal tra@e’— @', with no internal communication step on
channelcp. Then there is an extended normal trace

n° , flc1,ID], M1)...f{cn,ID} ,My)

Q—Q Q"

and an injective functiory that maps all indices of actions i matchingca(IDg, M)
with B € C to indices of the additional actiong(c, |Dg, M).

Relying on correspondence properties of the fgifa ID’, M) ~ ... for the extended
normal trace, we can thus establish properties of the form “for each agtiop, M) such

thatB € C, ...” for the trace) o, Q.
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PrROOF With a proof similar to that of Lemma 5, we show the following invariant:
Q' =vep.Co[ [Tace 'ep(IDa)
| C' [G(ID, M;).(P; | ep(=ID’).Fci, 1D}, M;))] ==
[ Te<ickn ep(=ID;). f{ci, 1D}, M;)]
where

—C) is an evaluation contex€’ is a context withk holes;

—f andc¢p do not occur anywhere else;

—all output channels are names;

—c; = c4 forsomeA € C, foreachi = 1...k+[; forall A € C, ¢4 does not occur
anywhere else as output channel, &ydandC’ do not bindc 4;

—there exists an injective functiog” mapping indices of actiongz(ID’, M) in 7 to
indicesi suchthate < i <k +1,ca = ¢;, ID' = ID, andM = M;.

In Q’, the k processes within contexi’ keep track of all instances of outputs on for
all A € C; thel processes in the final product keep track of all inputs@in evaluation
context (released after communicationsegnin C”).

Using the invariant, we complete the proof as follows. For eaghD 5, M) that occurs
in n at stepe, x”/(¢) is an indexi such thatt < i < k +1, ca = ¢;, IDg = ID}, and
M = M;, so the processp(=IDg).f(ca,|Dg, M) occursinQ’. If B € C, then!ep(ID )
also occurs i)’ and we reducé)’ into Q' by executing

'@<|D3> | Cp(:lDB).f<CA, |DB,M> — '@“DB) | ?<CA, |DB,M>
YD) 15 (D) | {e = (ca, IDg, M)}
in some evaluation context. We fgtmap. to the index of the actioff(c4, 1D, M). O

The next lemma exploits the structure of the interface for creating compliant principals
and theprinc events to infer a correspondence property with fixed compliant principals
Ay, ..., A, from a correspondence property in which compliant principals are represented
by variables.

LEMMA 7. Suppose that® &%), @ and thatS¢ satisfies the correspondence prop-
erty o ~ p1 A A, princ(K®,ID;, init", accept, connect, 5¢) wherea and p; con-
tain only events but nprinc eventsy contains no function symbol with ProVerif equa-
tions, and, for eachi < n, either K or ID; or init’ or accept or connect occurs ina.
Let Q" be Q after replacing theprinc events and their guarded processes withFor
eachA = (A4,,...,A,) € C", the process)’ satisfies the correspondence property
aoy ~ piog, whereo; = [[ ({K. = K2} | {ID; = ID4,} | {init" = init*} |
{accept = accept'i} | {connect = connect'} | {S% = S7*}).

PROOF. Assume thap, is of the formp; = [inj] a7 ~ /\Zlepik. Let Q" L be a

normal trace of)’. Then@ - is also a normal trace @ without princ events, hence
c,. X . . -
S &X), Q L is a normal trace of°, so it satisfies the correspondence property-

p1 A A, princ(K®,ID;, init’, accept, connect, S¢). Thus, sinc€C, X) contains only
princ events and) contains ngrinc events, there exists a series of partial functigns
on indices of actions if such that:
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(1) for every index in 7, if the action;(:) matchesxo 3, then it matches, so

@ x@)=u -

(b) there exists a substitutiarf such that, for all empty or beginning with 1, the
actionn(x;(¢)) equalsazo’ and, for alli < n, the action(C, X)(x;+1(¢)) equals
princ(K" ,ID;, init’, accept, connect, Si)o’; so by the form oprinc events in
(C, X), there existsd’ = (A, ..., A!) such thaprinc(K' , ID;, init’, accept,
connect, S§)o’ = princ(K’,ID;,init", accept, connect, Si)o 5, hence there
existso” such thatr’ = o 3,0"”; 0,0 3,0" matchesyo 3; so A; = Aj for all
1 < n, since for each < n, K orID; orinit* or accept or connectoccurs ina;
so for alll empty or beginning with 1, the actiofix;(¢)) equalsao’ = azo 70",

(© xi(t) < xam(e) for anyl and any prefixi of I;

(2) if p;has theinj marker, theny; is injective.

Therefore, by definition)’ satisfies the correspondence properdy; ~ p1oz. O

The next lemma allows us to infer a correspondence on input and output actions from a
correspondence on events proved by ProVerif. The root action of the inferred correspon-
dence must still be the same event as in the correspondence proved by ProVerif; we use
Lemma 5 or Lemma 6 to change the root action.

LEMMA 8. Let P, be a process. Consider a partial functignfrom events to actions
defined by a finite number of cases of one of the three following forms:

—p(a) = a.
—¢(a)) = o = ¢(M), such that all variables of’ also occur ina, « contains no function

symbol with ProVerif equations, and eithBs = C” [¢(X0;).C; [aaj.Pj]]JE{l"“’l} or
Py =C"[?(X0;).Cj [aaj.Pj]]JE{l"”’l} whereM is the term associated with the pat-
tern X; C” is a context that does not bind the names.@ind«’; eachC; is a context
that consists of any number of tests above the hole; and no other evéptunifies
with .

—p(a)) = o/ =¢(M), such that all variables of’ also occur inw, o contains no function
symbol with ProVerif equations, anf) = C” [aaj.a’aj.Rj]JE{l"“’l} whereC” does
not bind the names af anda’ and no other event i, unifies witho.

We assume that, when two cagéa; ) = o} and¢(asz) = o occur in the definition ob,

a; anday have different event channels. We exteér) ¢(ao) = o’o if ¢(a) = o/, and

extendy to correspondences by applyiggo each action in the correspondence.
Letp be a correspondence with events in the domaig afid such that)(ag) = oy for

the root actiono of p. If P, satisfiep, then P, also satisfieg(p).

PrROOF We consider a subs@&t of the normal traces af;, such that

—if ais an event such that(«) is an input action, and is executed, then the input action
¢(«) occurs in the trace just before(with only internal actions in between);

—if « is an event such thaf(«) is an output action, and is executed, then the output
actiong(«) occurs in the trace just after (with only internal actions in between).

Since P, satisfieg, all traces ofP, in 7 satisfyp and, by construction df , these traces

also satisfyp(p). Let us now consider any normal traég 2, Q of By. By commuting
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internal actions and events with other actions, we build a normal fiaek> Q' in 7 such
that the actions in the image ¢foccur in the same order iff as iny.
For each casé(a) = o of the definition of¢ with o/ # «, starting from a trace

Py % Q, we build a trace?y - Q" such thaty” is equal to except that instances of
may have been moved or deleted, and every instanaérothe resulting trace satisfies the
conditions for being ir¥". The construction distinguishes input cases and output cases:

—Casep(a) = o = ¢(M), such that all variables af’ also occur inw, « contains no
function symbol with ProVerif equations, adth = C”'[¢(X¢;).C; [aaj.Pj]]JE{l’“"l}
whereM is the term associated with the pattéénC” is a context that does not bind the
names okx anda’; eachC; is a context that consists of any number of tests above the
hole; and no other event iR, unifies witha. (The casé€c¢(X¢;) instead ofz(X ;) can
be handled in a similar way, though the syntactic sugar’é0X ¢ ;) requires keeping
track of additional reductions after the input.) For each actibn= ac” that occurs

in 7, we show that)(«”) is executed before” in n, and we build a tracé, o, Q by
executing internal actions followed hy’ just after¢(a’’). To this end, we establish the
following invariant by induction on the length of the traBg - Q (as in Lemma 5): if
Py 4 Q, then

’ je{1,..., Brvr s {1, v
Q=C [C(Xoj).cj[acrj.Pj]]je{l }[C’j [ozorj.Pj{]]Je{l }

where

—(C" is a context (with + I’ holes) that does not bind the namesxaindca’, with only
restrictions and parallel compositions aboveltheoles filled withC’; (o’ Pj];

—C" does not bind the variables and names(df o)) for anyj < 1’;

—C;forallj <1 andC} for all 5 < I’ are contexts that consist of any number of tests
above the hole;

—all other events i) that unify witha are in the “then” branch of tests that fail;

—there exists a trac®, —— @ such that)” is equal ton except that some instances
of o have been moved so that the actiens for any ¢’ are immediately preceded
by o’c’; there exists an injective functiopthat maps each index< I’ to the index

of an actionc(Ma}) in the tracel 2, @ not immediately followed by an instance
of a in n”’; and there exists an injective functigri that maps each index < I’
to the index of the transition that puts;[ac’.P]] in evaluation context, such that
x(7) < x'(y) and all steps betweep(j) (excluded) and/’(j) (included) are silent
reduction steps.
For any step that does not involve any process ird'tlest holes of””’, we carry over the
same step to thg’’ trace. In particular, when an inputX ;) in one of the first holes
is reduced, we incremetftt let C; be aninstance af’; guarded by the pattern-matching
test introduced by the syntactic sugar for the patt&rrand sety(I’) andy’(I’) to the
current index.
Forj <, if a testinC} succeeds, we upda¢, by removing this test; if a test i6";
fails, we decrement; if C; is empty and the evenio’; is executed, we decremetit
For any step of one of these three forms, the step commutes with all preceding steps in
ther” trace, up to the steg’(j) that putsC’|ao’;. ;] in evaluation context; we move
the new step there, and incrementy) if this step is a test that succeeds.
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—Casep(a) = o/ = ¢(M) such that all variables af’ also occur ina, o contains no

function symbol with ProVerif equations, ait) = C” [aaj.a’aj.Pj]jE{l’”"l} where
C" does not bind the names afanda’ and no other event i, unifies witha.

1"

We build a traceP, - Q" by delaying the execution of all actiond’ = ac¢” that
occur inn until just before the execution of the correspondirig’), if that correspond-

ing ¢(a") is executed im. Otherwise” is not executed iy o, Q". To this end,
we establish the following invariant by induction on the length of the tiacel Q: if
Py L Q, then

where no other event i, unifies witha; C” is a context (withl + I’ holes) that
does not bind the names afand«’, with only restrictions and parallel compositions

7
n

above the’ holes filled witha'o”;. P; there exists a trac€, — Q" such that)” =

c” [aoj.a’aj.Pj}je{l’”"l} [ao;.a’a;.P]f]‘je{l""’l " wheren” is equal to) except that
some instances af have been moved or deleted so that the actiarfsfor any o’ are
immediately followed byy'o’.

(Whenao; is reduced infy 2, @, we do not execute that reduction ity 1 Q".
Whend/ ' is reduced iy - Q, we reducexo’, anda/o in Py < Q" For all other

reductions, we execute the same reductioRjn> Q andP, ~— Q")

After applying this construction for all cases, the resulting trB@eL Q'isinT, so
P L satisfiesp(p). The actions in the image @foccur in the same order ipandy’,
so P, L Q satisfiesp(p), and thusP, satisfiesp(p). O
B.5 Proofs for JFK (Theorems 1, 3, and part of 4)

We detail the proofs of Theorems 1, 3, and the first point of Theorem 4.

PROOF OFTHEOREM1. Theorem 1 is a direct consequence of Lemma 5, in combina-
tion with Lemma 2 to remove the cache. For the first part of Theorem 1, Lemma 5 applied
to Sg yields the correspondence

$(N7) ~ (inj e(2(N1, -, - - ) ~ (inj (1(Ny, ) ~ injinit?(_, )))

For the second part of Theorem 1, I8t be S° with an additional outpuﬁ(NI,NR>

before the Diffie-Hellman computation af; in R°4. Lemma 5 applied t&g yields the
correspondence

§<N], NR> ~ (an C(3(N[7 ]VR7 gy =y = ,)) ~
(inj e(2(N1, Ng, -, -, -)) ~ inj ¢(1(N1,-))))

A variant of Lemma 2 (with the addition&loutputs) shows thatg andSg have the same
normal traces, so the same correspondence hold$for]

PROOF OFTHEOREM 3. The proof of this theorem and of the first point of Theorem 4
uses the following technique. Since ProVerif cannot prove correspondences directly on
input and output actions, we instrument the ProVerif script with events after each relevant
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input and before each relevant output. We use ProVerif to show that the obtained script

satisfies a correspondence propertgn events. Next, we consider a traSe-- S’ of
the systemS. By Lemma 4, we obtain a corresponding tra€e &X), Q L. 8" of

the ProVerif script. We show by Lemma 7 that the proa@5sobtained by removing the
princ events and processes under thenyirsatisfies an adapted correspondepiceBy
Lemma 8, we infer tha)’ also satisfies a corresponderige’) in which some events have
been replaced with input or output actions (if needed). By Lemma 5 or 6, the root event of
the correspondencg(p’) is executed, so, by the corresponden¢g’ ), we conclude that

the desired actions have been executed in the trace.

(1) The proof of the first part of Property 1 relies on a scftinstrumented with an
eventaccept(accept', ID;, IDg/,saz,sag, K,,) just beforeaccept“(IDI, IDg,sar,
sag, K,) in R{. ProVerif shows thab® satisfies the correspondence property

accept(acceptlDy, IDg/,sar,sag, K,) ~ 1)
princ(K_,ID,init,acceptconnectS;) A (ID; € Sy)

For some giver®, X, and(S7') acc, assume that we have a normal traces S'. By

Lemma 4, we also have a normal trﬁ‘éﬂ Q LN S with 8" ~, S’ where the

actionsy© are those im interleaved with events angf does not contaiprinc events.
Let Q' be @ after replacing theorinc events and their guarded processes With
By the correspondence property (1) and Lemma)7 satisfies the correspondence
property

accept(accept, D, IDg/,sar,sap, K,) ~ ID; € SP 2)

For anyB € C, if accept(ID4,D,,sa;,sagr, K,) appears i, it also occurs in
(C, X)ne. We apply Lemma 5 to the procegs Since all output channels ¢j are
names an@ccepf is not used anywhere else as a chan@esatisfies

accepf (ID 4, 1D, say, sag, K,,) ~ inj accept(accept, D 4,ID%, sas, sag, K,)
Henceaccept(accept, ID 4, D', sar, sar, K,) occurs inn®, which is also a trace

of Q'. So, by the correspondence property (B)4 € S&.

(2) The proof of the second part of Property 1 relies on a s&fptwithout cache and
with an extra eveninit(init4, ID’;, sa;) just after the inputnit® in I3* and an ex-
tra processp(= ID).accepthonest(accept, ID;, ID’;, sas, sar, K,,) just after the
output onaccept in R4, in parallel with the continuation that sends Message 4.
ProVerif shows thaf¢ satisfies the correspondence property

accepthonest(accept, IDy, 1D, sas, sag, K,) ~
inj init(init17 |D;{, sas) A3)
A princ(K!,IDy,init', accept, connect, St)
A princ(K?,ID,, init? accept, connect, S%)

For some giver®, X, and(S7') acc, assume that we have a normal traces S'. By
Lemma 2, we have a normal tradé -5 S’°. By Lemma 4, we also have a normal

c,.X e . . L .
traceS* LX), Q 1> S” with no internal communications on channgl and with
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S§"” =4 §’°. The actiong)® are those im interleaved with events, ang® does not
containprinc events.
Let Q' be @ after replacing therinc events and their guarded processes With
By the correspondence property (3) and Lemma)7 satisfies the correspondence
property

accepthonest(accept, 1D 4, 1D, sas, sag, K,) ~ inj init(init*, D%, sa)

By Lemma 8 applied withp(init(init?, 1D, sa;)) = init*(ID’z, sa;) and¢ equal to
the identity onaccepthonest events ()’ satisfies the correspondence property

accepthonest(accepf, ID 4, 1D, sas, sar, K,,) ~ inj initA(ID’R,saI) (4)

The actiong)© also label a trace a®’, Q' ,, By Lemma 6 applied t@)’, the trace

Q' - can be extended with an evemtcepthonest (accepf,|D;, D, sas, sar,

K,) for eachaccepf (IDy, ID;, sa,sag, K, ) in (C, X)n® with ID; = ID 4 for some
A € C. (The lemma is applied withy = accept' andf = accepthonest.) By the
correspondence property (4), a distinct preceding itim'Uf(lD’R, say) occurs in the
extended trace, so if since the extended trace adds oabanecthonest events,
soinn.

(3) The proof of Property 2 is done similarly, by adding the evénts (init*, ID,,sar)
just after the init message andnnect(connect, IDg, ID';, sar, sagr, K,,) just before
the connect message, for the first part, and by adairgpt (accept', ID;, ID’, sar,
sag, K, ) just before the accept message ap@= IDR).connecthonest(connect,
IDg, D%, sar, sag, K, ) just after the connect message, for the second part.

PROOF OF FIRST POINT OFHEOREM4. The proof is done by considering a scist
without cache and with additional events after inputs and just before outputs:

—init(init?, ID’,sar) (added just after the inpumit“) records that receives the init
messagdaD’R, sa; on channelnit?.

—mess1(ID4, Ny, g, init?, ID’,sar) (added just before sending Message 1) records that
I sends the messa@éNy, xy).

—messlirec(ID4, Ny, zr) (added just after receiving Message 1) records fhegceives
the message(Ny, zp).

—mess2(ID 4, N1, Ng, x5, TR, gr, tr) (@dded just before sending Message 2) records that
R sends the messag@éN;, Nr, xR, gR,tR).

—mess2rec(IDa, N1, Nr, TR, gr, tr, 1, 1D's,sar) (added just after receiving Message
2) records thaf receives the messa@éN;, Nr, 2 g, 8r, tR)-

—mess3(IDa, Ny, Ng, w1, TR, tr, €1, h1,8r, D', sar, K,) (added just before sending
message 3) records thatends the messa§éN;, Ng, zr, g, tr, e, hr).

—MUDA, N;,Ngr,x1,2R,tR, €5, h1> (added just aftef?c(3(: Nj,= Ng,zj,
= zp,= lr,es, hy))) records that? receives the messa@éN;, Nr, z1, xR, tg,e€r,
hr).

—accept(accept', ID;, 1Dy, say, sag, K,,) (added just before sending the accept mes-
sage) records thdt executes@ccept (IDy, 1Dy, sar, sag, K,).

—MGDA, ID;,er,hr, N, Nr, x5, xR, tR, €], h[> (added jUSt before Sending Mes-
sage 4) records thdt sends the messagécr, hi).
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—messdrec(ID 4, er, hr, connect, IDg, ID’;, sas, sar, K,) (added after receiving, de-
crypting, and verifying Message 4) records thaeceived the messagéer, hr).

—cp(= IDR).connecthonest(connect, IDg, ID;,sar, sagr, K,) is added just after the
connect message. The event records fhetecutesonnect (IDg, ID';, sar, sag, K,)
with A € CandIDr = IDp for someB € C.

We sometimes mention in events more variables than those that occur in the corresponding
input or output. These additional variables allow us to store in the event more information
on the state of the principal, and help ProVerif perform its proof.
Let us define the following actions:

Qconnecthonest = connecthonest(connect, Dy, ID’;, sar,sag, K,)

Qprinc1 = princ(_, Dy, init', accept, connect)

Qprince = princ(-, IDy, init?, accept, connect)

agemmea= connect(IDy, ID’;, sar, sar, K,)

(messarec = messérec(IDy, eg, hr, connect, IDy, ID’, saz, sar, K,)

Q) = c(4(er, hr))

Qg(4) = E<4(€R, hR)>

Olpessqs = meSS4<ID2; |D1, €R, hR7 NI; NR; 1, TR, tR7 €r, h1>

Oaseep= accept(IDy, D%, say, sag, K,)

Qaccept = accept(accept, IDy, 1D, sar, sar, K,)
Omessarec = mess3rec(IDy, N1, Ng, 1, TR, tr, €1, hr)
ac3) = ¢(3(Nr, Nr, 21, %R, tR, €1, 1))

az(3y = ¢(3(N1, Ng, 21, 2R, tg. €1, hr))

Omesss = mess3(IDy, Ni, Ng, x1, xR, t'p, €1, h1,gr, 1D, sar, K,)
Omessarec = mess2rec(IDy, N;, Ng, ¥R, gr, t’p, x1, D, sar)
ac(2) = ¢(2(N1, Nr, TR, 8R: tR))

az(2) = ¢(2(N1, Nr, TR, gR, tR))

Omess2 = mess2(IDy, Ny, N, 27, TR, 8R, tR)

Onessirec = messirec(IDy, Ny, z7)

Q1) = c(1(Ny,zh))

ag(1y = ¢(1(Nr, x1))

(pess1 = mess1(IDy, Ny, xy, init!, ID’, saz)

Qlinit — 1n1t<|n|t1, IDIR7 SaI>
Qinit = initl(ID}{,saI)
ProVerif shows thaf¢ satisfies the following correspondence property:

Olconnecthonest ™~ aprincZ A aprincl A (II’IJ Olpessdrec ™ (iIlj Olpessa ™
(IHJ accept ™ (ln] Olpess3rec ™ (IHJ QOlpess3 ~ (an Olpess2rec ™ (5)
(an Qpess2 an O4messlrec) A (an Opess1 ~ an ainit)))))))
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For some giver?, X, and(S7) 4cc, assume that we have a normal trabe’> S’. By
Lemma 2, we have a normal trasé - S’°. By Lemma 4, we also have a normal trace
Se €, Q 7%, $” with no internal communications afp and withS” ~, §’°, where
the actiong;© are those im interleaved with events angt does not contaiprinc events.

Let Q' be Q after replacing therinc events and their guarded processes WittBy
the correspondence property (5) and Lemm@/7satisfies the correspondence property

Olconnecthonest0 (IHJ OlpessdrecO ~ (an Olpessa0 ~
(HlJ aaccepta ~r (an Olness3recO (an QOlpess30 ~ (ln.] Olpess2recO ~

(lIlJ Qlpess20 ~ IDJ amesslrecJ) A (an Oess10 ~ ln.] ainita)))))))

wherec = {K! = K4} | {ID; = ID4} | {init' = init*} | {accept = accept'} |
{connect = connect} | {S} = S} | {K2 = KB} | {ID, = IDg} | {init? =
init?} | {accept = accepf} | {connect = connect} | {S? = SP}. We apply
Lemma 8 With¢(amess4rec0) = (1), ¢(amess4a) = (g(4)0, ¢(aaccept0) = Qlccept s
¢(ame553recg) = O5(:(3)0-1 ¢(amess30) = Oég<3>0', ¢(am9552reca) = O(C(Q)O'v ¢(amess2a) -
045<2>O', ¢(amesslrec0) = Oéc(l)O', ¢(amessla) = aE(l)Ur ¢(ainit0) = Qjpit0, and¢ equal
to the identity onconnecthonest events. Ther)’ satisfies the correspondence property

Qconnecthonest T ~7 (II’IJ Qe(4)0 ~> (IHJ Qg(4)0 ~
(inj azceepe ~ (inj ae(z)o ~ (inj agzyo ~ (inj aez)o ~
(inj agayo ~ inj agqyo) A (inj agryo ~ inj ainita)))))))
ProVerif cannot show automatically that Message 1 is receivdg &fger it is sent by, but
a simple manual argument shows it: the nongds created just before sending Message 1,

and appears in the Message 1 receivedbgo it must indeed have been received after
has sent it. S@)’ satisfies the correspondence property

Qconnecthonestd ~7 (ln.] Ae(4)0 > (HlJ Qg(4)0 ~>
(inj ageeepe ~ (I ce3)o ~ (inj ag@yo ~ (inj aceyo ~ (6)

(inj ag(2y0 ~» (Inj aeryo ~ (inj ag(1yo ~ inj ainito)))))))))

The actions)¢ also label a trace af)’, Q' -, By Lemma 6 applied t@)’, the trace

@' L can be extended with an evemtnecthonest (connect', ID g, ID;, sas, sagr, K,)
for eachconnect (ID g, ID’, saz,sag, K,) with A € C andID = IDp for someB € C.
(The lemma is applied withy = connect' andf = connecthonest.)

In the extended trace, for eadonnect (IDg, ID’,sar,sar, K,) with A € C and
B € C, we haveconnecthonest(connect, IDg, D', sar,sar, K,). Then the corre-
spondence property (6) shows that the actions required by Theorem 4 have been executed
in order in the extended trace, therefore also)insince the extended trace adds only
connecthonest events, and therefore i sincen® adds only events tg. [J

C. OTHER PROOFS OF SECRECY, AUTHENTICITY, AND DENIABILITY

Finally, we give proofs of the remaining results of Section 7 and the theorem of Section 8.
These rely on an analysis of configurations.
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Iy = !initA(lDlR,Sa[).Il
I = Z/N[.(QOI |E<1(N[,.%‘[)>.12)
12 = C(2(=N[,NR,$R,gR7tR)).13
Iy = vK,.,Ke, Ky, s1,e1,h1.(k1 | o1 | &(3(N1, Nr, 21, 2R, tR, €1, h1)).14)
Iy = C(4(€R, hR))Zf H{Ka}(r, 6R) = hg then I5
15 = I/|DR,SaR7SR.(T1 ‘ Zf V{|DR}(SR,(N[,NR,$[7£ER)) then I5a)
Is, = connect (IDg, D, sar,sar, K,)
If = or|vsr,sr,Ka,Ke.(k1 | o1 | 71)
o1 = vNAN; =N}
kr = Hu:a,e,v{K“ = H{xRAdII}(vaNR7u)}
or = {SI = S{Ké}(N],NR,l‘I,IRng)} |
{er = E{K.}(ID4, 1Dy, sar, 1)} |
{hr = H{Ka}(i,er)}
71 = {IDr,sar,sr = D{Kc}(er)}
R1 = !C(].(N[,JZ])).RQ B
Ry = vNg,tr.(¢r | €(2(N1, Nr, R, gr, tr)).R3[l()])
Rs[] = vI.([]|'c(3(=Nr1,=Nr,x1,=2R, =tr, €1, h1)).l().R3a)
Rsq = vKo,Ke, Ky.(kr | if H{K.}(i,er) = hr then RY)
R3b = I/IDI,ID'R7$a1,31.
(TR | if ID; € 5}4 then Zf V{|D1}(S[, (N[,NR,.’EI,:CR,gR)) then R3c)
Rs. = accept (ID;, D', sar,sar, K,).Ra
Ry = VSR7€R,hR.(O'R | E<4(6R7hR)>)
Ril = ¥R | V'SI75R7K¢17K6'(KR | TR | OR)
YR — I/N.{NR = N} ‘ I/N.{tR = N}
KR = Hu:a,e,v{Ku = H{xl Ade}(N]7NR,U)}
or = {sr =S{K2}(N1,Ngr,zr,zr)} |
{er = E{Kc}(IDa,sar, sr)} |
{hr =H{Ka}(r,er)}
TR = {|D],|D/R,Sa1,81 = D{Ke}(ej)}
S = Dx [PK® [[Tacc(I* | R*) [ [D]]
IA = HIIEX IO
RA = cREX Rl
PEC[] = v(K%)aec.([Tace{IDa = Pk(E2)} [ [)
D] = v ({z =g"d.} | 1)
Dx[] = Dg[... Ds,[]] whereX = {z1,...,2n}

Fig. 3. Linearized JFKr protocol, with auxiliary notations for the session state
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C.1 Running Configurations: Definition

We set up notations to decompose arbitrary trates™ S’ into parallel sessions with an
explicit representation of their respective states. (The configur&tfois the sequential
variant of JFKr, obtained by Lemma 2.) Figure 3 restates the definition of the protocol
without the responder cache, with auxiliary definitions for various sub-processes. (For
convenience, some active substitutions appear in guarded contexts, always under a restric-
tion on their domain; they stand for ordinary substitutions applied within the scope of the
restriction.) With these notations; = SJ0].

Since both roles of the protocol are now sequential, we index the state for each session
in each role using a series of action labels that represent the messages processed and gen-
erated so far. In a few cases, these labels do not entirely determine the internal state of
the session (for instance the internal choice of an exponential X when receiving an
init message); in those cases, we annotate the trace with that state (for instance writing
(z1)) after theinit® action). In the state, we also do not keep track of unimportant inter-
nal reduction steps, such as tests that will always fail or succeed in their given evaluation
contexts.

We first describe abstract configurations obtained by interleaving the resulting extended
traces, with no formal correspondence withat this stage. Then we study the equational
properties of these abstract configurations, as a prerequisite to the equivalences of Theo-
rem 2 and to the case analysis on transitiSfis—~ S’, which depends on equality tests
on terms. In particular, we show how to simplify the final state of sessions between com-
pliant principals, which involve exponentials Xi. By induction on,, we then show that
every normal trac&° - &’ is an interleaving of extended traces that majcheading to
8" =~ &’ (up to structural equivalence and deterministic internal steps).

In the following definition, the cases are numbered according to the messages to which
they pertain. For example, for the initiator, case (1) corresponds to the session state just
before Message 1; caseJ) corresponds to a session that fails before Message 3, after
a bad Message 2. For the responder, we distinguish cases (3), (3,1), (3,2), .... The case
(3,n) corresponds to a responder that has receivatstances of Message 3, and has not
selected one of them yet. The case (3a) corresponds to a responder just after the selection
of one of those instances. We identify (3,0) and (3).

DEFINITION 2 (EXTENDED TRACES). For the initiator, extended traces range over:
e A ID/ , .

nit”(Bp-san)(@r), ¢ anyA € C, z; € X, and termdD’,, sa;, with statel;.
init* (1D’ ,sa1 ) (z 1 )vN1.€(1(Nr,z 1

(1)
(@)

3) 2, ¢(2(=N1,NRr,zR.&R,

) (which we abbreviate2+), with statep; | I5.

), for any termsNg, zg, gr, tr, With statep; | I3.

M. .
(x3) a2, o(Mo), with statep;, for any other messagkl/s.
(4) 77_2> C(Z(:N},NR,.’ER,gR,tR))VEI,h,].E<3(N],NR,JJI,.’I)R7tR,€I7h])>

(which we abbreviate™),
with statep; | vK,, Ke, Ky, s1.(k1 | o1 | 14).

(5) s, clerhr)), for any termsg and hr such that the two tests ify and I5 succeed,
with statepr | vK,, K., K,, sy, IDR,saR,sR.(m ‘ or | TI | I5a).

(x5) o, o(Ma), for any other messagk/,, with statep; | vK,, K¢, K., s1.(k1 | o1).
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er,hr))VIDR,sar, K, .connect (IDg,ID;,sar,5a R, Ky

(5) 22X ', with statel.

For the responder, extended traces range over:
2 c(L(Nr,21))(

®3) -
er | Ra[l()].

(3,n) o, (M) eMon) g any termsMs; for i = 0..n, with statepr | Rs[l{) |

IL; 1()-R3a,:] with a product of instances dts,, which we writeRs, ;, for each: such
that the messagg/s; matche(=N;,=Ng, z1, =R, =tgr, €5, h1).

(3a) 2 M) Mo )W) g0 any1 < m < n such that ) M., matches3(=N;,

=Ng,x1,=%R,=tr,€r, hy) for some subterms;, e;, hy; and () the three tests in
the resulting proces®;, succeed, with stater | Rs, | R5.
(B3 = Rs[[];,, 1()-Rsa,:] is areplicated input o in parallel with deadlocked processes.
In its context,R5 is inert, and could be discarded up to equivalence.)

(x3a) as above, except fox), with statepr | R} after failing a test.

(4) 3, c(Ms,1)...c(Ms,n)(m)vID1,ID’, 531, K, .accept (ID7,1D’ sar,saRr, Ko

), with statepr | vsr, Ko, Ke.(kr | Tr | Ra | RS).
(@) e, vemhne@lenhn)) i stateR), | RY.

For discarding input messages that do not match a pattern listed above, extended traces
N
finally include inputsﬂ andM for any messagé/ and A € C, with no state.
To any interleaving; of the extended traces listed above, involving any principals of
in any role (with distinct session indices for the variables exported by different sessions),
we associate thabstract configuratios|Q], where@ is the parallel composition of all

session states.

Bar) gor anyB € C, xr € X, and termsNy, xy, with stateR.

cUNrzr)(Ber)vNe tr 22(Nr.Nr 2r 8r.tR)) (which we abbreviate™-), with state

) (which we abbreviate

We first consider the equational net effect of abstract configurations, by analyzing their
frames. Letp(_) be the function on processes that erases any plain process, keeping only
restrictions and active substitutions. We compute the frame

¢(S[Q]) = Dx [PEC [[Tacc ¢(Q)]]

wherep(Q) is a parallel composition of active substitutions given by Definition 2 (with
distinct session indices for each session).
For each case of an initiator extended trace, the frame is:

(1o

(2), (3), (x3) ¢y which exportsN;

(4), (5), (X5) ©Yr | VKa,Ke,KU,SI.(Iﬁ:[ | O’]) which eXpOTtSZVI,ej,h]
(5/) Ié which EXpOFtSZV[, er,hr,IDg,sag, K,

For each case of a responder extended trace, the frame is:
2)0
(3,n), (38), (x3a) pr which exportsNg, tr
(4) VYR ‘ vsy, Ka, Ke.(liR | TR) which exportSNR7 tr, |D[, lD}b sar, KU
(4') R, which exportsNg, tg, IDr, 1D, sar, K., er, hr
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As a special case, consider an abstract configuratiomith two extended traces, (6
with initiator A andID = ID g and (4) with respondeB andID; = ID 4, with matching
outputs and inputs on channel Intuitively, these two extended traces form a successful
run of the protocol betweeA and B. Using equational simplifications (notably the Diffie-
Hellman equation), the frames for the two extended trace&dr&), = ¢ | ¢’ where

o=o¢r | ¢r|vsr,sr, Ko, Ke.(k1 | 01 | OR)

defines the exchanged messages@ng {K” = K,} | {ID¥ =1D,} | {ID% = IDp} |
{ID'Z = 1D} | {saP =sa;} | {sapt = sar} accounts for duplicate variable definitions.

Our next lemma relates an abstract configuration that contains the outcome of these two
extended tracesp to an abstract configuration that defines instead fresh, distinct names
(4 of Section 7.1) using observational equivalence:

LEmMA 9. If S° L S[Q] is an interleaving of extended traces, then

SQ[¢] = ¢4 | S[@]

PrRoOOFE The proof relies on ProVerif for showing observational equivalences [Blanchet
et al. 2005]. We automatically establish an equivalence by using a script derived from
S¢ of Appendix B.3, as explained below; the full definition of the script is available at
http://www.di.ens.fr/ ~blanchet/cryptol/jfk.html . Then we use stan-
dard pi calculus arguments to relate this equivalence to the one stated in the lemma. Our
script is derived from the linear variant 6f as follows:

(1) We replaceRs, with d(Ng,ID4) | Rs., Whered is an additional public channel.
(This additional message reveals commitment to a Message 3 in a given receiver ex-
tended trace.) We also &/, S’[_], andQ’ be §°, S[_], andQ with these additional
messages.

(2) We replace exp.vcp with vexp.vep.vids and add a replicated outplitls (K4, 1D 4)
in parallel with!ep(ID 4).

(3) We obtainS¢ for i = 1,2 from the resulting script by adding within the scope of
vexp.vep.vids one of the additional processgs defined as follows:

T! = ids(K?,ID4).ids(KB,IDg).exp(dy,, xr).exp(dey, tr).T;

T, = |l’]|'[(|D/R7 say,=ID4,=IDpg, =z, sz).
1/5]7SR,Ka7KeJ/N[,NR,tR,Ky,@[,eR,hth.
public(Ny, Nr,tr, Ky, er,er,hr, hg) | { :ii [or|nrlor|on Ig:; ;;

(4) We split the linear processes for the initiator and the responder by separating the sig-
nature computations from the rest of the processing: for the initiator, we split just
after the computation of the signatureand before the computation ef, h; and the
sending of Message 3; for the responder, we move the signature computation before
the MAC check, then split just before this check. We reassemble the resulting pieces
as follows. For each principad € C, we specify messages on new private channels
getl 4 andgetR 4 that carry a value for every variable used in the rest of the process-
ing, we guard the rest of the processing with replicated inputs on these channels, and
we place this (the rest of the processing plus the replicated inputs) in parallel with
the remainders of 4 and R’ (which include signature computations). L&t’ for
1 =1, 2 be the resulting processes.
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(5) The processes used in the ProVerif script for this proofSife whereSs’ = E[S¢”]
for ¢ = 1,2 and some evaluation contekt (Intuitively, the contextE collects the
parts ofS¢ that do not affect the equivalence but complicate its automated proof; the
splitting step (4) prepares this simplification.)

ProVerif automatically establishe” ~ S5”. Since equivalence is preserved by appli-
cation of evaluation contexts, we ha$é&’ ~ S5’ by applyingE. After applying E, the
auxiliary channelgetl 4 andget R 4 are private, and used only to pass continuations to the
rest of the initiator and responder processes, so we can undo Step (4) by using equivalences
S¢ ~ 8¢/ fori = 1,2. Hence we havé§ ~ S5.

We apply the initialization tracé? ACIZIN 8¢[T;], as detailed in the proof of Lemma 4,

followed by four communication steps leading frdfi to T;, for the parameter§, X,
ID 4, IDg, x;, andx g used in the statement of the lemma. By bisimulation, and since this
initialization trace determines the resulting proces$dg;], we haveS¢[T}] ~ S¢[T].

We now apply the contextgetexp, getprinc.| ] then perform simplification steps:

—The channelgetprinc, getexp, andcp are now restricted, and used only for output, so
we can replace those outputs and their guarded processe8 witto equivalence.

—Exponents and exponentials are bound by parametric profijigts in S'[7;], and are
bound by inputs:zp(d,, z) in S¢[T}], in the presence of a replicated outpeip (d;, x)
for eachx € X. Sinceezp does not appear anywhere else, the two variants are equiva-
lent. We thus obtain the equivalenS§T;] =~ S'[T5].
We carry over the tracg° - S[Q] in the hypothesis of the lemma, and obt&ifir;] -
S'[Q"| T;] for i = 1,2, wheren' is  with additional outputs or, and we finally us€;:

init(lD%,saI,zI,rR,IDA,IDB)

S'Q" | Ti]

UNI,Nptp.Ko.er,en,hihn.public(N,Np,tr,Kv,e1,er.h1,hp) { S'Q" | ¢]
S'1Q" | ]
By bisimulation, and since the actions on the trace determine the resulting processes, we
still haveS’[Q’ | ¢] ~ S'[Q’ | pa4)-
Finally, we apply the contextd.. and use the equivaleneel.S'[Q’ | ¢] = S[Q | ¢]
(and similarly fore,). By transitivity, we conclude tha$[Q | ¢] =~ ¢4 | S[Q]. O

C.2 Running Configurations: Transition Invariant

Partly relying on the static equivalences above to determine the outcome of tests, we can
now relate extended traces and abstract configurations to arbitrary normal traces and their
resulting configurations:

LEMMA 10. Every normal traceS° - &’ is an interleaving of extended traces with
final stateS[Q] that matchesS’ up to structural equivalence and deterministic steps.

PrRoOOFE The proof is by induction on the length of the normal tracén the base case,
the initial configuration coincides with the initial abstract configuratish:= S[0].

For the inductive case, assume that we have a normal 8acés S’ % S”. By
inductive hypothesis, we can perform the case analysis on the final transitionthe
abstract configuratio§[Q)] associated withy, instead ofS’. We enumerate all transitions
enabled inS[Q)] from its structure, given by Figure 3 and Definition 2:
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—Replicated input o in Iy, for someA € C andz; € X. If the message matches the
pattern(ID’;,sa;) of I, then we create a new initiator extended trace in cagwith

. it A ID/ , . . it A i
acUonM. Otherwise, we use aCtIOIIg% to discard the message.

—Replicated input o in R, for someA € C andz; € X. If the message matches the
input pattern ofR;, then we create a new responder extended trace, using case (2) with

matching parameters. Otherwise we use acfioh’ to discard the message.

—Output onc in I; for an initiator in stage (1). We move to the next stage, (2), by the
same action. The cases for outputim I3, output onconnect' in I,, output onc in
R,, output onaccepf in R, and output or: in R, are handled similarly.

—Input onc in I, for an initiator in stage (2). We move to stage (3) if the message matches
the input pattern, and to stage ) otherwise.

—Input onc in I, for an initiator in stage (4). We move to stage (5) if the two testg,in
and/; succeed, and to stage §) otherwise.

—Replicated input or in R3[_] for a responder in stage @), (3a), (x3a), (4), or (4).
In all these stages, we record the input message€as, 1 and, if this message matches
the patter8(=N;,=Ng, z;, =z, =tr,es, h;), we add a new process that inputsion
fori =n + 1. If we are at stage (), we move to stage (2 + 1); otherwise, we stay
in the current stage. (Informally, the received message is discarded.)

—Replicated input ore in some process$; for a responder in stage (3a)<8a), (4),
or (4). We extendr}; with a new deadlocked input drif the message matches the third
message pattern; the rest of the state is unchanged.

—Internal communication on channelor a responder is stage,(d). We move to stage
(3a) if its conditions are met, to stage 3a) otherwise. [J

C.3 Proofs of the Theorems of Section 7 (Theorem 2, part of Theorem 4)

PROOF OFTHEOREM2. Assume that we have a normal trate’> S’. By Lemma 2,
we haveS ~ S°, henceS° - S’. By Lemma 10, we interpret this trace as an interleaving
of extended transitionS® %> S” for some abstract sta®’ = S[Q] that matchesS’ up to
structural equivalence and deterministic reduction steps.

FromS|[Q], the existence of the transitions made explicit in the statement of the theorem,
and the characterization of the resulting configuration in terms of additional session states,
are obtained as an interleaving of an initiator extended tracé fmingx; with a responder
extended trace foB usingzz. From Definition 2 and Figure 3, we verify that each of the
transitions is enabled in turn:

—WhenlD 4 € SE, we use the interleaving

init* (IDz,sa7)(x1) vNr.€¢(1(Nr,z1)) e(1(Nr1,z1))(B,xr)

S[Q]

vNR,tr.¢(2(N1,NRr,2Rr,ER,tR)) c(2(=N1,NRr,2R,ER:tR))

ver,h1 €3(N1,Nr,x1,xRr,tR€1,h1)) ¢(3(N1,NRr,*1,ZR,tR€1,h1)) (1))

vID1,ID,,sar, K, .accept (ID;,ID’, ,sar,sar, K.)

ver,hr.c(4(er,hr)) c(4(er,hr))

vIDR,sar, K, .connect (IDg,ID’; ,sar,sar, K.)

SQ[ 1" | Ry | Ryl

ACM Journal Name, Vol. V, No. N, January 2007.



51

By definition, R% is inert in this context, and can be discarded up to equivalence. Finally,
we apply the equivalence of Lemma 9 to repldté | R, P with ¢,.

—WhenID4 ¢ SE, we use the interleaving

initA (ID%g,sa1)(x1) vN;.e(1(Nr,z1)) c(1(Nr,z1))(B,xr)

S[Q]

UNR,tr.€(2(N1,NRr,xR,gR:tR)) c(2(=N1,NR,ZR:ER:\tR))

ver,h1.¢(3(N;,Nr,z1,xRr,tr,er,h1)) c¢(3(Nr,Nr,zr,x2r,tr,er,hr)) (1))

S[Q | (¢r | vEKa, Ke, Ky, s (k1 | o1 | 1)) | (or | RE)]

The simplification of the resulting process is obtained as a corollary of Lemma 9: the
equivalence for complete, accepted sessions implies the corresponding equivalence for
complete, rejected sessions, by applying a context that restricts variables not exported
in the latter case. Finally, the tests in subprocedseand R always fail, so these
processes can be discarded up to bisimilarity (since any abstract configuration can re-
ceive and discard messagescamyway). [

PROOF OF SECOND POINT OFHEOREM4. By Lemma 10, the normal trace in the
statement of the theorem can be decomposed into an interleaving of extended traces. Since
there is aconnect' action for somed € C, the trace comprises (at least) one initiator ex-
tended trace fod in case (%) with that action. Using the first point of Theorem 4 (verified
by ProVerif), there exists aaccepf action for someB € C with matching parameters,
hencen comprises (at least) one responder extended trade fiocase (4) or (4 with that
action. Hence, we have

n mcﬁ(lDB,lD;%,saI,saR,KU)

S* = S[Q | I3 | Ry | Ry ()

wherelf andR), | R result from those two extended traces &hdorresponds to all other
extended traces. We check that the two extended traces share the same parameters, so as
to match the series of actions listed in Theorem 4:

—Matching parameters betweancepf andconnect' actions directly include the terms
|DR =IDg,ID4 = 1Dy, lD/R’ say, SaR, andK,,.

—The key computations; andx g of Definition 2 yield equal terms if and only if they
use matching paramete§, Ng, 27, andzr. So matching key#(,, implies matching
termsN;, Ng, x7, g, K4, andK,.

—By inspection of abstract states in Definition 2, signatures uAtfeuse distinct names
as first signed parameter, so there is only one such verifiable signatuve.f&milarly,
there is only one verifiable signature undéf with N as second signed parameter.
Thus, the sent and received signatures coincide, and moreover the responder extended
trace must have exported this signature and therefore be in&ase (

—The remaining termsy, hy, eg, andh g depend only on matching terms listed above.

Sincel{ and R} | R; share the same parameters d&ids inert in this context, we have
S[Q| I | Ry | Ry =~ S[Q | ¢]. By Lemma 9, we hav[Q | ¢] = ¢4 | S[Q]. Finally,
let n” ben minus the actions for the two extended traces. Relying on our analysis of the

transitions (7) as an interleaving of extended traces, we obtajnS® - ¢, | S[Q]. O
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C.4 Proof of the Theorem of Section 8 (Theorem 5)

In order to prove our plausible deniability results, we explain how to simplify the frame
associated with an abstract configuration, so as to replace most of the terms defined in
past sessions by terms that do not use any name restricid ifsigning keys and secret
exponents).

The next lemma describes how an active attacker can get access to keys and signatures
by running ordinary sessions with compliant principals.

LEMMA 11 (TRANSPARENTSESSIONS. We say that an extended traceransparent
when the peer exponential provided by the environmegtit Message? for the initiator,
x7 in Messages for the responder) equalg™D for some termD.

(1) LetS[Q | If] be an abstract configuration whe#g is the state of a transparent ex-
tended trace in case ( which defines,, = {s; = S{K2}(N;, Ng,z1,7r,gr)}.
There are evaluation contexts and F' that do not restrict the variables &f[Q] such
that

SQII5] = ElS[Q | ¢r | os,]] and S[Q|¢r|os]=F[SQ | I]]

(2) LetS[Q | R} be an abstract configuration whet®) is the state of a transparent
extended trace in case’}4which defines,, = {sg = S{K2}(N7, Ng,z1,7r)}.
There are evaluation contexts and F' that do not restrict the variables &f[Q] such
that

SQI R =E[SIQ|¢rlos]l and SQ[e¢r| o] =FIS[Q| Ry

PrROOF We give a proof of the first part of the lemma; the other part is established
similarly. Relying on the Diffie-Hellman equation and structural equivalence, we replace
each occurrence of the keys, for u = a, e, v defined byx; with the corresponding term
H{x;"D}(Ny, Ng,u). Hence, for some’, 77, ando’ variants ofky, 77, ando for

er,hr
er, hr that do not use names restricted®y|, we have

SIQ| L] = S[Q | er | vsr,sr, Ka, Ke.(k1 | 01 | 77)]
= I/SIaSRaKaer'(K/I | T} | Ué],h[ | S[Q | PYr | JSI])

Conversely, we usé'[.] = ver, K..(kk, | Tr,s;, | VKv,|DR,sar, sg, h1.-) wherekg,
definesK, as inx; andrg ,, definess; as inty of Figure 3. O

Next we deal with non-transparent extended traces. Sessions with identical parameters
Ny, Ng, z;, andzr can be simplified by using Lemma 9. The next lemma deals with the
key computation for any other sessions.

LEMMA 12. For a given abstract configuration, let; andnz range over non-trans-
parent extended traces with different tuples of tetiis, Nr, x, x g) for any two extended
traces. Lets’ =[] vNAK, = N}. We have:

u=a,e,v

Dx [T, (¢ | #0) | L, (en | 6R)| =6 Dx L, (or | &) | T (0m | &)
PROOF The active substitutions; andxr in the session states define kelys, =
H{zgr ds, }(N;,Ng,u) and K, = H{z;d,,}(N;, Ng,u). SinceH{_}(.) has no
equation and at least some of the parameters used as second argument are different in
any two of these definitions, these keys are pairwise distinct. Since the extended traces
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are not transparent, the variahtg is bound either tac € X or to a term that is not an
exponential. In both cases, the computed Diffie-Hellman tegd.., is different from

any term available to the environment, so each key is also different from any other term
available to the environment[]

We can now rewrite the frame associated with any abstract configuration to a frame that
exports signatures on transparent extended traces, plus distinct fresh names:

LEMMA 13. For any normal traceS® - S’, we haveS’ ~, ® | S[Q'] where® is an
active substitution that exports fresh, distinct names @ds a parallel composition of
the states associated with transparent extended traces in the abstract config@ation

PROOF LetS[Q] = S’ be the abstract configuration provided by Lemma 10. We apply
Lemma 9 to every pair of extended traces with matching paramaterd'z, z;, x g, thus
rewriting their state into a frame that defines fresh, distinct names, then collect all session
states that define only fresh, distinct names into a single active substifution

Let@Q’ andQ” be the parallel compositions of the states for all remaining transparent and
non-transparent extended traces, respectively. By applying Lemma 11 to every transparent
extended trace, we can rewrifg into Q’; where none of the secret expone(ds).c x
occur. Hence, we have

S[Ql ~s ¢ 1S[Q"| Q" =2 | PK®[Q% | Dx[Q"]

We apply Lemma 12 (in some evaluation context) to simplify[Q)"'] so as to replace
all key computations:g and«; within Q" with instances of’. Then, using simple sta-
tic equivalences, we further simplify the state for all non-transparent extended traces by
replacing any exported terms, er, hy, hr with exported fresh names (since each of
these terms is keyed with the only occurrence of a restricted name®’ lastllect all the
resulting fresh, distinct name definitions. We thus have

® | PKC[Qp | Dx[Q")) =s @ | @' | PKC[Q | Dx[0]] =@ | @' | S[Q] O

PROOF OFTHEOREMS. For each transformation described in the theorem, we verify
that the normal trac8, -+ S’ is enabled, describe the effect of the transformation on the
frame obtained by Lemma 13, and exhibit an evaluation coidfekiat does not restrict the
variables ofS, such thatC'[S)] ~; S’.

(1) The existence of the trace is given by the second part of Theorem 4. After applying
Lemma 13, sessions between compliant principals only export fresh, distinct names.
Let v, define these extra names; we use the cort@gXt= o, | [].

(2) SinceA performs no control action, no session associated wiglmoduces any signa-
ture. We erase from any session associated widh let ¢ define instead fresh, distinct
names, and lef’ be the contexP K4 [0] | ¢ | [].

(3) Those parameters do not affect the existence of the trace and, if they occur in non-
transparent extended traces, they are erased by Lemma 13. Otherwise, we detail the
case (9: relying on Lemma 11, we lef'[_] = E[F,[.]] whereE uses the parameters
of the original extended trace ari{ is I with the rewritten parameters.

(4) We erase theonnect' from the trace and obtain a session in case (5) instead)of (5
Relying on the first part of Lemma 11, we I€{_] = E[F'[]], whereF” is F without
the restriction ok, IDg, andsag.
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(5) Those parameters do not affect the existence of the trace. In particular, for trans-
parent extended traces for the responder, the hypothedis joguarantees that the
environment can provide a valid Message 3 that includes a signature associated with
the rewritten verification key. We detail the casé):(4elying on the second part of
Lemma 11, we leC'[] = E[F,[.]] whereE uses the parameters of the original ex-
tended trace and, is I’ with the rewritten parameters.

(6) This change affects neither the existence of the trace nor the frame obtained after
applying Lemma 13. [J
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