
Security Protocol Verification:

Symbolic and Computational Models

Bruno Blanchet

INRIA, École Normale Supérieure, CNRS, Paris
blanchet@di.ens.fr

Abstract. Security protocol verification has been a very active research
area since the 1990s. This paper surveys various approaches in this area,
considering the verification in the symbolic model, as well as the more
recent approaches that rely on the computational model or that ver-
ify protocol implementations rather than specifications. Additionally, we
briefly describe our symbolic security protocol verifier ProVerif and sit-
uate it among these approaches.

1 Security Protocols

Security protocols are programs that aim at securing communications on in-
secure networks, such as Internet, by relying on cryptographic primitives. Se-
curity protocols are ubiquitous: they are used, for instance, for e-commerce
(e.g., the protocol TLS [109], used for https:// URLs), bank transactions,
mobile phone and WiFi networks, RFID tags, and e-voting. However, the de-
sign of security protocols is particularly error-prone. This can be illustrated
for instance by the very famous Needham-Schroeder public-key protocol [160],
in which a flaw was found by Lowe [147] 17 years after its publication. Even
though much progress has been made since then, many flaws are still found
in current security protocols (see, e.g., http://www.openssl.org/news/ and
http://www.openssh.org/security.html). Security errors can have serious
consequences, resulting in loss of money or loss of confidence of users in the sys-
tem. Moreover, security errors cannot be detected by functional software testing
because they appear only in the presence of a malicious adversary. Automatic
tools can therefore be very helpful in order to obtain actual guarantees that
security protocols are correct. This is a reason why the verification of security
protocols has been a very active research area since the 1990s, and is still very
active. This survey aims at summarizing the results obtained in this area. Due
to the large number of papers on security protocol verification and the limited
space, we had to omit many of them; we believe that we still present repre-
sentatives of the main approaches. Additionally, Sect. 2.2 briefly describes our
symbolic verification tool ProVerif.

1.1 An Example of Protocol

We illustrate the notion of security protocol with the following example, a sim-
plified version of the Denning-Sacco public-key key distribution protocol [108].



2 Bruno Blanchet

Message 1. A → B : {{k}skA
}pk

B
k fresh

Message 2. B → A : {s}k

As usual, A → B : M means that A sends to B the message M ; {M}sk denotes
the signature of M with the secret key sk (which can be verified with the public
key pk); {M}pk denotes the public-key encryption of messageM under the public
key pk (which can be decrypted with the corresponding secret key sk); {M}k
denotes the shared-key encryption of message M under key k (which can be
decrypted with the same key k). In this protocol, the principal A chooses a fresh
key k at each run of the protocol. She signs this key with her signing key skA,
encrypts the obtained message with the public key of her interlocutor B, and
sends him the message. When B receives it, he decrypts it (with his secret key
skB), verifies the signature of A, and obtains the key k. Having verified this
signature, B is convinced that the key was chosen by A, and encryption under
pkB guarantees that only B could decrypt the message, so k should be shared
between A and B. Then, B encrypts a secret s under the shared key k. Only A

should be able to decrypt the message and obtain the secret s.

In general, in the literature, as in the example above, the protocols are de-
scribed informally by giving the list of messages that should be exchanged be-
tween the principals. Nevertheless, one must be careful that these descriptions
are only informal: they indicate what happens in the absence of an adversary.
However, an adversary can capture messages and send his own messages, so the
source and the target of a message may not be the expected one. Moreover,
these descriptions leave implicit the verifications done by the principals when
they receive messages. Since the adversary may send messages different from
the expected ones, and exploit the obtained reply, these verifications are very
important: they determine which messages will be accepted or rejected, and
may therefore protect or not against attacks. Formal models of protocols, such
as [5, 7, 72, 117] make all this precise.

Although the explanation above may seem to justify its security informally,
this protocol is subject to an attack:

Message 1. A → C : {{k}skA
}pk

C

Message 1’. C(A) → B : {{k}skA
}pk

B

Message 2. B → C(A) : {s}k

In this attack, A runs the protocol with a dishonest principal C. This principal
gets the first message of the protocol {{k}skA

}pk
C
, decrypts it and re-encrypts

it under the public key of B. The obtained message {{k}skA
}pk

B
corresponds

exactly to the first message of a session between A and B. Then, C sends this
message to B impersonating A; above, we denote by C(A) the dishonest partic-
ipant C impersonating A. B replies with the secret s, intended for A, encrypted
under k. C, having obtained the key k by the first message, can decrypt this
message and obtain the secret s.

The protocol can easily be fixed, by adding the identity of B to the signed
message, which yields the following protocol:



Security Protocol Verification: Symbolic and Computational Models 3

Message 1. A → B : {{B, k}skA
}pk

B
k fresh

Message 2. B → A : {s}k

When he receives the first message, B verifies that his own identity appears as
first component. After this change, in a session between A and C, the adversary C

receives {{C, k}skA
}pk

C
. It cannot transform this message into {{B, k}skA

}pk
B
,

because it cannot transform the signature that contains C into a signature that
contains B instead. Therefore, the previous attack is impossible. However, this
point does not prove that the protocol is correct: there may be other attacks, so
a security proof is needed.

1.2 Models of Protocols

In order to obtain proofs that security protocols are correct, one first needs to
model them mathematically. Two models of protocols have been considered:

– In the symbolic model, due to Needham and Schroeder [160] and Dolev and
Yao [110] and often called Dolev-Yao model, the cryptographic primitives
are represented by function symbols considered as black-boxes, the messages
are terms on these primitives, and the adversary is restricted to compute
only using these primitives. This model assumes perfect cryptography. For
instance, shared-key encryption is basically modeled by two function sym-
bols, enc and dec, where enc(x, y) stands for the encryption of x under key
y and dec(x, y) for the decryption of x with key y, with the equality:

dec(enc(x, y), y) = x. (1)

Hence, one can decrypt enc(x, y) only when one has the key y. More generally,
one can add equations to model algebraic properties of the cryptographic
primitives, but one always makes the assumption that the only equalities
that hold are those explicitly given by these equations.

– In the computational model, developed at the beginning of the 1980s by Gold-
wasser, Micali, Rivest, Yao, and others (see for instance [123, 124, 180]), the
messages are bitstrings, the cryptographic primitives are functions from bit-
strings to bitstrings, and the adversary is any probabilistic Turing machine.
This is the model generally used by cryptographers.
In this model, the length of keys is determined by a value named security
parameter, and the runtime of the adversary is supposed to be polynomial in
the security parameter. A security property is considered to hold when the
probability that it does not hold is negligible in the security parameter. (A
function is said to be negligible when it is asymptotically smaller than the
inverse of any polynomial.) This probability can also be bound explicitly as
a function of the runtime of the adversary and of the probability of breaking
each cryptographic primitive; this is called exact security.
For instance, shared-key encryption can be modeled by two functions enc

and dec with the same equality (1) as above, but the security of encryption
is expressed (informally) by saying that the adversary has a negligible prob-
ability of distinguishing encryptions of two messages of the same length [39].
Equalities other than (1) may exist, even if they are not made explicit.



4 Bruno Blanchet

The computational model is much more realistic, but complicates the proofs,
and until recently these proofs were only manual. The symbolic model, however,
is suitable for automation, essentially by computing the set of all messages the
adversary can know. Starting in the 1990s, the proof of protocols in the symbolic
model has been an important application field for formal verification methods.

We emphasize that even the computational model is just a model, which
ignores many important aspects of reality. In particular, it ignores physical at-
tacks against the devices: side-channel attacks exploit power consumption, tim-
ing, noise, . . . and fault attacks introduce faults in the system in order to break
its security. As protocols are better studied and verified formally, physical at-
tacks become increasingly important and are an area of active research, with
some workshops, such as FTDC (Fault Diagnosis and Tolerance in Cryptogra-
phy) and CHES (Cryptographic Hardware and Embedded Systems), focusing
mainly on this area. This survey will not deal with physical attacks.

1.3 Security Properties

Security protocols can aim at a wide variety of security goals. The main security
properties can be classified into two categories, trace properties and equivalence

properties. We define these categories and mention two particularly important
examples: secrecy and authentication. These are two basic properties required by
most security protocols. Some protocols, such as e-voting protocols [104], require
more complex and specific security properties, which will not be discussed here.

Trace and Equivalence Properties. Trace properties are properties that
can be defined on each execution trace (each run) of the protocol. The protocol
satisfies such a property when it holds for all traces in the symbolic model,
except for a set of traces of negligible probability in the computational model.
For example, the fact that some states are unreachable is a trace property.

Equivalence or indistinguishability properties mean that the adversary can-
not distinguish two processes. For instance, one of these processes can be the
protocol under study, and the other one can be its specification. Then, the equiv-
alence means that the protocol satisfies its specification. Equivalences can be
therefore be used to model many subtle security properties. In the symbolic
model, this notion is called process equivalence, with several variants (obser-
vational equivalence, testing equivalence, trace equivalence) [5–7], while in the
computational model, one rather talks about indistinguishability. Equivalences
provide compositional proofs: if a protocol P is equivalent to P ′, P can be re-
placed with P ′ in a more complex protocol. In the computational model, this is
at the basis of the idea of universal composability [70]. However, in the symbolic
model, their proof is more difficult to automate than the proof of trace proper-
ties: they cannot be expressed on a single trace, they require relations between
traces (or processes). So most equivalence proofs are still manual, even if tools
begin to appear as we shall see in Sect. 2.1.



Security Protocol Verification: Symbolic and Computational Models 5

Secrecy. Secrecy, or confidentiality, means that the adversary cannot obtain
some information on data manipulated by the protocol. In the symbolic model,
secrecy can be formalized in two ways:

– Most often, secrecy means that the adversary cannot compute exactly the
considered piece of data. In case of ambiguity, this notion will be called
syntactic secrecy. For instance, in the protocol of Sect. 1.1, we may want to
prove that the adversary cannot obtain s nor the key k shared between A

and B. These properties hold only for the fixed protocol of Sect. 1.1.
– Sometimes, one uses a stronger notion, strong secrecy, which means that the

adversary cannot detect a change in the value of the secret [1, 48]. In other
words, the adversary has no information at all on the value of the secret. In
the fixed protocol of Sect. 1.1, we could also show strong secrecy of s.

The difference between syntactic secrecy and strong secrecy can be illustrated
by a simple example: consider a piece of data for which the adversary knows
half of the bits but not the other half. This piece of data is syntactically secret
since the adversary cannot compute it entirely, but not strongly secret, since the
adversary can see if one of the bits it knows changes. Syntactic secrecy cannot
be used to express secrecy of data chosen among known constants. For instance,
talking about syntactic secrecy of a bit 0 or 1 does not make sense, because
the adversary knows the constants 0 and 1 from the start. In this case, one has
to use strong secrecy: the adversary must not be able to distinguish a protocol
using the value 0 from the same protocol using the value 1. These two notions
are often equivalent [91], both for atomic data (which are never split into several
pieces, such as nonces, which are random numbers chosen independently at each
run of the protocol) and for probabilistic cryptographic primitives.

Strong secrecy is intuitively closer to the notion of secrecy used in the compu-
tational model, which means that a probabilistic polynomial-time adversary has
a negligible probability of distinguishing the secret from a random number [9].

Syntactic secrecy is a trace property, while strong secrecy and computational
secrecy are equivalence properties.

Authentication. Authentication means that, if a participant A runs the pro-
tocol apparently with a participant B, then B runs the protocol apparently with
A, and conversely. In general, one also requires that A and B share the same
values of the parameters of the protocol.

In the symbolic model, this is generally formalized by correspondence prop-
erties [148, 179], of the form: if A executes a certain event e1 (for instance, A
terminates the protocol with B), then B has executed a certain event e2 (for
instance, B started a session of the protocol with A). There exist several vari-
ants of these properties. For instance, one may require that each execution of e1
corresponds to a distinct execution of e2 (injective correspondence) or, on the
contrary, that if e1 has been executed, then e2 has been executed at least once
(non-injective correspondence). The events e1 and e2 may also include more or
fewer parameters depending on the desired property. These properties are trace
properties.



6 Bruno Blanchet

For example, in the fixed protocol of Sect. 1.1, we could show that, if B

terminates the protocol with A and a key k, then A started the protocol with B

and the same k. The injective variant does not hold, because the adversary can
replay the first message of the protocol.

The formalization is fairly similar in the computational model, with the no-
tion of matching conversations [41] and more recent formalizations based on
session identifiers [9, 40], which basically require that the exchanged messages
seen by A and by B are the same, up to negligible probability. This is also a
trace property.

2 Verifying Protocols in the Symbolic Model

A very large number of techniques and tools exist for verifying protocols in
the symbolic model. We first present a survey of these techniques, then provide
additional details on the tool that we have developed, ProVerif.

2.1 Verification Techniques

The automatic verification of protocols in the symbolic model is certainly easier
than in the computational model, but it still presents significant challenges.
Essentially, the state space to explore is infinite, for two reasons: the message
size is not bounded in the presence an active adversary; the number of sessions
(runs) of the protocol is not bounded. However, we can easily bound the number
of participants to the protocol without forgetting attacks [84]: for protocols that
do not make difference tests, one honest participant is enough for secrecy if
the same participant is allowed to play all roles of the protocol, two honest
participants are enough for authentication.

A simple solution to this problem is to explore only part of the state space,
by limiting arbitrarily both the message size and the number of sessions of the
protocol. One can then apply standard model-checking techniques, using systems
such as FDR [147] (which was used to discover the attack against the Needham-
Schroeder public-key protocol), Murφ [158], Maude [106], or SATMC (SAT-
based Model-Checker) [16]. These techniques allow one to find attacks against
protocols, but not to prove the absence of attacks, since attacks may appear
in an unexplored part of the state space. (One can indeed construct a family of
protocols such that the n-th protocol is secure for n−1 sessions but has an attack
with n parallel sessions [153]. More generally, an arbitrary number of sessions
may be needed [84].)

If only the number of sessions is bounded, the verification of protocols remains
decidable: protocol insecurity (existence of an attack) is NP-complete with rea-
sonable assumptions on the cryptographic primitives [170]. When cryptographic
primitives have algebraic relations, the verification is much more difficult, but
the complexity class does not necessarily increase. For instance, exclusive or is
handled in the case of a bounded number of sessions in [78, 79, 86] and the Diffie-
Hellman key agreement in [77], still with an NP-complexity. Practical algorithms



Security Protocol Verification: Symbolic and Computational Models 7

have been implemented to verify protocols with a bounded number of sessions,
by constraint solving, such as [154] and CL-AtSe (Constraint-Logic-based Attack
Searcher) [80], or by extensions of model-checking such as OFMC (On-the-Fly
Model-Checker) [35].

The previous results only deal with trace properties. The verification of
equivalence properties is much more complex. First, decision procedures were
designed for a fixed set of basic primitives and without else branches [112, 134],
but their complexity was too large for practical implementations. Recently, more
practical algorithms were designed for processes with else branches and non-
determinism [75, 76] or for a wide variety of primitives with the restriction that
processes are determinate, that is, their execution is entirely determined by the
adversary inputs [81, 87]. Diff-equivalence, a strong equivalence between pro-
cesses that have the same structure but differ by the terms they contain, is
also decidable [36]; this result applies in particular to the detection of off-line
guessing attacks against password-based protocols and to the proof of strong
secrecy. These techniques rely on symbolic semantics: in a symbolic semantics,
such as [64, 103, 146], the messages that come from the adversary are represented
by variables, to avoid an unbounded case distinction on these messages.

For an unbounded number of sessions, the problem is undecidable [114] for
a reasonable model of protocols. Despite this undecidability, many techniques
have been designed to verify protocols with an unbounded number of sessions,
by restricting oneself to subclasses of protocols, by requiring user interaction,
by tolerating non-termination, or with incomplete systems (which may answer
“I don’t know”). Most of these techniques deal with trace properties; only the
type system of [1] and ProVerif [54] deal with equivalence properties. Next, we
present a selection of these techniques.

– Logics have been designed to reason about protocols. Belief logics, such as
the BAN logic, by Burrows, Abadi, and Needham [69], reason about what
participants to the protocol believe. The BAN logic is one of the first for-
malisms designed to reason about protocols. However, the main drawback
of these logics is that they do not rely directly on the operational semantics
of the protocol.
Another logic, PCL (Protocol Composition Logic) [100, 115] makes it pos-
sible to prove that a formula holds after some participant has run certain
actions, by relying on the semantics of the protocol. It allows systematic and
rigorous reasoning on protocols, but has not been automated yet.

– Theorem proving was used for proving security properties of protocols [164].
Proofs in an interactive theorem prover typically require much human inter-
action, but allow one to prove any mathematically correct result.

– Typing was also used for proving protocols. Abadi [1] proved strong se-
crecy for protocols with shared-key encryption. Abadi and Blanchet [2] de-
signed a type system for proving secrecy, which supports a wide variety of
cryptographic primitives. Gordon and Jeffrey [125–127] designed the system
Cryptyc for verifying authentication by typing. They handle shared-key and
public-key cryptography.



8 Bruno Blanchet

In all these type systems, the types express information on the security level
of data, such as “secret” for secret data and “public” for public data. Typing
is better suited for at least partly manual usage than for fully automatic ver-
ification: type inference is often difficult, so type annotations are necessary.
Type checking can often be automated, as in the case of Cryptyc. Types pro-
vide constraints that can help protocol designers guaranteeing the desired
security properties, but existing protocols may not satisfy these constraints
even if they are correct.

– Strand spaces [117] are a formalism that allows to reason about protocols.
This formalism comes with an induction proof technique based on a partial
order that models a causal precedence relation between messages. It was
used both for manual proofs and in the automatic tool Athena [174] which
combines model checking and theorem proving, and uses strand spaces to
reduce the state space. Scyther [99] uses an extension of Athena’s method
with trace patterns to analyze a group of traces simultaneously. These tools
sometimes limit the number of sessions to guarantee termination.

– Broadfoot, Lowe, and Roscoe [66, 67, 169] extended the model-checking ap-
proach to an unbounded number of sessions. They recycle nonces, to use a
finite number of nonces for an infinite number of executions.

– One of the very first approaches for protocol verification is the Interroga-
tor [155, 156]. In this system, written in Prolog, the reachability of a state
after a sequence of messages is represented by a predicate, and the program
runs a backward search to determine whether a state is reachable or not.
The main problem of this approach is non-termination. It is partly solved by
making the program interactive, so that the user can guide the search. The
NRL Protocol Analyzer (NPA, which evolved into Maude-NPA) [116, 150]
considerably improves this technique by using narrowing in rewrite systems.
It does not make any abstraction, so it is sound and complete but may not
terminate.

– Decidability results can be obtained for an unbounded number of sessions,
for subclasses of protocols. For example, Ramanujan and Suresh [168] showed
that secrecy is decidable for a class of tagged protocols. Tagged protocols are
protocols in which each message is distinguished from others by a distinct
constant, named tag. Their tagging scheme prevents blind copies, that is, sit-
uations in which a message is copied by a participant of the protocol without
verifying its contents. Extensions of this decidability result include [14, 82].
In general, these decidability results are very restrictive in practice.

– Several methods rely on abstractions [98]: they overestimate the attack pos-
sibilities, most often by computing a superset of the knowledge of the adver-
sary. They yield fully automatic but incomplete systems.
• Bolignano [63] was a precursor of abstraction methods for security pro-

tocols. He merges key, nonces, . . . so that a finite set remains. He can
then apply a decision procedure.

• Monniaux [159] introduced a verification method based on an abstract
representation of the knowledge of the adversary by tree automata. This
method was extended by Goubault-Larrecq [128]. Genet and Klay [122]



Security Protocol Verification: Symbolic and Computational Models 9

combine tree automata with rewriting. This method lead to the im-
plementation of the verifier TA4SP (Tree-Automata-based Automatic
Approximations for the Analysis of Security Protocols) [62].
This approach abstracts away relational information on terms: when
a variable appears several times in a message, one forgets that it has
the same value at all its occurrences in the message, which limits the
precision of the analysis. However, thanks to this approximation, this
method always terminates.

• Weidenbach [178] introduced an automatic method for proving protocols
based on resolution on Horn clauses. This method is at the heart of the
verifier ProVerif and will be detailed in Sect. 2.2. It is incomplete since
it ignores the number of repetitions of each action of the protocol. Ter-
mination is not guaranteed in general, but it is guaranteed on certain
subclasses of protocols, and it can be obtained in all cases by an addi-
tional approximation, which loses relational information by transforming
Horn clauses into clauses of the decidable subclassH1 [129]. This method
can be seen as a generalization of the tree automata verification method.
(Tree automata can be encoded as Horn clauses.) With Mart́ın Abadi [2],
we showed that this method is equivalent to the most precise instance
of a generic type system for security protocols.

• Other abstraction-based techniques for security protocol verification in-
clude control-flow analysis [59–61], Feret’s abstract-interpretation-based
relational analysis [118], Heather and Schneider’s rank functions veri-
fier [133], Backes et al.’s causal graph technique [19], and the Hermès
protocol verifier [65]. While most verifiers compute the knowledge of the
adversary, Hermès computes forms of messages, such as encryption under
certain keys, that guarantee preservation of secrecy.

Platforms that group several verification techniques have also been implemented:

– CAPSL (Common Authentication Protocol Specification Language) [107]
provides a protocol description language, which is translated into an in-
termediate language, CIL (CAPSL Intermediate Language), based on mul-
tiset rewriting (or equivalently on Horn clauses with existentials in linear
logic) [72]. This intermediate language can be translated into the input lan-
guages of Maude, NPA, Athena, and of the constraint solving verifier of [154].

– AVISPA (Automated Validation of Internet Security Protocols and Appli-
cations) [17] provides, like CAPSL, a protocol description language HLPSL
(High-Level Protocol Specification Language), which is translated into an in-
termediate language based on multiset rewriting. Four verifiers take as input
this intermediate language: SATMC for a bounded state space, CL-AtSe and
OFMC for a bounded number of sessions, TA4SP for an unbounded number
of sessions.

Even if it is rather long, this survey of protocol verification techniques in the
symbolic model is certainly not exhaustive. It still shows the wide variety of tech-
niques that have been applied to protocol verification, and the interest generated
by this problem in the formal method community.



10 Bruno Blanchet

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authentication, . . .

Horn clauses Derivability queries

Resolution with free selection

The property is true Potential attack

Automatic translator

Fig. 1. The verification method of ProVerif

2.2 ProVerif

As mentioned above, the protocol verifier ProVerif is based on an abstract repre-
sentation of the protocol by a set of Horn clauses, and on a resolution algorithm
on these clauses. This tool has the following features:

– It is fully automatic. The user gives only the specification of the protocol
and the properties to verify.

– It can handle a wide variety of cryptographic primitives, defined by rewrite
rules or by certain equations.

– In contrast to finite state techniques, it can verify protocols without arbi-
trarily bounding the number of executed sessions (even in parallel) of the
protocol or the size of messages. This makes it possible to obtain actual
proofs of the security properties.

– It can verify secrecy, correspondence, and some equivalence properties.

Of course, there is a price to pay for these advantages: ProVerif does not always
terminate and it is not complete (it may find false attacks). It is still precise and
efficient in practice, as demonstrated by case studies, such as [3, 4, 52, 55].

The verification method is summarized in Fig. 1. The Horn clause verification
technique is not specific to any formalism for representing the protocol. Among
the many existing formalisms, we focused on extensions of the pi calculus with
cryptographic primitives. The pi calculus itself [157] is a minimal programming
language that models systems communicating on channels. Its cryptographic
extensions are particularly well-suited for specifying cryptographic protocols.
This line of research was pioneered by the spi calculus [7], which adds encryption,
signatures, and hash functions to the pi calculus. It was considerably extended by
the applied pi calculus [5], which provides a generic treatment of cryptographic
primitives, defined by an equational theory. In our work, we first focused on a
simpler case in which cryptographic primitives are defined by rewrite rules. This
case can still represent many cryptographic primitives. We distinguish two kinds



Security Protocol Verification: Symbolic and Computational Models 11

of primitives: constructors and destructors. Constructors, such as encryption enc,
build new terms, while destructors, such as decryption dec, compute on terms.
Destructors are defined by rewrite rules. For example, shared-key decryption can
be defined by the rewrite rule: dec(enc(x, y), y) → x. Decrypting a ciphertext
enc(x, y) with the encryption key y yields the cleartext x.

We then extended the tool to support some primitives defined by equations,
by translating these equations into rewrite rules automatically [54]. Hence res-
olution, on which ProVerif relies, can still use ordinary syntactic unification
(instead of unification modulo the equational theory), and thus remains effi-
cient. In particular, this technique supports block ciphers, for which decryption
never fails (it may return junk), and a simple model of Diffie-Hellman key agree-
ments. It still has limitations; in particular, it cannot handle associativity, so
it does not support XOR (exclusive or). Extensions have been proposed for
supporting XOR [139] and for improving the treatment of Diffie-Hellman key
agreements [140]. Support for associative-commutative symbols can be offered
by unification modulo the equational theory, as in Maude-NPA [116].

The protocol represented in this calculus is automatically translated into a
set of Horn clauses (a logic program). This translation is defined in [2]. The
main idea of the Horn clause representation is to use a predicate attacker, such
that attacker(M) means “the attacker may have the message M”. For example,
the fact that the attacker can encrypt, resp. decrypt, when it has the key is
represented by the following two clauses:

attacker(x) ∧ attacker(y) ⇒ attacker(enc(x, y))

attacker(enc(x, y)) ∧ attacker(y) ⇒ attacker(x)

When the attacker has the cleartext x and the key y, it can built the ciphertext
enc(x, y), and when the attacker has the ciphertext and the key, it can obtain
the cleartext. The messages exchanged by the honest participants of the protocol
can also be represented by similar clauses. The participants are considered as
oracles that the attacker can call to increase its knowledge. When a participant
A sends a message M after receiving messages M1, . . . , Mn, we have a clause:

attacker(M1) ∧ . . . ∧ attacker(Mn) ⇒ attacker(M)

Indeed, when the attacker has M1, . . . , Mn, it can send them to A; A replies
with M , which the attacker can intercept. For instance, in the original proto-
col of Sect. 1.1, B receives a message of the form {{y}skA

}pk
B
, modeled by the

term penc(sign(y, skA), pk(skB)), where penc represents the public-key encryp-
tion, sign the signature, and pk computes the public key from the corresponding
secret key. Then, B replies with the secret s encrypted under the key y, {s}y,
modeled by the term enc(s, y). Hence, we obtain the clause:

attacker(penc(sign(y, skA), pk(skB))) ⇒ attacker(enc(s, y))

More details on this representation as well as the complete coding of the protocol
of Sect. 1.1 can be found in [53].



12 Bruno Blanchet

This representation of protocols is approximate in that the application of
Horn clauses can be repeated any number of times, while the real protocol repeats
each step only once per session. So, the state of the participants is only partly
modeled. A model that does not make such an approximation can be obtained
by using clauses in linear logic instead of classical logic, to control the number
of repetitions of each step [113]. The Horn clause model can be seen as a sound
abstraction, in the abstract interpretation sense [98], of the linear logic model,
obtained by ignoring the number of repetitions of each action [49]. Hence, our
technique is sound (when it says that a security property is true, then it is
actually so), but not complete (false attacks can be found). However, in our tests,
false attacks rarely occur. In fact, false attacks occur typically for protocols that
first need to keep data secret, then publish them later in the protocol. In that
situation, the Horn clause model considers that the attacker can re-inject the
secret in the early part of the run, which is not possible in reality (V. Cortier,
personal communication). Ignoring the number of repetitions of each action is a
key to verify protocols without bounding the number of sessions.

Using this representation, secrecy can be inferred from non-derivability: if
attacker(M) is not derivable, then the attacker cannot have M , that is, M is
secret. Even if derivability is undecidable in general, several techniques can be
used to determine whether a fact is derivable from a set of clauses. However,
the simplest techniques, such as SLD-resolution used in Prolog, would never
terminate. (For example, the clause for decryption given above immediately leads
to a loop.) More elaborate resolution techniques succeed in this task:

– Ordered resolution with selection has been used in [178] and is implemented
in the theorem prover SPASS (http://www.spass-prover.org/).

– Ordered resolution with factorization and splitting terminates on protocols
that blindly copy at most one message at each step [83]. (This class of pro-
tocols results in clauses with at most one variable.)

– ProVerif uses resolution with free selection (without ordering) [18]. This
strategy terminates on tagged protocols [57]: in these protocols, each appli-
cation of a cryptographic primitive is distinguished from others by a constant
(the tag). For example, we use enc((c0,m), k) for encrypting m under k, in-
stead of enc(m, k). It is easy to add tags, and it is also a good design practice:
it can make protocols more secure, in particular by avoiding type flaw at-
tacks [132]. When we verify a tagged protocol, the implemented protocol
should of course also be tagged, since the security proof for the tagged pro-
tocol does not imply the security of a non-tagged version. A key to obtain
termination is to avoid resolving on facts of the form attacker(x). Indeed,
these facts resolve with all facts of the form attacker(M), which leads to
non-termination in almost all examples coming from protocols.

These three techniques terminate on numerous practical examples, even outside
the decision classes mentioned above.

In case attacker(M) is derivable from the representation of the protocol,
ProVerif cannot prove secrecy. In this case, ProVerif uses the derivation of



Security Protocol Verification: Symbolic and Computational Models 13

attacker(M) to reconstruct an attack automatically [13]. (Such a reconstruction
fails if a false attack has been found.)

We have extended this technique to more complex security properties:

– ProVerif can verify complex non-injective and injective correspondence prop-
erties [52], which can in particular model authentication.

– It can also verify a limited class of process equivalences: it verifies a strong
equivalence between processes that have the same structure, but differ only
by the terms they contain [54] (named diff-equivalence in [36]). This equiva-
lence is useful, for instance to prove strong secrecy [48] and to detect guessing
attacks against password-based protocols. ProVerif is so far the only tool that
can prove process equivalences for an unbounded number of sessions.

Using our tool, we verified numerous protocols from the literature, finding known
attacks or proving the correctness of the protocols. Most examples were verified
in less than 0.1 s [52]. We also used ProVerif for verifying a certified email proto-
col [3], the protocol JFK (a proposed replacement for the key exchange protocol
of IPsec) [4], and the cryptographic filesystem Plutus [55]. ProVerif was also
used by other authors, for instance for verifying Web services, by translating
XML protocols to ProVerif using the tool TulaFale [47, 149], e-voting proto-
cols [21, 104, 138], zero-knowledge protocols [23], RFID protocols [68], and the
TPM (Trusted Platform Module) [74, 105]. An extension was proposed for sup-
porting protocols with mutable global state [15]. ProVerif can be downloaded at
http://www.proverif.ens.fr/.

3 Verifying Protocols in the Computational Model

Proving protocols automatically in the computational model is much more dif-
ficult than in the symbolic model. Still, much research tackled this task. This
section presents these approaches.

3.1 Computational Soundness

An attack in the symbolic model directly leads to an attack in the computational
model. However, the converse is not true in general: a protocol may be proved
secure in symbolic model and still be subject to attacks in the computational
model. Following the seminal work by Abadi and Rogaway [8], many compu-
tational soundness results have been proved. These results show that, modulo
additional assumptions, if a protocol is secure in the symbolic model, then it is
also secure in the computational model. They provide a way of obtaining auto-
matic proofs of protocols in the computational model, by first proving them in
the symbolic model, then applying a computational soundness theorem. Some
work following this line follows.

– Abadi and Rogaway [8] showed that, if two messages are indistinguishable
in the symbolic sense, then they are also indistinguishable in the computa-
tional sense, if the only primitive is shared-key encryption, assuming a few
additional technical restrictions.



14 Bruno Blanchet

– This initial result was followed by considerable extensions. In particular,
Micciancio and Warinschi [151] showed that states and traces in the com-
putational model match (up to negligible probability) states and traces in
the symbolic model, for public-key encryption in the presence of an active
adversary. Therefore, authentication in the symbolic model implies authen-
tication in the computational model. This result was further extended to sig-
natures [92, 135], hash functions [89, 136], non-malleable commitment [121],
and zero-knowledge proofs [29]. Cortier and Warinschi [92] also showed that
syntactic secrecy in the symbolic model implies secrecy in the computational
model for nonces. A tool [88] was built based on [92] to obtain computational
proofs using the symbolic verifier AVISPA, for protocols that use public-key
encryption and signatures.
While the previous results dealt with traces, Comon and Cortier showed a
computational soundness result for observational equivalence, for protocols
that use authenticated shared-key encryption [85].
These results consider a fixed protocol language and a few primitives at a
time, limiting the scope of the results. Frameworks were designed to make
computational soundness proofs modular, by encoding many input languages
into one [20, 24] and by allowing to compose proofs obtained independently
for several primitives [93].

– Backes, Pfitzmann, andWaidner [25–27] developed an abstract cryptographic
library including authenticated shared-encryption, public-key encryption,
message authentication codes, signatures, and nonces, and have shown its
soundness with respect to computational primitives, under arbitrary active
attacks. This work relates the computational model to a non-standard ver-
sion of the Dolev-Yao model, in which the length of messages is present.
It has been used for a proof of the Needham-Schroeder protocol fixed by
Lowe [147] verified in a proof assistant [175].

– Canetti and Herzog [71] showed how a symbolic analysis in the style of the
Dolev-Yao model can be used to prove security properties of protocols in the
framework of universal composability [70] for a restricted class of protocols
that use only public-key encryption. They then use ProVerif [48] to verify
protocols in this framework.

We refer the reader to [90] for a more detailed survey of computational soundness
results. This approach enjoyed important successes, but also has limitations:
additional hypotheses are necessary, since the two models do not match exactly.
The cryptographic primitives need to satisfy strong security properties so that
they match the symbolic primitives. For instance, encryption has to hide the
length of messages, or the symbolic model must be modified to take into that
length. These results often assume that all keys (even those of the adversary)
are generated by the correct key generation algorithm. Moreover, the protocols
need to satisfy certain restrictions. Indeed, for shared-key encryption, there must
be no key cycle (in which a key is encrypted directly or indirectly under itself,
as in {k}k or {k}k′ , {k′}k) or a specific definition of security of encryption is
necessary [10, 28]. (The existence of key cycles for a bounded number of sessions



Security Protocol Verification: Symbolic and Computational Models 15

is a NP-complete problem [94].) These limitations have lead to the idea of directly
automating proofs in the computational model.

3.2 Adapting Techniques from the Symbolic Model

Another way of proving protocols in the computational model is to adapt tech-
niques previously designed for the symbolic model.

For instance, the logic PCL [100, 115], first designed for proving protocols in
the Dolev-Yao model, was adapted to the computational model [101, 102]. Other
computationally sound logics include CIL (Computational Indistinguishability
Logic) [30] and a specialized Hoare logic designed for proving asymmetric en-
cryption schemes in the random oracle model [95, 96].

Similarly, type systems [97, 143, 145, 172] can provide computational secu-
rity guarantees. For instance, [143] handles shared-key and public-key encryp-
tion, with an unbounded number of sessions. This system relies on the Backes-
Pfitzmann-Waidner library. A type inference algorithm is given in [22].

3.3 Direct Computational Proofs

Finally, the direct approach to computational proofs consists in mechanizing
proofs in the computational model, without relying at all on the symbolic model.
Computational proofs made by cryptographers are typically presented as se-
quences of games [42, 171]: the initial game represents the protocol to prove; the
goal is to show that the probability of breaking a certain security property is
negligible in this game. Intermediate games are obtained each from the previous
one by transformations such that the difference of probability between consec-
utive games is negligible. The final game is such that the desired probability is
obviously negligible from the form of the game. The desired probability is then
negligible in the initial game. Halevi [131] suggested to use tools for mechanizing
these proofs, and several techniques have been used for reaching this goal.

CryptoVerif [50, 51, 56, 58], which we have designed, is the first such tool. It
generates proofs by sequences of games automatically or with little user interac-
tion. The games are formalized in a probabilistic process calculus. CryptoVerif
provides a generic method for specifying security properties of many crypto-
graphic primitives. It proves secrecy and authentication properties. It also pro-
vides a bound on the probability of success of an attack. It considerably extends
early work by Laud [141, 142] which was limited either to passive adversaries or
to a single session of the protocol. More recently, Tšahhirov and Laud [144, 177]
developed a tool similar to CryptoVerif but that represents games by dependency
graphs; it handles public-key and shared-key encryption and proves secrecy prop-
erties.

The CertiCrypt framework [31, 32, 34, 37, 38] enables the machine-checked
construction and verification of cryptographic proofs by sequences of games. It
relies on the general-purpose proof assistant Coq, which is widely believed to
be correct. EasyCrypt [33] generates CertiCrypt proofs from proof sketches that
formally represent the sequence of games and hints, which makes the tool easier



16 Bruno Blanchet

to use. Nowak et al. [11, 161, 162] follow a similar idea by providing Coq proofs
for several basic cryptographic primitives.

4 Verifying Protocol Implementations

The approaches mentioned so far verify specifications of protocols in models such
as the applied pi calculus or its variants. However, errors may be introduced when
the protocol is implemented. It is therefore important to prove security properties
on the implementation of the protocol itself. Two approaches to reach this goal
can be distinguished.

A simple approach consists in translating the model into an implementation
by a suitable compiler which has been proved correct. This approach was used
in tools such as [152, 165, 167, 173]. A limitation of this approach is that the
protocol modeling language offers less flexibility in the implementation of the
protocol than a standard programming language.

A more flexible, but more difficult, approach consists in analyzing the imple-
mentation of the protocol. Results in this approach differ by the input language
they consider. Analyzing C code is obviously more difficult than analyzing lan-
guages such as F# and Java, in particular due to pointers and memory safety.
However, it allows one to verify practical implementations, which are generally
written in C. We can also distinguish two ways of analyzing implementations:

– One can extract a protocol specification from the implementation, and verify
it using existing protocol verification tools. For instance, the tools FS2PV [46]
and FS2CV [120] translate protocols written in a subset of the functional lan-
guage F# into the input language of ProVerif and CryptoVerif, respectively,
so that protocol can be proved in the symbolic model and in the computa-
tional model. These techniques were applied to an important case study: the
protocol TLS [44]. They analyze reference implementations written in F#
in order to facilitate verification; one verifies that these implementations in-
teroperate with other implementations, which provides some assurance that
they match practical implementations; however, it is very difficult to analyze
the code of implementations written without verification in mind.
Similarly, Elijah [163] translates Java programs into LySa protocol specifi-
cations, which can be verified by the LySatool [59].
Aizatulin et al. [12] use symbolic execution in order to extract ProVerif mod-
els from pre-existing protocol implementations in C. This technique currently
analyzes a single execution path of the protocol, so it is limited to proto-
cols without branching. Furthermore, computational security guarantees are
obtained by applying a computational soundness result.

– One can also adapt protocol verification methods to the verification of im-
plementations or design new methods for verifying implementations. The
tool CSur [130] analyzes protocols written in C by translating them into
Horn clauses, yielding a model fairly similar to the one used in ProVerif.
These clauses are given as input to the H1 prover [129] to prove properties



Security Protocol Verification: Symbolic and Computational Models 17

of the protocol. Similarly, JavaSec [137] translates Java programs into first-
order logic formulas, which are then given as input to the first-order theorem
prover e-SETHEO.

The tools F7 and F⋆ [43, 45, 176] use a dependent type system in order
to prove security properties of protocols implemented in F#, therefore ex-
tending to implementations the approach of Cryptyc [125–127] for models.
This approach scales well to large implementations but requires type anno-
tations, which facilitate automatic verification. This approach is also being
extended to the computational model [119]: one uses a type system to ver-
ify the conditions needed in order to apply a game transformation. Then,
the game transformation is applied, and the obtained game is typed again,
with a different typing judgment, to justify the next game transformation,
and transformations can continue in this way until security can be proved
directly by inspecting the game.

Poll and Schubert [166] verified an implementation of SSH in Java using
ESC/Java2: ESC/Java2 verifies that the implementation does not raise ex-
ceptions, and follows a specification of SSH by a finite automaton, but does
not prove security properties.

ASPIER [73] uses software model-checking, with predicate abstraction and
counter-example guided abstraction refinement, in order to verify C imple-
mentations of protocols, assuming the size of messages and the number of
sessions are bounded. In particular, this tool has been used to verify the
main loop of OpenSSL 3. Dupressoir et al. [111] use the general-purpose C
verifier VCC in order to prove both memory safety and security properties of
protocols, in the symbolic model. They use “ghost state” in order to relate
C variables and symbolic terms.

5 Conclusion and Future Challenges

This survey shows that research in the field of security protocol verification
has been very active, and has enjoyed unquestionable successes. Progress has
been made in all directions: verification both in the symbolic model and in the
computational model, as well as verification of implementations. We believe that
the verification of protocols in the symbolic model has reached a fairly mature
state, even though some aspects still need further research, for instance the proof
of process equivalences or the treatment of some complex equational theories.
However, there is still much work to do regarding the verification of protocols
in the computational model and the verification of implementations. We are
still far from having a push button tool that would take as input a practical
implementation of the protocol and would prove it secure in the computational
model. Even if this goal may be out of reach, more progress is undoubtedly
possible in this direction. Taking into account physical attacks is a challenging
area in which formal methods just start to be used, and in which much research
will certainly be done in the future.



18 Bruno Blanchet

Acknowledgments. We thank Pierpaolo Degano for helpful comments on a draft
of this paper. This work was partly supported by the ANR project ProSe (deci-
sion ANR-2010-VERS-004-01).

References

1. Abadi, M.: Secrecy by typing in security protocols. Journal of the ACM 46(5),
749–786 (1999)

2. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. Journal of the ACM 52(1), 102–146 (2005)

3. Abadi, M., Blanchet, B.: Computer-assisted verification of a protocol for certified
email. Science of Computer Programming 58(1–2), 3–27 (2005)

4. Abadi, M., Blanchet, B., Fournet, C.: Just Fast Keying in the pi calculus. ACM
TISSEC 10(3), 1–59 (2007)

5. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: POPL’01. pp. 104–115. ACM, New York (2001)

6. Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols.
Nordic Journal of Computing 5(4), 267–303 (1998)

7. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

8. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). Journal of Cryptology 15(2), 103–127
(2002)

9. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. IEE Proceedings Information Security 153(1),
27–39 (2006)

10. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the
presence of key-cycles. In: de Capitani di Vimercati, S., Syverson, P., Gollmann,
D. (eds.) ESORICS’05. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)

11. Affeldt, R., Nowak, D., Yamada, K.: Certifying assembly with formal crypto-
graphic proofs: the case of BBS. In: AVoCS’09. Electronic Communications of the
EASST, vol. 23. EASST (2009)

12. Aizatulin, M., Gordon, A.D., Jürjens, J.: Extracting and verifying cryptographic
models from C protocol code by symbolic execution. In: CCS’11. pp. 331–340.
ACM, New York (2011)

13. Allamigeon, X., Blanchet, B.: Reconstruction of attacks against cryptographic
protocols. In: CSFW’05. pp. 140–154. IEEE, Los Alamitos (2005)

14. Arapinis, M., Duflot, M.: Bounding messages for free in security protocols. In:
Arvind, V., Prasad, S. (eds.) FSTTCS’07. LNCS, vol. 4855, pp. 376–387. Springer,
Heidelberg (2007)

15. Arapinis, M., Ritter, E., Ryan, M.D.: StatVerif: Verification of stateful processes.
In: CSF’11. pp. 33–47. IEEE, Los Alamitos (2011)

16. Armando, A., Compagna, L., Ganty, P.: SAT-based model-checking of security
protocols using planning graph analysis. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME’03. LNCS, vol. 2805, pp. 875–893. Springer, Heidelberg (2003)

17. Armando, A., et al.: The AVISPA tool for automated validation of Internet secu-
rity protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV’05.
LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)



Security Protocol Verification: Symbolic and Computational Models 19

18. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Au-
tomated Reasoning, vol. 1, chap. 2, pp. 19–100. North Holland (2001)

19. Backes, M., Cortesi, A., Maffei, M.: Causality-based abstraction of multiplicity in
security protocols. In: CSF’07. pp. 355–369. IEEE, Los Alamitos (2007)

20. Backes, M., Hofheinz, D., Unruh, D.: CoSP: A general framework for computa-
tional soundness proofs. In: CCS’09. pp. 66–78. ACM, New York (2009)

21. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: CSF’08. pp. 195–209. IEEE, Los
Alamitos (2008)

22. Backes, M., Laud, P.: Computationally sound secrecy proofs by mechanized flow
analysis. In: CCS’06. pp. 370–379. ACM, New York (2006)

23. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: IEEE
Symposium on Security and Privacy. pp. 202–215. IEEE, Los Alamitos (2008)

24. Backes, M., Maffei, M., Unruh, D.: Computationally sound verification of source
code. In: CCS’10. pp. 387–398. ACM, New York (2010)

25. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao
style cryptographic library. In: CSFW’04. pp. 204–218. IEEE, Los Alamitos (2004)

26. Backes, M., Pfitzmann, B.: Relating symbolic and cryptographic secrecy. IEEE
Transactions on Dependable and Secure Computing 2(2), 109–123 (2005)

27. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library
with nested operations. In: CCS’03. pp. 220–230. ACM, New York (2003)

28. Backes, M., Pfiztmann, B., Scedrov, A.: Key-dependent message security under
active attacks—BRSIM/UC soundness of symbolic encryption with key cycles.
In: CSF’07. pp. 112–124. IEEE, Los Alamitos (2007)

29. Backes, M., Unruh, D.: Computational soundness of symbolic zero-knowledge
proofs against active attackers. In: CSF’08. pp. 255–269. IEEE, Los Alamitos
(2008)

30. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y.: Computational indistin-
guishability logic. In: CCS’10. pp. 375–386. ACM, New York (2010)

31. Barthe, G., Grégoire, B., Béguelin, S.Z., Lakhnech, Y.: Beyond provable security.
Verifiable IND-CCA security of OAEP. In: Kiayias, A. (ed.) CT-RSA’11. LNCS,
vol. 6558, pp. 180–196. Springer, Heidelberg (2011)

32. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Formal certification of ElGa-
mal encryption. A gentle introduction to CertiCrypt. In: Degano, P., Guttman,
J., Martinelli, F. (eds.) FAST’08. LNCS, vol. 5491, pp. 1–19. Springer, Heidelberg
(2009)

33. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO’11. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

34. Barthe, G., Grégoire, B., Zanella, S.: Formal certification of code-based crypto-
graphic proofs. In: POPL’09. pp. 90–101. ACM, New York (2009)

35. Basin, D., Mödersheim, S., Viganò, L.: An on-the-fly model-checker for security
protocol analysis. In: Snekkenes, E., Gollman, D. (eds.) ESORICS’03. LNCS, vol.
2808, pp. 253–270. Springer, Heidelberg (2003)

36. Baudet, M.: Sécurité des protocoles cryptographiques: aspects logiques et calcu-
latoires. Ph.D. thesis, Ecole Normale Supérieure de Cachan (2007)

37. Béguelin, S.Z., Barthe, G., Heraud, S., Grégoire, B., Hedin, D.: A machine-checked
formalization of sigma-protocols. In: CSF’10. pp. 246–260. IEEE, Los Alamitos
(2010)



20 Bruno Blanchet

38. Béguelin, S.Z., Grégoire, B., Barthe, G., Olmedo, F.: Formally certifying the se-
curity of digital signature schemes. In: IEEE Symposium on Security and Privacy.
pp. 237–250. IEEE, Los Alamitos (2009)

39. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS’97. pp. 394–403. IEEE, Los Alamitos (1997)

40. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT’00. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000)

41. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1993)

42. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT’06. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

43. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A., Maffeis, S.: Refinement
types for secure implementations. ACM TOPLAS 33(2) (2011)

44. Bhargavan, K., Corin, R., Fournet, C., Zălinescu, E.: Cryptographically verified
implementations for TLS. In: CCS’08. pp. 459–468. ACM, New York (2008)

45. Bhargavan, K., Fournet, C., Gordon, A.: Modular verification of security protocol
code by typing. In: POPL’10. pp. 445–456. ACM, New York (2010)

46. Bhargavan, K., Fournet, C., Gordon, A., Tse, S.: Verified interoperable imple-
mentations of security protocols. ACM TOPLAS 31(1) (2008)

47. Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: TulaFale: A security tool
for web services. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P.
(eds.) FMCO’03. LNCS, vol. 3188, pp. 197–222. Springer, Heidelberg (2003)

48. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: IEEE
Symposium on Security and Privacy. pp. 86–100. IEEE, Los Alamitos (2004)

49. Blanchet, B.: Security protocols: From linear to classical logic by abstract inter-
pretation. Information Processing Letters 95(5), 473–479 (2005)

50. Blanchet, B.: Computationally sound mechanized proofs of correspondence asser-
tions. In: CSF’07. pp. 97–111. IEEE, Los Alamitos (2007)

51. Blanchet, B.: A computationally sound mechanized prover for security protocols.
IEEE Transactions on Dependable and Secure Computing 5(4), 193–207 (2008)

52. Blanchet, B.: Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4), 363–434 (2009)

53. Blanchet, B.: Using Horn clauses for analyzing security protocols. In: Cortier, V.,
Kremer, S. (eds.) Formal Models and Techniques for Analyzing Security Proto-
cols, Cryptology and Information Security Series, vol. 5, pp. 86–111. IOS Press,
Amsterdam (2011)

54. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1),
3–51 (2008)

55. Blanchet, B., Chaudhuri, A.: Automated formal analysis of a protocol for secure
file sharing on untrusted storage. In: IEEE Symposium on Security and Privacy.
pp. 417–431. IEEE, Los Alamitos (2008)

56. Blanchet, B., Jaggard, A.D., Scedrov, A., Tsay, J.K.: Computationally sound
mechanized proofs for basic and public-key Kerberos. In: ASIACCS’08. pp. 87–
99. ACM, New York (2008)

57. Blanchet, B., Podelski, A.: Verification of cryptographic protocols: Tagging en-
forces termination. Theoretical Computer Science 333(1-2), 67–90 (2005)



Security Protocol Verification: Symbolic and Computational Models 21

58. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games.
In: Dwork, C. (ed.) CRYPTO’06. LNCS, vol. 4117, pp. 537–554. Springer, Hei-
delberg (2006)

59. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Automatic val-
idation of protocol narration. In: CSFW’03. pp. 126–140. IEEE, Los Alamitos
(2003)

60. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols. Journal of Computer Security 13(3), 347–390 (2005)

61. Bodei, C., Degano, P., Nielson, F., Nielson, H.R.: Flow logic for Dolev-Yao secrecy
in cryptographic processes. Future Generation Comp. Syst. 18(6), 747–756 (2002)

62. Boichut, Y., Kosmatov, N., Vigneron, L.: Validation of Prouvé protocols using
the automatic tool TA4SP. In: TFIT’06. pp. 467–480 (2006)

63. Bolignano, D.: Towards a mechanization of cryptographic protocol verification. In:
Grumberg, O. (ed.) CAV’97. LNCS, vol. 1254, pp. 131–142. Springer, Heidelberg
(1997)

64. Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus.
In: Gardner, P., Yoshida, N. (eds.) CONCUR’04. LNCS, vol. 3170, pp. 161–176.
Springer, Heidelberg (2004)

65. Bozga, L., Lakhnech, Y., Périn, M.: Pattern-based abstraction for verifying se-
crecy in protocols. International Journal on Software Tools for Technology Trans-
fer (STTT) 8(1), 57–76 (2006)

66. Broadfoot, P.J., Roscoe, A.W.: Embedding agents within the intruder to detect
parallel attacks. Journal of Computer Security 12(3/4), 379–408 (2004)

67. Broadfoot, P., Lowe, G., Roscoe, B.: Automating data independence. In: ES-
ORICS’00. LNCS, vol. 1895, pp. 175–190. Springer, Heidelberg (2000)

68. Brusó, M., Chatzikokolakis, K., den Hartog, J.: Formal verification of privacy for
RFID systems. In: CSF’10. pp. 75–88. IEEE, Los Alamitos (2010)

69. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. Proceedings of
the Royal Society of London A 426(1871), 233–271 (1989)

70. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS’01. pp. 136–145. IEEE, Los Alamitos (2001)

71. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual au-
thentication and key exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC’06.
LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

72. Cervesato, I., Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: A meta-notation
for protocol analysis. In: CSFW’99. pp. 55–69. IEEE, Los Alamitos (1999)

73. Chaki, S., Datta, A.: ASPIER: An automated framework for verifying security
protocol implementations. In: CSF’09. pp. 172–185. IEEE, Los Alamitos (2009)

74. Chen, L., Ryan, M.: Attack, solution and verification for shared authorisation
data in TCG TPM. In: Degano, P., Guttman, J.D. (eds.) FAST’09. LNCS, vol.
5983, pp. 201–216. Springer, Heidelberg (2010)

75. Cheval, V., Comon-Lundh, H., Delaune, S.: Automating security analysis: sym-
bolic equivalence of constraint systems. In: Giesl, J., Haehnle, R. (eds.) IJCAR’10.
LNAI, vol. 6173, pp. 412–426. Springer, Heidelberg (2010)

76. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: Negative
tests and non-determinism. In: CCS’11. pp. 321–330. ACM, New York (2011)

77. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security
of protocols with Diffie-Hellman exponentiation and products in exponents. In:
Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS’03. LNCS, vol. 2914, pp. 124–
135. Springer, Heidelberg (2003)



22 Bruno Blanchet

78. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision pro-
cedure for protocol insecurity with XOR. In: LICS’03. pp. 261–270. IEEE, Los
Alamitos (2003)

79. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision proce-
dure for protocol insecurity with XOR. Theoretical Computer Science 338(1–3),
247–274 (2005)

80. Chevalier, Y., Vigneron, L.: A tool for lazy verification of security protocols. In:
ASE’01. pp. 373–376. IEEE, Los Alamitos (2001)

81. Ştefan Ciobâcă: Automated Verification of Security Protocols with Appplications
to Electronic Voting. Ph.D. thesis, ENS Cachan (2011)

82. Comon, H., Cortier, V.: Tree automata with one memory, set constraints and
cryptographic protocols. Theoretical Computer Science 331(1), 143–214 (2005)

83. Comon-Lundh, H., Cortier, V.: New decidability results for fragments of first-
order logic and application to cryptographic protocols. In: Nieuwenhuis, R. (ed.)
RTA’03. LNCS, vol. 2706, pp. 148–164. Springer, Heidelberg (2003)

84. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. Sci-
ence of Computer Programming 50(1–3), 51–71 (2004)

85. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equiv-
alence. In: CCS’08. pp. 109–118. ACM, New York (2008)

86. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In: LICS’03. pp. 271–280. IEEE,
Los Alamitos (2003)

87. Cortier, V., Delaune, S.: A method for proving observational equivalence. In:
CSF’09. pp. 266–276. IEEE, Los Alamitos (2009)

88. Cortier, V., Hördegen, H., Warinschi, B.: Explicit randomness is not necessary
when modeling probabilistic encryption. In: Dima, C., Minea, M., Tiplea, F. (eds.)
ICS’06. ENTCS, vol. 186, pp. 49–65. Elsevier, Amsterdam (2006)

89. Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally sound sym-
bolic secrecy in the presence of hash functions. In: Garg, N., Arun-Kumar, S.
(eds.) FSTTCS’06. LNCS, vol. 4246, pp. 176–187. Springer, Heidelberg (2006)

90. Cortier, V., Kremer, S., Warinschi, B.: A survey of symbolic methods in com-
putational analysis of cryptographic systems. Journal of Automated Reasoning
46(3-4), 225–259 (2011)

91. Cortier, V., Rusinowitch, M., Zălinescu, E.: Relating two standard notions of
secrecy. Logical Methods in Computer Science 3(3) (2007)

92. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security
protocols. In: Sagiv, M. (ed.) ESOP’05. LNCS, vol. 3444, pp. 157–171. Springer,
Heidelberg (2005)

93. Cortier, V., Warinschi, B.: A composable computational soundness notion. In:
CCS’11. pp. 63–74. ACM, New York (2011)

94. Cortier, V., Zălinescu, E.: Deciding key cycles for security protocols. In: Hermann,
M., Voronkov, A. (eds.) LPAR’06. LNCS, vol. 4246, pp. 317–331. Springer, Hei-
delberg (2006)

95. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards
automated proofs for asymmetric encryption schemes in the random oracle model.
In: CCS’08. pp. 371–380. ACM, New York (2008)

96. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Automated
proofs for asymmetric encryption. In: Dams, D., Hannemann, U., Steffen, M.
(eds.) Concurrency, Compositionality, and Correctness. LNCS, vol. 5930, pp. 300–
321. Springer, Heidelberg (2010)



Security Protocol Verification: Symbolic and Computational Models 23

97. Courant, J., Ene, C., Lakhnech, Y.: Computationally sound typing for non-
interference: The case of deterministic encryption. In: Arvind, V., Prasad, S.
(eds.) FSTTCS’07. LNCS, vol. 4855, pp. 364–375. Springer, Heidelberg (2007)

98. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL’79. pp. 269–282. ACM, New York (1979)

99. Cremers, C.J.F.: Scyther - Semantics and Verification of Security Protocols. Ph.D.
thesis, Eindhoven University of Technology (2006)

100. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and compo-
sitional logic for security protocols. Journal of Computer Security 13(3), 423–482
(2005)

101. Datta, A., Derek, A., Mitchell, J.C., Shmatikov, V., Turuani, M.: Probabilistic
polynomial-time semantics for a protocol security logic. In: Caires, L., Monteiro,
L. (eds.) ICALP’05. LNCS, vol. 3580, pp. 16–29. Springer, Heidelberg (2005)

102. Datta, A., Derek, A., Mitchell, J.C., Warinschi, B.: Computationally sound com-
positional logic for key exchange protocols. In: CSFW’06. pp. 321–334. IEEE, Los
Alamitos (2006)

103. Delaune, S., Kremer, S., Ryan, M.D.: Symbolic bisimulation for the applied pi-
calculus. In: Arvind, V., Prasad, S. (eds.) FSTTCS’07. LNCS, vol. 4855, pp.
133–145. Springer, Heidelberg (2007)

104. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of elec-
tronic voting protocols. Journal of Computer Security 17(4), 435–487 (2009)

105. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: CSF’11. pp. 66–82. IEEE, Los Alamitos (2011)

106. Denker, G., Meseguer, J., Talcott, C.: Protocol specification and analysis in
Maude. In: FMSP’98 (1998)

107. Denker, G., Millen, J.: CAPSL integrated protocol environment. In: DISCEX’00.
pp. 207–221. IEEE, Los Alamitos (2000)

108. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun.
ACM 24(8), 533–536 (1981)

109. Dierks, T., Rescorla, E.: RFC 4346: The Transport Layer Security (TLS) protocol,
version 1.1 (2006), http://tools.ietf.org/html/rfc4346

110. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory IT-29(12), 198–208 (1983)

111. Dupressoir, F., Gordon, A.D., Jürjens, J., Naumann, D.A.: Guiding a general-
purpose C verifier to prove cryptographic protocols. In: CSF’11. pp. 3–17. IEEE,
Los Alamitos (2011)

112. Durante, L., Sisto, R., Valenzano, A.: Automatic testing equivalence verification
of spi calculus specifications. ACM TOSEM 12(2), 222–284 (2003)

113. Durgin, N.A., Lincoln, P.D., Mitchell, J.C., Scedrov, A.: Undecidability of
bounded security protocols. In: FMSP’99 (1999)

114. Durgin, N., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the
complexity of bounded security protocols. Journal of Computer Security 12(2),
247–311 (2004)

115. Durgin, N., Mitchell, J.C., Pavlovic, D.: A compositional logic for proving security
properties of protocols. Journal of Computer Security 11(4), 677–721 (2003)

116. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theoretical Computer
Science 367(1-2), 162–202 (2006)

117. Fábrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security
protocols correct. Journal of Computer Security 7(2/3), 191–230 (1999)



24 Bruno Blanchet

118. Feret, J.: Analysis of mobile systems by abstract interpretation. Ph.D. thesis,
École Polytechnique (2005)

119. Fournet, C., Kohlweiss, M.: Modular cryptographic verification by typing. In:
FCC’11 (2011)

120. http://msr-inria.inria.fr/projects/sec/fs2cv/

121. Galindo, D., Garcia, F.D., van Rossum, P.: Computational soundness of non-
malleable commitments. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC’08. LNCS,
vol. 4991, pp. 361–376. Springer, Heidelberg (2008)

122. Genet, T., Klay, F.: Rewriting for cryptographic protocol verification. In:
McAllester, D. (ed.) CADE’00. LNCS, vol. 1831, pp. 271–290. Springer, Hei-
delberg (2000)

123. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and
System Sciences 28, 270–299 (1984)

124. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptative chosen-message attacks. SIAM Journal of Computing 17(2), 281–308
(1988)

125. Gordon, A., Jeffrey, A.: Typing one-to-one and one-to-many correspondences in
security protocols. In: Okada, M., Pierce, B., Scedriv, A., Tokuda, H., Yonezawa,
A. (eds.) ISSS’02. LNCS, vol. 2609, pp. 263–282. Springer, Heidelberg (2002)

126. Gordon, A., Jeffrey, A.: Authenticity by typing for security protocols. Journal of
Computer Security 11(4), 451–521 (2003)

127. Gordon, A., Jeffrey, A.: Types and effects for asymmetric cryptographic protocols.
Journal of Computer Security 12(3/4), 435–484 (2004)

128. Goubault-Larrecq, J.: A method for automatic cryptographic protocol verification
(extended abstract). In: Rolim, J., et al. (eds.) FMPPTA’2000. LNCS, vol. 1800,
pp. 977–984. Springer, Heidelberg (2000)

129. Goubault-Larrecq, J.: Deciding H1 by resolution. Information Processing Letters
95(3), 401–408 (2005)

130. Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real C
code. In: Cousot, R. (ed.) VMCAI’05. LNCS, vol. 3385, pp. 363–379. Springer,
Heidelberg (2005)

131. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181 (2005), available at http://eprint.iacr.
org/2005/181

132. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security
protocols. In: CSFW’00. pp. 255–268. IEEE, Los Alamitos (2000)

133. Heather, J., Schneider, S.: A decision procedure for the existence of a rank func-
tion. Journal of Computer Security 13(2), 317–344 (2005)

134. Hüttel, H.: Deciding framed bisimilarity. In: INFINITY’02. pp. 1–20 (2002)
135. Janvier, R., Lakhnech, Y., Mazaré, L.: Completing the picture: Soundness of for-

mal encryption in the presence of active adversaries. In: Sagiv, M. (ed.) ESOP’05.
LNCS, vol. 3444, pp. 172–185. Springer, Heidelberg (2005)

136. Janvier, R., Lakhnech, Y., Mazaré, L.: Relating the symbolic and computational
models of security protocols using hashes. In: Degano, P., Küsters, R., Viganò,
L., Zdancewic, S. (eds.) FCS-ARSPA’06. pp. 67–89 (2006)

137. Jürjens, J.: Security analysis of crypto-based Java programs using automated
theorem provers. In: ASE’06. pp. 167–176. IEEE, Los Alamitos (2006)

138. Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied
pi calculus. In: Sagiv, M. (ed.) ESOP’05. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005)



Security Protocol Verification: Symbolic and Computational Models 25

139. Küsters, R., Truderung, T.: Reducing protocol analysis with XOR to the XOR-
free case in the Horn theory based approach. In: CCS’08. pp. 129–138. ACM, New
York (2008)

140. Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation. In: CSF’09. pp. 157–171. IEEE, Los Alamitos (2009)

141. Laud, P.: Handling encryption in an analysis for secure information flow. In:
Degano, P. (ed.) ESOP’03. LNCS, vol. 2618, pp. 159–173. Springer, Heidelberg
(2003)

142. Laud, P.: Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In: IEEE Symposium on Security and Privacy. pp. 71–85.
IEEE, Los Alamitos (2004)

143. Laud, P.: Secrecy types for a simulatable cryptographic library. In: CCS’05. pp.
26–35. ACM, New York (2005)

144. Laud, P., Tšahhirov, I.: A user interface for a game-based protocol verification
tool. In: Degano, P., Guttman, J. (eds.) FAST’09. LNCS, vol. 5983, pp. 263–278.
Springer, Heidelberg (2009)

145. Laud, P., Vene, V.: A type system for computationally secure information flow.
In: Lískiewicz, M., Reischuk, R. (eds.) FCT’05. LNCS, vol. 3623, pp. 365–377.
Springer, Heidelberg (2005)

146. Liu, J., Lin, H.: A complete symbolic bisimulation for full applied pi calculus. In:
van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOF-
SEM’10. LNCS, vol. 5901, pp. 552–563. Springer, Heidelberg (2010)

147. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: TACAS’96. LNCS, vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

148. Lowe, G.: A hierarchy of authentication specifications. In: CSFW ’97. pp. 31–43.
IEEE, Los Alamitos (1997)

149. Lux, K.D., May, M.J., Bhattad, N.L., Gunter, C.A.: WSEmail: Secure internet
messaging based on web services. In: ICWS’05. pp. 75–82. IEEE, Los Alamitos
(2005)

150. Meadows, C.A.: The NRL protocol analyzer: An overview. Journal of Logic Pro-
gramming 26(2), 113–131 (1996)

151. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence
of active adversaries. In: Naor, M. (ed.) TCC’04. LNCS, vol. 2951, pp. 133–151.
Springer, Heidelberg (2004)

152. Milicia, G.: χ-spaces: Programming security protocols. In: NWPT’02 (2002)
153. Millen, J.: A necessarily parallel attack. In: FMSP’99 (1999)
154. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic

protocol analysis. In: CCS’01. pp. 166–175. ACM, New York (2001)
155. Millen, J.K.: The Interrogator model. In: IEEE Symposium on Security and Pri-

vacy. pp. 251–260. IEEE, Los Alamitos (1995)
156. Millen, J.K., Clark, S.C., Freedman, S.B.: The Interrogator: Protocol security

analysis. IEEE Transactions on Software Engineering SE-13(2), 274–288 (1987)
157. Milner, R.: Communicating and mobile systems : the π-calculus. Cambridge Uni-

versity Press (1999)
158. Mitchell, J.C., Mitchell, M., Stern, U.: Automated analysis of cryptographic pro-

tocols using Murϕ. In: IEEE Symposium on Security and Privacy. pp. 141–151.
IEEE, Los Alamitos (1997)

159. Monniaux, D.: Abstracting cryptographic protocols with tree automata. Science
of Computer Programming 47(2–3), 177–202 (2003)

160. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)



26 Bruno Blanchet

161. Nowak, D.: A framework for game-based security proofs. In: Qing, S., Imai, H.,
Wang, G. (eds.) ICICS’07. LNCS, vol. 4861, pp. 319–333. Springer, Heidelberg
(2007)

162. Nowak, D.: On formal verification of arithmetic-based cryptographic primitives.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC’08. LNCS, vol. 5461, pp. 368–382. Springer,
Heidelberg (2008)

163. O’Shea, N.: Using Elyjah to analyse Java implementations of cryptographic pro-
tocols. In: FCS-ARSPA-WITS’08 (2008)

164. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1–2), 85–128 (1998)

165. Pironti, A., Sisto, R.: Provably correct Java implementations of spi calculus se-
curity protocols specifications. Computers and Security 29(3), 302–314 (2010)

166. Poll, E., Schubert, A.: Verifying an implementation of SSH. In: WITS’07 (2007)
167. Pozza, D., Sisto, R., Durante, L.: Spi2Java: Automatic cryptographic protocol

Java code generation from spi calculus. In: AINA’04. vol. 1, pp. 400–405. IEEE,
Los Alamitos (2004)

168. Ramanujam, R., Suresh, S.: Tagging makes secrecy decidable with unbounded
nonces as well. In: Pandya, P., Radhakrishnan, J. (eds.) FSTTCS’03. LNCS, vol.
2914, pp. 363–374. Springer, Heidelberg (2003)

169. Roscoe, A.W., Broadfoot, P.J.: Proving security protocols with model checkers
by data independence techniques. Journal of Computer Security 7(2, 3), 147–190
(1999)

170. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. Theoretical Computer Science 299(1–3), 451–475 (2003)

171. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004), available at http://eprint.
iacr.org/2004/332

172. Smith, G., Alṕızar, R.: Secure information flow with random assignment and
encryption. In: FMSE’06. pp. 33–43 (2006)

173. Song, D., Perrig, A., Phan, D.: AGVI—Automatic Generation, Verification, and
Implementation of security protocols. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV’01. LNCS, vol. 2102, pp. 241–245. Springer, Heidelberg (2001)

174. Song, D.X., Berezin, S., Perrig, A.: Athena: a novel approach to efficient automatic
security protocol analysis. Journal of Computer Security 9(1/2), 47–74 (2001)

175. Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptograph-
ically sound theorem proving. In: CSFW’06. pp. 153–166. IEEE, Los Alamitos
(2006)

176. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bharagavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: Chakravarty, M.M.T.,
Hu, Z., Danvy, O. (eds.) ICFP’11. pp. 266–278. ACM, New York (2011)

177. Tšahhirov, I., Laud, P.: Application of dependency graphs to security protocol
analysis. In: Barthe, G., Fournet, C. (eds.) TGC’07. LNCS, vol. 4912, pp. 294–
311. Springer, Heidelberg (2007)

178. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: Ganzinger, H. (ed.) CADE’99. LNAI, vol. 1632, pp. 314–328. Springer,
Heidelberg (1999)

179. Woo, T.Y.C., Lam, S.S.: A semantic model for authentication protocols. In: IEEE
Symposium on Security and Privacy. pp. 178–194. IEEE, Los Alamitos (1993)

180. Yao, A.C.: Theory and applications of trapdoor functions. In: FOCS’82. pp. 80–
91. IEEE, Los Alamitos (1982)


