Automatic Verification of Correspondences
for Security Protocols

) Bruno Blanchet
CNRS,Ecole Normale Sugrieure, INRIA
Bruno. Bl anchet @ns. fr

July 31, 2008

Abstract

We present a new technique for verifying correspondences inisepuooto-
cols. In particular, correspondences can be used to formalize gietitem. Our
technique is fully automatic, it can handle an unbounded number of aessithe
protocol, and it is efficient in practice. It significantly extends a prevteaknique
for the verification of secrecy. The protocol is represented in an sixterof the
pi calculus with fairly arbitrary cryptographic primitives. This protocepresen-
tation includes the specification of the correspondence to be verifiedptather
annotation. This representation is then translated into an abstract repteseby
Horn clauses, which is used to prove the desired correspondencaeddunique
has been proved correct and implemented. We have tested it on variutos
cols from the literature. The experimental results show that these pletamobe
verified by our technique in less than 1 s.

1 Introduction

The verification of security protocols has already been thgest of numerous re-
search works. It is particularly important since the desigprotocols is error-prone,
and errors cannot be detected by testing, since they appsaimcthe presence of a
malicious adversary. An important trend in this area aimseiafy protocols in the
so-called Dolev-Yao model [40], with an unbounded numbesaskions, while relying
as little as possible on human intervention. While protoneeturity is NP-complete
for a bounded number of sessions [66], it is undecidable fousbounded number
of sessions [42]. Hence, automatic verification for an umigea number of sessions
cannot be achieved for all protocols. Itis typically acleidwsing language-based tech-
niques such as typing or abstract interpretation, whichheemlle infinite-state systems
thanks to safe approximations. These techniques are ngiletar(a correct protocol

*This paper is an updated and extended version of [13] and [14]
TThig research has been done within the INRIA ABSTRACTIONgetteam (common with the CNRS
and theENS).

can fail to typecheck, or false attacks can be found by attstreerpretation tools), but
they are sound (when they do not find attacks, the protocalasamteed to satisfy the
considered property). This is important for the certificatof protocols.

Our goal in this paper is to extend previous work in this lifigesearch by pro-
viding a fully automatic technique for verifying corresptemces in security protocols,
without bounding the number of sessions of the protocol.rémondences are prop-
erties of the form: if the protocol executes some event, ihemust have executed
some other events befdteWe consider a rich language of correspondences, in which
the events that must have been executed can be describedbical formula con-
taining conjunctions and disjunctions. Furthermore, waestder both non-injective
correspondences (if the protocol executes some eventittiieist have executed some
other events at least once) and injective correspondeifities protocol executes some
eventn times, then it must have executed some other events atildanes). Corre-
spondences, initially named correspondence asserti@hsdiid the similar notion of
agreement [55] were first introduced to model authenticatimtuitively, a protocol
authenticatesA to B if, when B thinks he talks toA, then he actually talks tal.
When B thinks he has run the protocol with, he executes an eveatA, B). When
A thinks she runs the protocol with, she executes another eveft4, B). Authen-
tication is satisfied when, iB executes his event(A, B), then A has executed her
evente’(A, B). Several variants along this scheme appear in the liter@nd, as we
show below, our technique can handle most of them. Our quoretences can also
encode secrecy, as follows. A protocol preserves the seofesome valueVl when
the adversary cannot obtald. We associate an “eventittacker(M) to the fact that
the adversary obtaink/, and represent the secrecy/df as “attacker(M) cannot be
executed”, that is, “ifattacker(M) has been executed, then false.” More complex
properties can also be specified by our correspondences¢danple that all messages
of the protocol have been sent in order; this feature was insi&d.

Our technigue is based on a substantial extension of a u®wvierification tech-
nique for secrecy [1, 13, 70]. More precisely, the protosokipresented in the process
calculus introduced in [1], which is an extension of the dcaolus with fairly arbi-
trary cryptographic primitives. This process calculusxteaded with events, used in
the statement of correspondences. These events are theeguoiyed annotation of
the protocol; no annotation is needed to help the tool pgeiorrespondences. The
protocol is then automatically translated into a set of Hdauses. This translation
requires significant extensions with respect to the traiosldor secrecy given in [1],
and can be seen as an implementation of a type system, as iB¢ije of these ex-
tensions improve the precision of the analysis, in parictd avoid merging different
nonces. Other extensions define the translation of everitsallyf this set of Horn
clauses is passed to a resolution-based solver, similaat®f [13, 21, 70]. Some mi-
nor extensions of this solver are required to prove cornedences. This solver does
not always terminate, but we show in Section 8.1 that it teatds for a large class of
well-designed protocols, naméagged protocols Our experiments also demonstrate
that, in practice, it terminates on many examples of prd&co

The main advantages of our method can be summarized as $ollbis fully auto-

1In the CSP terminology, our events correspond to CSP sigealtev

matic; the user only has to code the protocol and the correlges to prove. It puts
no bounds on the number of sessions of the protocol or the&teems that the adver-
sary can manipulate. It can handle fairly general cryptolgi@primitives, including
shared-key encryption, public-key encryption, signatuome-way hash functions, and
Diffie-Hellman key agreements. It relies on a precise seimémtindation. One limi-
tation of the technique is that, in rare cases, the solviggrdthm does not terminate.
The technique is also not complete: the translation intaHtaiuses introduces an ab-
straction, which forgets the number of repetitions of eaztfoa [17]. This abstraction
is key to the treatment of an unbounded number of sessiorstdthis abstraction, the
tool provides sufficient conditions for proving correspendes, but can fail on correct
protocols. Basically, it fails to prove protocols that fingted to keep some value secret
and later reveal it (see Section 5.2.2). In practice, theisostill very precise and, in
our experiments, it always succeeded in proving protod@swere correct.

Our technique is implemented in the protocol verifier Prayawrailable atht t p:
/I ww. proverif.ens.fr/.

Comparison with Other Papers on ProVerif As mentioned above, this paper ex-
tends previous work on the verification of secrecy [1] in ortteprove correspon-
dences. Secrecy (defined as the impossibility for the adwete compute the secret)
and correspondences are trace properties. Other papénsittethe proof of certain
classes of observational equivalendes, that the adversary cannot distinguish certain
processes: [15, 16] deal with the proof of strong secrieey,that the adversary can-
not see when the value of a secret changes; [19] deals witprdo# of equivalences
between processes that differ only by the terms that thejaoanMoreover, [19] also
explains how to handle cryptographic primitives defined dpyagional theories (instead
of rewrite rules) and how to deal with guessing attacks ajaweak secrets.

As shown in [21], the resolution algorithm terminates fagged protocols. The
present paper extends this result in Section 8.1, by prnoyidi characterization of
tagged protocols at the level of processes instead of aetled éf Horn clauses.

ProVerif can also reconstruct an attack using a derivatiomfthe Horn clauses,
when the proof of a secrecy property fails [6]. Although thesent paper does not de-
tail this point, this work has also been extended to the reitoation of attacks against
non-injective correspondences.

Finally, [2], [3], and [20] present three case studies doné&ast partly using
ProVerif: [2] studies a certified email protocol, [3] stuslithe Just Fast Keying pro-
tocol, and [20] studies the Plutus secure file system. Thase studies rely partly on
the results presented in this paper.

Related Work We mainly focus on the works that automatically verify cepen-
dences and authentication for security protocols, witlauinding the number of ses-
sions.

The NRL protocol analyzer [43, 58], based on narrowing inriéng systems, can
verify correspondences defined in a rich language of lodaatulae [69]. It is sound
and complete, but does not always terminate. Our Horn cleagesentation is more
abstract than the representation of NRL, which should enablto terminate more

often and be more efficient, while remaining precise enougprove most desired
properties.

Gordon and Jeffrey designed a system named Cryptic foryiegifauthentication
by typing in security protocols [46—48]. They handle shaked and public-key cryp-
tography. Our system allows more general cryptographimigvies (including hash
functions and Diffie-Hellman key agreements). Moreovemumn system, no annota-
tion is needed, whereas, in Cryptic, explicit type casts @metks have to be manu-
ally added. However, Cryptic has the advantage that typekihg always terminates,
whereas, in some rare cases, our analyzer does not.

Bugliesi et al. [26] define another type system for provintheatication in security
protocols. The main advantage of their system is that it mpmsitional: it allows
one to prove independently the correctness of the code &f exde of the protocol.
However, the form of messages is restricted to certain thtgyens. This approach is
compared with Cryptic in [25].

Backes et al. [10] prove secrecy and authentication forrggagorotocols, using
an abstract-interpretation-based analysis. This arsalysids a causal graph, which
captures the causality among program events; the secudpegies are proved by
traversing this graph. This analysis can handle an unbalndmber of sessions of
the protocol; it always terminates, at the cost of additi@isstractions, which may
cause false attacks. It handles shared-key and publictggyography, but not Diffie-
Hellman key agreements. It assumes that the messages ade $gpthat names can be
distinguished from other terms.

Bodei et al. [22] show message authentication via a contowl finalysis on a
process calculus named Lysa. Like [10], they handle shieegdind public-key cryp-
tography, and their analysis always terminates, at the afostiditional abstractions.
The notion of authentication they prove is different fronrouthey show message
authentication rather than entity authentication.

Debbabi et al. [37] also verify authentication thanks togesentation of protocols
by inference rules, very similar to our Horn clauses. Howgetheey verify a weaker
notion of authentication (corresponding to alivenes# terminates the protocol, then
A must have been alive at some point before), and handle oahgdtkey encryption.

A few other methods require little human effort, while sugpa an unbounded
number of runs: the verifier of [52], based on rank functiaas prove the correctness
of or find attacks against protocols with atomic symmetriagymmetric keys. Theo-
rem proving [64] often requires manual intervention of tisem An exception to this
is [33], but it deals only with secrecy. The theorem provePBA[31] often succeeds
without or with little human intervention.

Model checking [54, 60] in general implies a limit on the nwenipf sessions of
the protocol. This problem has been tackled by [23, 24, 65yTrecycle nonces, to
use only a finite number of them in an infinite number of runs.e Téchnique was
first used for sequential runs, then generalized to paralles in [24], but with the
additional restriction that the agents must be “factollisal{Basically, a single run of
the agent has to be split into several runs such that eachontains only one fresh
value.)

Strand spaces [45] are a formalism for reasoning about isgquotocols. They
have been used for elegant manual proofs of authenticdigin [The automatic tool

Athena [67] combines model checking and theorem provind Leses strand spaces to
reduce the state space. Scyther [34] uses an extension ef&shmethod with trace
patterns to analyze simultaneously a group of traces. Tioedestill sometimes limit
the number of sessions to guarantee termination.

Amadio and Prasad [7] note that authentication can be atatsinto secrecy, by
using a judge process. The translation is limited in thay @rie message can be
registered by the judge, so the verified authenticationgmgps not exactly the same
as ours.

Outline Section 2 introduces our process calculus. Section 3 defieesorrespon-
dences that we verify, including secrecy and various netiminauthentication. Sec-
tion 4 outlines the main ideas behind our technique for yerif correspondences.
Section 5 explains the construction of Horn clauses and sht®icorrectness, Sec-
tion 6 describes our solving algorithm and shows its conexs, and Section 7 applies
these results to the proof of correspondences. Sectionc8gdies the termination of
our algorithm: it shows termination for tagged protocold &ow to obtain termination
more often in the general case. Section 9 presents somesixierio our framework.
Section 10 gives our experimental results on a selectioreaiirdy protocols of the
literature, and Section 11 concludes. The detailed prdafsioresults can be found in
the companion technical report [18].

2 The Process Calculus

In this section, we present the process calculus that weousgtesent security proto-
cols: we give its syntax, semantics, and illustrate it onxamn®le protocol.

2.1 Syntax and Informal Semantics

Figure 1 gives the syntax of terms (data) and processesréms) of our calculus.
The identifiersu, b, ¢, k, and similar ones range over names, ang, andz range over
variables. The syntax also assumes a set of symbols forrootwsts and destructors;
we often usef for a constructor ang for a destructor.

Constructors are used to build terms. Therefore, the termsaxiables, names,
and constructor applications of the forfdM, ..., M,,); the terms are untyped. On
the other hand, destructors do not appear in terms, but oahjpulate terms in pro-
cesses. They are partial functions on terms that processeapmply. The process
let v = g(My,...,M,) in P else Q tries to evaluatgy(M;, ..., M,); if this suc-
ceeds, therr is bound to the result ané is executed, els€) is executed. More
precisely, the semantics of a destrucjasf arity » is given by a setlef(g) of rewrite
rules of the formg(My, ..., M,) — M wherelM,,...,M,, M are terms without
names, and the variables df also occur inMq, ..., M,. We extend these rules by
g(Mj,..., M) — M’ if and only if there exist a substitutiom and a rewrite rule
g(My,...,M,) — M in def(g) such thatM! = oM, forall i € {1,...,n}, and
M’ = oM. We assume that the sétf(g) is finite. (It usually contains one or two
rules in examples.) We define destructors by rewrite rulstead of the equalities

M,N ::= terms

T,Y, 2 variable

a,b,c, k name

f(My, ..., M,) constructor application
P,Q = processes

M(N).P output

M(z).P input

0 nil

PlQ parallel composition

P replication

(va)P restriction

let x = g(My,...,M,)in P else @ destructor application

if M = N then P else Q conditional

event(M).P event

Figure 1: Syntax of the process calculus

used in [1]. This definition allows destructors to yield savalifferent results non-
deterministically. (Non-deterministic rewrite rules arged in our modeling of Diffie-
Hellman key agreements; see Section 9.1). Using consteuettd destructors, we
can represent data structures and cryptographic opesa®aummarized in Figure 2.
(We present only probabilistic public-key encryption hess in the computational
model, a secure public-key encryption algorithm must béabdistic. We have cho-
sen to present deterministic signatures; we could easiljeinarobabilistic signatures
by adding a third argumemtcontaining the random coins, as for encryption. The coins
should be chosen using a restrictigr:) which creates a fresh namerepresenting a
fresh random number.)

Constructors and destructors can be public or private. Tiigoones can be used
by the adversary, which is the case when not stated otherwise private ones can
be used only by honest participants. They are useful in ipgtd model tables of
keys stored in a server, for instance. A public construgtat computes a host name
from a long-term secret key, and a private destrugtekey returns the key from the
host name, and simulates a lookup in a table of pairs (hosenkey). Using a public
constructorhost allows the adversary to create and register any number ofhlanses
and keys. However, sinagetkey is private, the adversary cannot compute a key from
the host name, which would break all protocols: host namegablic while keys of
honest participants are secret.

The process calculus provides additional instructionsef@cuting events, which
will be used for specifying correspondences. The proeesat(M).P executes the
eventevent(M), then execute®.

The other constructs in the syntax of Figure 1 are standaodt wf them come
from the pi calculus. The input proced$(x). P inputs a message on chaniél and
executesP with = bound to the input message. The output prodessV). P outputs

Tuples:
Constructor: tuplevtuple(zq, ..., 2,)
Destructors: projectiongh,, (ntuple(xy, ..., z,)) — x;
Shared-key encryption:
Constructor: encryption of under the key, sencrypt(z,y)
Destructor: decryptiondecrypt(sencrypt(z,y),y) — x
Probabilistic shared-key encryption:
Constructor: encryption aof under the key with random coins:, sencrypt, (x, y,r)
Destructor: decryptiondecrypt , (sencrypt, (v, y,7),y) —
Probabilistic public-key encryption:
Constructors: encryption afunder the key with random coing,, pencrypt,,(z,y,r)
public key generation from a secret keypk (y)
Destructor: decryptiopdecrypt,,(pencrypt , (z, pk(y),r),y) — =
Signatures:
Constructors: signature afwith the secret key, sign(z,y)
public key generation from a secret keypk (y)
Destructors: signature verificatiathecksignature(sign(z,y), pk(y)) — =
message without signatugetmessage(sign(x,y)) — =
Non-message-revealing signatures:
Constructors: signature afwith the secret key, nmrsign(x, y)
public key generation from a secret keypk (y)
constantrue
Destructor: verificatiommrchecksign(nmrsign(z, y), pk(y), x) — true
One-way hash functions:
Constructor: hash functioh(x)
Table of host names and keys
Constructor: host name from kéyst(x)
Private destructor: key from host namékey(host(x)) — =

Figure 2: Constructors and destructors

the messagév on the channel/ and then execute®. We allow communication
on channels that can be arbitrary terms. (We could adapt ouk o the case in
which channels are only names.) Our calculus is monadich@ihthe messages are
terms rather than tuples of terms), but a polyadic calcudmse simulated since tuples
are terms. It is also synchronous (in that a procBsis executed after the output
of a message). The nil proce8does nothing. The proced® | @ is the parallel
composition ofP and@. The replicatiori P represents an unbounded number of copies
of P in parallel. The restrictiova) P creates a new hameand then executeB. The
conditionalif M = N then P else (Q executes if M andN reduce to the same term
at runtime; otherwise, it executés We definelet x = M in P as syntactic sugar for
P{M/xz}. As usual, we may omit aelse clause when it consists 6f

The namen is bound in the process/a)P. The variabler is bound inP in the
processed/(x).P andlet x = g(M1,...,M,) in P else Q. We write fn(P) and
fu(P) for the sets of names and variables fred’irespectively. A process is closed if

E,PU{0} = E,P (Red Nil)

E,PU{!P} -EPU{PI!P} (Red Repl)
E,PU{P|Q}—E,PU{PQ} (Red Par)
E,PU{(va)P} — EU{d'},PU{P{d/a}} (Red Res)
whered’ ¢ E.
E,PU{N(M).Q,N(x).P} — E,PU{Q,P{M/z}} (Red I/O)
E,PU{letx=g(M,...,M,)inPelseQ} — E,PU{P{M'/x}}
if g(My,...,M,)— M’ (Red Destr 1)

EPU{letx=g(My,...,M,)inPelse@Q@} - E,PU{Q} (RedDestr2)
if there exists naV/’ such thay (M, ..., M,) — M’

E,PU{if M =M then Pelse @} — E,PU{P} (Red Cond 1)

EPU{if M=NthenPelse@Q}—E,PU{Q} (Red Cond 2)
if M £ N

E,PU{event(M).P} —E,PU{P} (Red Event)

Figure 3: Operational semantics

it has no free variables; it may have free names. We identdggsses up to renaming
of bound names and variables. We wr{t&/; /1, ..., M, /x,} for the substitution
that replaces, ...,x, with My, ..., M, respectively.

2.2 Operational Semantics

A semantic configuration is a pait, P where the environmenk is a finite set of
names and is a finite multiset of closed processes. The environni&ntust contain
at least all free names of processesPin The configurationa,...,a,},{P1,...,
P, } corresponds intuitively to the procegs:,) ... (va,)(Py | ... | P,). The seman-
tics of the calculus is defined by a reduction relatienon semantic configurations,
shown in Figure 3. The rule (Red Res) is the only one that usesming. This is
important so that the parameters of events are not renantedtlaé execution of the
event, to be able to compare them with the parameters of ®esetuted later. This
semantics is superficially different from those of [1, 14high were defined using a
structural congruence relation and a reduction relatioprogesses. The new seman-
tics (in particular the renaming point mentioned aboveyjates simplifications in the
definitions of correspondences (Definitions 2, 3, 6, 7, andrf) in the proofs that
correspondences hold.

2.3 Example

As a running example, we consider a simplified version of tieedham-Schroeder
public-key protocol [61], with the correction by Lowe [54fh which host names are
replaced by public keys, which makes interaction with a senseless. (The version
tested in the benchmarks is the full version. Obviously,toat can verify much more
complex protocols; we use this simple example for illusteapurposes.) The protocol
contains the following messages:

Message 1. A — B: {a,pk }pk,
Message2. B — A: {a,b,pkg}pk,
Message 3. A — B: {b}u,

A first sends toB a nonce (fresh name) encrypted under the public key &. B
decrypts this message using his secret &gy and replies with the nonce, a fresh
nonce he choosds and its own public keyk 5, all encrypted undepk ,. When A
receives this message, she decrypts it. WHesees the nonce, she is convinced
that B answered since onlyg can decrypt the first message and obtainThen A
replies with the noncé encrypted undepk ;. B decrypts this message. Whéhsees
the nonceb, he is convinced tha#l replied, since onlyA could decrypt the second
message and obtabn The presence ik 4 in the first message ang z in the second
message makes explicit that these messages are for sdssiaegnA and B, and so
avoids man-in-the-middle attacks, such as the well-knatitactk found by Lowe [54].
This protocol can be represented in our calculus by the pedéeexplained below:

Pa(ska,pk 4, pkp) = lc(z_pkp).(va)event(e1(pk 4, z_pk g, a)).

(vra)e{pencrypt, ((a, k), ook gy 1))-

c(m).let (= a,x.b,= x_pkp) = pdecrypt,(m, ska) in

event(es(pk 4, z_pkp,a,x.b)).(vrs)e(pencrypt,, (vb,x_pkp,73))

if x_pkp = pkp then

event(ea(pk 4, x_pk g, a,xb)).c(sencrypt(sAa, a)).c(sencrypt(sAb, x_b))
Py (skp, pkg, pk o) = lc(m').let (x_a,x_pk 4) = pdecrypt,(m’, skg) in (vb)

event(ex(z_pk 4, pkg,r_a,b)).(vra)e{pencrypt, ((z-a,b, pkg), v_pk 4,72)).

c(m”).let (= b) = pdecrypt,(m”, skg) in

if x_pk 4 = pk 4 then

event(eg(x_pk 4, pkg,x-a,b)).c(sencrypt(sBa, z_a)).c{sencrypt(sBb, b))
P = (vska)(vskp)let pk 4 = pk(sk) in let pkp = pk(skp) in

&(pk A)e(pk)-(Pa(ska, pka, pkp) | Pe(sks, pkp, pk4))

The channet is public: the adversary can send and listen on it. We usegdesublic
channel and not two or more channels because the adversddytake a message from
one channel and relay it on another channel, thus removingdiéference between the
channels. The proceds3 begins with the creation of the secret and public keysl of
andB. The public keys are output on chanedb model that the adversary has them

in its initial knowledge. Then the protocol itself starf3; represents!, Pp represents
B. Both principals can run an unbounded number of session3, smd P start with
replications.

We consider thatd and B are both willing to talk to any principal. So, to de-
termine to whomA will talk, we consider that4 first inputs a message containing
the public keyx_pk 5 of its interlocutor. (This interlocutor is therefore chasky
the adversary.) Thenrl starts a protocol run by choosing a nongeand executing
the evente; (pk 4, z_pkg,a). Intuitively, this event records that sent Message 1
of the protocol, for a run with the participant of public keypk 5, using the nonce
a. Evente; is placed before the actual output of Message 1; this is sacggor
the desired correspondences to hold: if ewvanfollowed the output of Message 1,
one would not be able to prove that eventmust have been executed, even though
Message 1 must have been sent, because Message 1 could bétlseat execut-
ing evente;. The situation is similar for events, and e; below. ThenA sends
the first message of the protogelncrypt, ((a, pk 4), v-pk, 1), wherer; are fresh
coins, used to model that public-key encryption is probistiil A waits for the
second message and decrypts it using her secretkey If decryption succeeds,
A checks that the message has the right form using the pattatching construct
let (= a,xy, = x_pkp) = pdecrypt,(m, ska) in ... This construct is syntactic sugar
for let y = pdecrypt,(m, ska) in let x1 = 1thz(y) in let 2y = 2ths(y) in let v3 =
3ths(y) in if x1 = a then if x3 = x_pkp then ... Then A executes the event
es(pk 4, x_pk g, a, z_b), to record that she has received Message 2 and sent Message 3
of the protocol, in a session with the participant of pubky k_pk 5, and nonces and
z_b. Finally, she sends the last message of the protpeatrypt,(z.b,z_pkpg,rs3).
After sending this messagd,executes some actions needed only for specifying prop-
erties of the protocol. When_pk 5 = pk 5, that is, when the session is betweé&and
B, A executes the everty (pk 4, ©_pk g, a, 2_b), to record thatd ended a session of
the protocol, with the participant of public keypk ; and nonces andxz_b. A also
outputs the secret namela encrypted under the noneeand the secret namedb
encrypted under the nonaeb. These outputs are helpful in order to formalize the se-
crecy of the nonces. Our tool can prove the secrecy of freeesahut not the secrecy
of bound names (such a3 or of variables (such as_b). In order to overcome this
limitation, we publish the encryption of a free nama undera; thensAa is secret if
and only if the nonce chosen byA is secret. SimilarlysAb is secret if and only if the
noncez_b received byA is secret.

The processPz proceeds similarly: it executes the protocol, with the &ddal
eventes(z_pk 4, pk g, z-a,b) to record that Message 1 has been received and Mes-
sage 2 has been sent By in a session with the participant of public keypk 4, and
noncesz_a andb. After finishing the protocol itself, whem_pk , = pk 4, that is,
when the session is betwednand B, P executes the eveatz (z_pk 4, pk 5, z_a, b),
to record thatB finished the protocol, and output®a encrypted under._a and sBb
encrypted unde¥, to model the secrecy af a andb respectively.

The events will be used in order to formalize authenticatidior example, we
formalize that, if A ends a session of the protocol, thBnhas started a session of
the protocol with the same nonces by requiring thak 4fx1, z2, 23, 24) has been

10

executed, then, (z1, 7o, 3, 4) has been executéd.

3 Definition of Correspondences

In this section, we formally define the correspondenceswieaterify. We prove cor-
respondences of the form “if an evenhas been executed, then eveats, ..., ey,
have been executed, or ..., @1, ..., en,, have been executed”. These events may
include arguments, which allows one to relate the valuesadfbles at the various
events. Furthermore, we can replace the ewemith the fact that the adversary knows
some term (which allows us to prove secrecy propertieshaira certain message has
been sent on a certain channel. We can prove that each exeait corresponds
to a distinct execution of some evenrtg, (injective correspondences, defined in Sec-
tion 3.2), and we can prove that the evenjg have been executed in a certain order
(general correspondences, defined in Section 3.3).

We assume that the protocol is executed in the presence aheamsary that can
listen to all messages, compute, and send all messages follawing the so-called
Dolev-Yao model [40]. Thus, an adversary can be represdmtechy process that has
a set of public namesnit in its initial knowledge and that does not contain events.
(Although the initial knowledge of the adversary containkyanames infnit, one can
give any terms to the adversary by sending them on a chaniieitn

Definition 1 Let Init be a finite set of names. The closed proc€sss an Init-
adversanyif and only if fn(Q) C Init and@ does not contain events.

3.1 Non-injective Correspondences

Next, we define when a trace satisfies an atgrgenerated by the following grammar:

o= atom
attacker(M) attacker knowledge
message(M, M') message on a channel
event(M) event

Intuitively, a trace satisfieattacker(M) when the attacker had/, or equivalently,
whenM has been sent on a public channelirt. It satisfiesmessage(M, M’) when
the messagé@/’ has been sent on channél. Finally, it satisfies:vent(A/) when the
eventevent (M) has been executed.

Definition 2 We say that a trac& = Ey, Py —* E’, P’ satisfiemttacker(M) if and
only if 7 contains a reductio®, P U {¢(M).Q,c(z).P} — E,PU{Q,P{M/x} }
for someFE, P, z, P, Q, andc € Init.

We say that a trac& = Ey, Py —* E’, P’ satisfieanessage(M, M) if and only
if 7 contains a reductio®, P U { M(M').Q, M (z).P} — E,PU{Q,P{M'/z}}
for someE, P, z, P, Q.

2For this purpose, the eveat, must not be executed whehthinks she talks to the adversary. Indeed,
in this case, it is correct that no event has been executeldebiynterlocutor ofA, since the adversary never
executes events.

11

We say that a trac& = Ey, Py —* E’, P’ satisfiesevent(M) if and only if 7
contains a reductio®’, P U { event(M).P } — E,P U{ P} for someE, P, P.

The correspondence = \/7_, (aj ~ /\ijzlevent(Mjk)), formally defined
below, means intuitively that, if an instance afis satisfied, then for somg €
{1,...,m}, the considered instance ofis an instance of; and a corresponding
instance of each of the evertgent (M), ...,event(Mj;,) has been executéd.

Definition 3 The closed proces®, satisfies the correspondence

a= \/ /\ event (M)

against/nit-adversaries if and only if, for anfnit-adversany, for any E, containing
fn(Po)UInitU fn(a) U, frey) UL, 5, fa(M;x), for any substitutiorr, for any trace
T = Ey,{Py,Q} —* E',P',if T satisfiew, then there exist’ andj € {1,...,m}
suchthav’a; = oa and, for allk € {1,...,1;}, T satisfiesevent(c’M,;) as well.

This definition is very general; we detail some interestiagtipular cases below.
Whenm = 0, the disjunctior‘}\/;”:1 ... is denoted byalse. Whena = «; for all j, we
abbreviate the correspondencedy-~ \/, /\2”:1 event(Mjy). This correspondence
means that, if an instance of is satisfied, then for somg < m, a corresponding
instance ofevent(Aj1), ..., event(My;;) has been executed. The variablesnin
are universally quantified (because |n Def|n|t|0mas universally quantified). The
variables in)M,, that do not occur imv are existentially quantified (becauskis exis-
tentially quantified).

Example 1 In the process of Section 2.3, the correspondeneat(ep(z1, 2, 23,
x4)) ~> event(ey(x1, 2, x3)) Aevent(ea(x1, T2, T3, 24)) Aevent(es(zy, T2, T3, 24))
means that, if the evenrts (z1, z2, z3, 24) has been executed, then the events:,
T9,x3), ea(T1, T2, x3,24), @ndes(z1, x2, 3, 24) have been executed, with the same
value of the arguments, , x5, x3, 4.

The correspondence

event(R_received(msg(x, z))) =
(event(R_received(msg(x, (2', Auth)))) ~
event(S_has(k, msg(z, (2', Auth))))A
event(TTP _send(sign((sencrypt(msg(z, (2', Auth)), k), x), skrrp))))
V (event(R_received (msg(x, (2', NoAuth)))) ~
event(S_has(k, msg(x, (2, NoAuth))))A
event(TTP _send(sign(sencrypt(msg(x, (2', NoAuth)), k), skrrp))))

3The implementation in ProVerif uses a slightly different rimta: o is omitted, but additionnally equal-
ity tests are allowed on the right-hand side-ef so that one can check thatis actually an instance af;.

12

means that, if the eve _received (msg(z, z)) has been executed, then two cases can
happen: eithee = (2/, Auth) or z = (2/, NoAuth) for somez’. In both cases,
the eventsT'TP_send(certificate) and S_has(k, msg(x, z)) have been executed for
somek, but with a different value otertificate: certificate = sign((S2TTP,x),
skrrp) whenz = (2/, Auth), and certificate = sign(S2TTP, skrrp) whenz =

(', NoAuth), with S2TTP = sencrypt(msg(z, z), k). Asimilar correspondence was
used in our study of a certified email protocol, in collabmmatvith Martin Abadi [2,
Section 5, Proposition 4]. We refer to that paper for addaialetails.

The following definitions are particular cases of Definitin

Definition 4 The closed procesB preserves the secrecy of all instancesidffrom
Indt if and only if it satisfies the correspondenegacker(M) ~ false againstinit-
adversaries.

When M is a free name, this definition is equivalent to that of [1].

Example 2 The process’ of Section 2.3 preserves the secrecy.dfi when the cor-
respondencettacker(sda) ~- false is satisfied. In this case, intuitivelyy, preserves
the secrecy of the noncethat A chooses. The situation is similar fedb, sBa, and
sBb.

Definition 5 Non-injective agreemeris a correspondence of the forerent(e(x,
ey Xp)) ~ event(e (zq, ..., 2y)).

Intuitively, the correspondenesent(e(z1,. .., z,)) ~ event(e'(z1, ..., z,)) means
that, if an evene(My,. .., M,,) is executed, then the evesi(M, ..., M,,) has also
been executed. This definition can be used to represent kowéon of non-injective
agreement [55].

Example 3 In the example of Section 2.3, the correspondencait(e4(z1, x2, 23,
x4)) ~ event(ea(x1,x2,x3,24)) Means that, ifA executes an eventy(z1, z2, s,
x4), thenB has executed the event(x1, z2, 23, 4). SO, if A terminates the protocol
thinking she talks taB, then B is actually involved in the protocol. Moreover, the
agreement on the parameter of the evepts, = z_pk 4, z_pky = pkp, a = z_a,
andz_b = b implies thatB actually thinks he talks tal, and thatd and B agree on the
values of the nonces.

The correspondencevent(ep(x1, 22,3, 24)) ~> event(es(x1,x2,z3,24)) IS
similar, after swapping the roles df and B.

3.2 Injective Correspondences

Definition 6 We say that the evenévent(M) is executed at step in a trace
T = Ey,Py —* FE',P'if and only if the 7-th reduction of7 is of the form
E,PU{event(M).P} — E,PU{P} forsomeE, P, P.

13

Intuitively, an injective correspondencgent(M) ~ inj event(M’) requires
that each eventvent (o M) is enabled by distinct eventsrent (o M’), while a non-
injective correspondencsrent(M) ~~ event(M') allows several eventsvent (o M)
to be enabled by the same evertent(cM’). We denote byfinj] an optionalinj
marker: it can be eitheénj or nothing. Wherjinj] = inj, an injective correspondence
is required. Wheifinj] is nothing, the correspondence does not need to be injective

Definition 7 The closed proces®, satisfies the correspondence

event(M) =

<

J
event(N. /\ inj] jrevent (M;y)

j=1

against/nit-adversaries if and only if, for anfnit-adversary, for any £y containing
fn(Po)UlnitUfn(M)UU; fr(N;)UU, , fa(M;i), forany tracel” = Eq, {Fy, @} —~
E’, P, there exist functlon$jk from a subset of steps (A to steps inZ such that

e For all 7, if the eventevent(c M) is executed at stepin 7 for someo, then
there exist’ and; such thav’N; = oM and, forallk € {1,...,l;}, ¢;r(7) is
defined an@vent (o’ M) is executed at step; () in 7.

e If [inj],;; = inj, theng;; is injective.

The functionsp,;, map execution steps of evertsent (oM) to the execution steps of
the eventsvent (o’ M;;) that enablevent (oM). When([inj];;, = inj, the injectivity

of ¢, guarantees that distinct executionseént (o M) correspond to distinct execu-
tions ofevent(c'M;,). WhenM = N; for all j, we abbreviate the correspondence
by event (M) ~ \/;"=1 /\ﬁjzl[inj]jkevent(Mjk), as in the non-injective case.

Woo and Lam’s correspondence assertions [72] are a paticake of this defi-
nition. Indeed, they consider properties of the formvyifor ... orv; have been exe-
cuted, thenu; or ... orpu,, must have been executed, denotedyby ... | v — u1 |

. | pm- Such a correspondence assertion is formalized in oungédtti for all: €
{1,...,k}, the process satisfies the corresponderegat(v;) ~ \/;.”=1 inj event(p;).

Remark 1 Correspondences = \/;.":1 (aj ~ /\ﬁjzl[inj]jkevent(M,-k)) with o =
attacker(M) and at least on&j marker would always be wrong: the adversary can
always repeat the output dff on one of his channels any number of times. With
a = message(M, M') and at least on&nj marker, the correspondence may be true
only when the adversary cannot execute the corresponditpgitouFor simplicity, we
focus on the case = event(M) only.

Definition 8 Injective agreemenis a correspondence of the forevent(e(x, ...
Typ)) ~ inj event(e'(x1,...,x,)).

3

Injective agreement requires that the number of executbasent (e(M, ..., M,))
is smaller than the number of executionseobnt (e’ (M, ..., M,)): each execution
of event(e(M,, ..., M,)) corresponds to a distinct executione@fent (e’ (M, . ..
M,,)). This corresponds to Lowe’s agreement specification [55].

3

14

Example 4 In the example of Section 2.3, the correspondeneait(e4 (1, x2, 3,
x4)) ~ inj event(es(x1,x2, x3,x4)) Means that each execution®fent(e 4 (1, 22,
x3,x4)) corresponds to a distinct executioneetnt (es (1, x2, x5, 24)). S0 each com-
pleted session afl talking to B corresponds to a distinct session®ftalking to A,
and A and B agree on the values of the nonces.

The correspondencgrent(ep (1, 22, T3, 4)) ~ inj event(es(z1, x2, 3, 24)) IS
similar, after swapping the roles df and B.

3.3 General Correspondences

Correspondences also give information on the order in wéngmnts are executed. In-
deed, if we have the correspondence

event(M) =

<

]
event(N /\ inj]jrevent (M)

j=1

then the eventsvent(M,;) for k < I, have been executed beforeent(N;). For-
mally, in the definition of injective correspondences, we cifine¢;, such that
¢jr(T) < 7 whengj;, is defined. (The inequality’ < 7 means that’ occurs be-
fore 7 in the trace.) Indeed, otherwise, by considering the prdftk@trace that stops
just afterr, we would contradict the correspondence. In this sectianemploit this
point to define more general properties involving the ordgof events.

Let us first consider some examples. Using the process ofoBe21t3, we will
denote by

event(ep(x1,x9, x3,24)) ~ (inj event(es(z1, x2, T3, T4)) ~ 1)
(inj event(ea(x1, x2, T3, x4)) ~ inj event(er (z1, T2, 23))))

the correspondence that means that each execution of theceMe:1 , x2, 3, x4) COI-
responds to distinct executions of the evestér, xa,x3), ea(x1, x2, 3, 24), and
es(x1,x9,x3,x4) In this order: each execution e (x1, x2, x3,x4) is preceded by a
distinct execution oé;(x1, 22, 3, x4), Which is itself preceded by a distinct execution
of ea(x1, %2, x3,x4), Which is itself preceded by a distinct executioreefx, x2, x3).
This correspondence shows that, wheterminates the protocol talking with, A and
B have exchanged all messages of the protocol in the expeded @his correspon-
dence is not equivalent to the conjunction of the correspooésvent(eg (1, z2, 3,
x4)) ~ inj event(eg(x1, T2, x3,24)), event(es(xy, ro, x3,24)) ~ inj event(es(zy,
To2,T3,24)), andevent(ea(x1, 2, x3,24)) ~ inj event(ey (z1,x2,z3)), because (1)
may be true even when, in order to prove thatis executed, we need to know that
ep has been executed, and not only thathas been executed and, similarly, in or-
der to prove that; has been executed, we need to know thathas been executed,
and not only that, has been executed. Using general correspondences suchss (1
therefore strictly more expressive than using injectiveespondences. A correspon-
dence similar to (1) has been used in our study of the Justeg#tg protocol, one of
the proposed replacements for IKE in IPSec, in collabonatwith Martin Abadi and
Cédric Fournet [3, Appendix B.5].

15

As a more generic example, the correspondereat(M) = \/’” (event(M;)

= Aoy ([ind]jrevent (Mjp) ~ V724 2’/’”1[lﬂJ]gka'k'eVent(Mjkj'k'))) means that,
if an instance okvent (M) has been executed, then there exjssich that this in-
stance ofevent (M) is an instance oévent();) and for allk, a corresponding in-
stance okvent (M) has been executed befareent (M), and there existg;, such
that for all k" a corresponding instance efent (M4, /) has been executed before
event(M;y).

Let us now consider the general definition. We denoté bysequence of indicés
The empty sequence is denotedVhenj = j; ... j, andk = k; ...k, are sequences
of the same length, we denote by the sequence obtained by taking alternatively
one index in each sequengandk: jk = jik; ... jnkn. We sometimes usgk as
an identifier that denotes a sequence obtained in this wayintance, “for alljk,
o is injective” abbreviates “for allj and k& of the same Iengthqu—k is injective”.
We only consider sequencgé that occur in the correspondence. For instance, for
the correspondencerent(M) = \/7-, (event(M;) ~ Av_y ([inj]jrevent(M;y,) ~

Vi 519" [in]jxj ke event(M;pjoi))), We consider the sequencgis= e, jk = jk,

andjk = jkj'k’ wherel < j <m, 1<k < L1 <7 <mjg,andl <k <.

Given a family of indices/ = (jz); indexed by sequences of indiceswe define
makejk(k, J) by makejk(e, J) = e andmakejk(kk, J) = makejk(k, J)jzk. Less
formally, if k = ki koks . .., we havemakejk(k, J) = jck1jr, kojr, ko k3 - - . Intuitively,
the correspondence contains disjunctions over indicGasd conjunctions over indices
k, so we would like to express quantifications of the faijavk, 35, Vka 3k, 1, Vks - - -
on the sequencgk jx, k2, k, k3 - - .. The notationmakejk(k, J) allows us to replace
such a quantification with the quantificati@dvk on the sequenc@akejk(k, J).

Definition 9 The closed procesk, satisfies the correspondence

m J
event(M) = \/ event(M /\ inj;xqjx
j=1 k=1
where
J]
g7 = event(M: \/ /\ 77 1 077k

against/nit-adversaries if and only if, for angmt adversaryy, for any Ey containing
fn(Po)UInitUfn(M)UU; frn(M;)UUsr frn(Msg), forany tracel” = Eo, {F, Q} —~
E’,P’, there exists afuncuo&z)]— for each non-emptyk, such that for all non-empty
gk, ¢75 Maps a subset of stepsbfto steps of7 and

e For all , if the eventevent(c M) is executed at step in 7 for someo, then
there existv’ andJ = (jj)z such thato’M; = oM and, for all non-empty
Ey b mateii(r. (7) is defined andevent (oM, %)) IS €xecuted at step

qbrnakejk(%,,]) (7) inT.

16

e For all non-emptyjk, if [inj]5z = inj, theng-7 is injective.

e For all non-emptyjk, for all j and &, if ¢75%(7) is defined, thenpz(7) is
defined andpsz,,. (1) < ¢5;(7). Forallj andk, if ¢;.(7) is defined, then
dik(T) < T.

We abbreviate by = event(M;y) the correspondenagy = event(Mjy) ~
V2t N i)z 57, Whenmsg = 1 and k= 0, that is, the disjunction
\/;n:-]f i [i0j)57,.457; 1S true. Injective correspondences are then a particulse ca

of general correspondences.

The functiongs; maps the execution steps of instanceswfnt (/) to the execu-
tion steps of the corresponding instanceswdnt (/). The first item of Definition 9
guarantees that the required events have been executededtied item means that,
when theinj marker is present, the correspondence is injective. Kirthk third item
guarantees that the events have been executed in the ekpedée.

Example 5 Let us consider again the correspondence (1). Using theiomsaof
Definition 9, this correspondence is writtenent(eg (1, x2, 23,24)) ~ inj q11
(or event(eg(x1, w2, 73,74)) = event(eg(w1,x2,73,74)) ~> inj q11), Where
g1 = event(eg(z1,x2, T3, 24)) ~ I0j qr111, 1111 = event(ex(z1, 2, T3, T4)) ~
inj g111111, @andgi11111 = event(eg (z1, 22, x3)). By Definition 9, this correspondence
means that there exist function$;, ¢1111, andegi11111 such that:

e Forall7, if the eventevent(cep(z1, z2, x3,x4)) IS executed at stepfor some
o, then¢11(7'), ¢1111(T), and¢111111(7) are defined, andvent(ae;;(xh 9,3,
x4)) is executed at stepy(7), event(oes(x1, x2, 23,24)) IS €xecuted at step
¢1111(7), andevent(oey(x1,x2,23)) IS executed at stepq11111(7). (Here,
o’ = o since all variables of the correspondence occuwimt(eg (1, x2, 3,
z4)). Moreover,jz = 1 for all £ and the non-empty sequencesre 1, 11,
and 111, since all conjunctions and disjunctions have aesialgment. The
sequencesakejk(k, J) are then 11, 1111, and 111111.)

e The functionse1, ¢1111, andgq11111 are injective, so distinct executions of
ep(x1,xa, x3,x4) cOrrespond to distinct executionseaf 1, o, 23), e2(x1, z2,
.133,.%'4), and63($1, 1‘2,.133,.1?4).

e When¢i11111(7) is defined,¢111111(7) < ¢1111(7) < é11(7) < 7, so the
eventse; (x1, xe, x3), ea(x1, T2, x3,x4), andes(x1, xo, 3, z4) are executed in
this order, before g (z1, z2, x5, 24).

Similarly, general correspondences allow us to expreds ifha protocol participant
successfully terminates with honest interlocutors, thendxpected messages of the
protocol have been exchanged between the protocol pantitspin the expected order.
This notion is the formal counterpart of the notion of matghconversations initially
introduced in the computational model by Bellare and Rogajd4]. This notion of
authentication is also used in [35].

We first focus on non-injective correspondences, and paostploe treatment of
general correspondences to Section 7.2.

17

4 Automatic Verification: from Secrecy to Correspon-
dences

Let us first summarize our analysis for secrecy. The clausestwo predicates:
attacker and message, whereattacker(A/) means that the attacker may have the
messageél/ andmessage(M, M') means that the messagé’ may be sent on chan-
nel M. The clauses relate atoms that use these predicates awsollé clause
message(My, M{) A ... Amessage(M,, M) = message(M, M") is generated when

the process outputd/’ on channelM/ after receivingMy, ..., M/ on channeld\/;,
..., M, respectively. A clausettacker(M;) A ... A attacker(M,,) = attacker(M)
is generated when the attacker can compufefrom M, ..., M,,. The clause

message(z,y) A attacker(x) = attacker(y) means that the attacker can listen on
channel: when he has;, and the clausettacker(z) A attacker(y) = message(x, y)
means that the attacker can send any mesgagehas on any channelhe has. When
attacker(M) is derivable from the clauses the attackesy have M, that is, when
attacker(M) is not derivable from the clauses, we are sure that the ataanot
have M, but the converse is not true, because the Horn clauses capdiied any
number of times, which is not true in general for all actiohshe process. Similarly,
whenmessage(M, M') is derivable from the clauses, the messaglemaybe sent on
channelM . Hence our analysis overapproximates the execution afrati

Let us now consider that we want to prove a correspondenae jnfiance
event(ey(z)) ~ event(ez(x)). In order to prove this correspondence, we can
overapproximate the executions of event if we prove the correspondence with
this overapproximation, it will also hold in the exact seriesn So we can eas-
ily extend our analysis for secrecy with an additional pcath event, such that
event(M) means thakvent(M) may have been executed. We generate clauses
message(My, M{) A ... A message(M,,, M) = event(M) when the process exe-
cutesevent (M) after receivingMy, ..., M} on channels\fy, ..., M,, respectively.
However, such an overapproximation cannot be done for thatey: if we prove
the correspondence after overapproximating the execafies, we are not really sure
thate, will be executed, so the correspondence may be wrong in thet semantics.
Therefore, we have to use a different method for treating

We use the following idea: we fix the exact $ebf allowed events, (M) and,
in order to proveevent(e;(x)) ~» event(es(z)), we check that only events (M)
for M such thate;(M) € £ can be executed. If we prove this property for any
value of £, we have proved the desired correspondence. So we intradpeedi-
catem-event, such thatn-event(ez(M)) is true if and only ifeo(M) € €. We gen-
erate clausemessage(My, M{) A ... A message(M,,, M) A m-event(eq(My)) =
message(M, M) when the process output$’ on channelM/ after executing the event
e2(Mp) and receivingMy, ..., M/ on channeld\f,, ..., M, respectively. In other
words, the output oft/’ on channelM/ can be executed only when-event(es(Mj))
is true, that isea(My) € €. (When the output of\/” on channelM is under sev-
eral events, the clause contains sevaralvent atoms in its hypothesis. We also have
similar clauses witlevent(e; (M)) instead ofmessage(M, M') when the event; is
executed after executing and receivingMy, ..., M/} on channeld\/y, ..., M, re-

18

spectively.)

For instance, if the events, (M) and es(M5) are executed in a certain trace
of the protocol, we defin€ = {ea(My), ea(Ms)}, so thatm-event(es(M;)) and
m-event(es(Ms)) are true and all othem-event facts are false. Then we show that
the only eventg; that may be executed aeg(M;) ande; (Ms). We prove a similar
result for all values o, which proves the desired correspondence.

In order to determine whether an atom is derivable from tlaeis®#s, we use a
resolution-based algorithm. The resolution is performadai unknown value of.
So, basically, we keem-event atoms without trying to evaluate them (which we can-
not do sincef is unknown). In the vocabulary of resolution, we never gaele@vent
atoms. (We detail this point in Section 6.1.) Thus the olgdiresult holds for any value
of £, which allows us to prove correspondences. In order to pitoee€orrespondence
event(e; (z)) ~ event(es(x)), we show thakvent(e; (M)) is derivable only when
m-event(es(M)) holds. We transform the initial set of clauses into a set atisks
that derives the same atoms. If, in the obtained set of ckaadleclauses that conclude
event(e1(M)) containm-event(ez(M)) in their hypotheses, theevent(e;(M)) is
derivable only whemn-event(es(M)) holds, so the desired correspondence holds.

We still have to solve one problem. For simplicity, we havesidered that terms,
which represent messages, are directly used in clauseseugown order to repre-
sent nonces in our analysis for secrecy, we use a speciallieigcof names: a name
created by a restrictiofva) is represented by a functiafjMy, . .., M,,] of the mes-
sages\M, ..., M, received above the restriction, so that names createdrafteiving
different messages are distinguished in the analysis fwikianportant for the preci-
sion of the analysis). However, this encoding still mergashes created by the same
restriction after receiving the same messages. For exainpllee processc(z)(va),
the names created kya) are represented hy[x], so several names created for the
same value of are merged. This merging is not acceptable for the verifioatf cor-
respondences, because when we pravat(e;(z)) ~~ event(ez(z)), we must make
sure thatr contains exactly the same names:iriz) and ines(x). In order to solve
this problem, we label each replication wittsassion identifiei, which is an integer
that takes a different value for each copy of the processrge&ttby the replication.
We add session identifiers as arguments to our encoding oésiawhich becomes
a[My,..., My, i1,...,iy] Whereiq, ..., i, are the session identifiers of the replica-
tions above the restrictiofva). For example, in the proceds(z)(va), the names
created by(va) are represented hy{z,¢]. Each execution of the restriction is then
associated with a distinct value of the session identifigrs . , i,,-, SO each name has
a distinct encoding. We detail and formalize this encodimgection 5.1.

5 From Processes to Horn Clauses

In this section, we first explain the instrumentation of gses with session identifiers.
Next, we explain the translation of processes into Hornssau

19

5.1 Instrumented Processes

We consider a closed proce$}s representing the protocol we wish to check. We
assume that the bound namegd®have been renamed so that they are pairwise distinct
and distinct from names idnit U fn(Py) and in the correspondence to prove. We
denote by@ a particular adversary; below, we prove the correspondpnmgerties

for any Q. Furthermore, we assume that, in the initial configurafiyn{ P, @}, the
names off, not in Init U fn(Py) or in the correspondence to prove have been renamed
to fresh names, and the bound nameg dfave been renamed so that they are pairwise
distinct and fresh. (These renamings do not change thdisdti®rrespondences, since
(va) P and the renamed proce&sa’) P{a’/a} reduce to the same configuration by
(Red Res).) After encoding names, the terms are represengetternsp (or “terms”,

but we prefer the word “patterns” in order to avoid confugjavhich are generated by
the following grammar:

p = patterns

T,Y, 2,1 variable

aP1y ey Pry ity ey in] name

o1, pn) constructor application
For each name in P, we have a corresponding pattern construgk , . .., p,, i1,
...,in/]. We treata as a function symbol, and writ€p;, ..., p,,1,...,i,] rather
thana(ps,...,pn,1,. .., i,) Only to distinguish names from constructors. The sym-

bol a in af..] is called aname function symbolf « is a free name, then its encoding
is simplya[]. If a is bound by a restrictio(wa) P in Py, then its encoding]. . .] takes
as argument session identifigss. . . , i,,,, which can be constant session identifigrs
or variables (taken in a seV/; disjoint from the set/, of ordinary variables). There
is one session identifier for each replication above theicdish (va). The pattern
al...] may also take as argument pattepns. . ., p, containing the messages received
by inputs above the restrictiofva) P in the abstract syntax tree % and the result
of destructor applications above the restriction) P. (The precise definition is given
below.)

In order to define formally the patterns associated with agjame use a notion of
instrumented processes. The syntax of instrumented mesésdefined as follows:

e The replication! P is labeled with a variable in V,: *P. The procesg’P
represents copies d? for a countable number of values of The variable:
is a session identifier. It indicates which copy Bf that is, which session, is
executed.

e The restriction(va) P is labeled with a restriction labél (va : ¢) P, wherel is
eithera[M;, ..., M,,i1,..., i,/ for restrictions in honest processeshglalis,
..., in/]] for restrictions in the adversary. The symbgiis a special name func-
tion symbol, distinct from all other such symbols. Using aafic instrumenta-
tion for the adversary is helpful so that all names generayettie adversary are
encoded by instances bf[z]. They are therefore easy to generate. This labeling
of restrictions is similar to a Church-style typingcan be considered as the type
of a. (This type is polymorphic since it can contain variables.)

20

The instrumented processes are then generated by the ifajlgnammar:

PQ:= instrumented processes
lip replication
(va:0)P restriction

... (asin the standard calculus)

For instrumented processes, a semantic configuratiéh P consists of a sef of ses-
sion identifiers that have not yet been usedhyan environmenf that is a mapping
from names to closed patterns of the foafn. .], and a finite multiset of instrumented
processe®. The first semantic configuration uses any countable setssf@eidenti-
fiers Sy. The domain ofE must always contain all free names of processég,iand
the initial environment maps all namego the patterrz[]. The semantic rules (Red
Repl) and (Red Res) become:

S,E;PU{I'P} — S\{\,E,PU{P{)\/i},'"P}whereA € S (Red Repl)
S,E,PU{(va:{)P} . (Red Res)
— S,E[d' — E({)],PU{P{d'/a} }if ' ¢ dom(E)
where the mappingF is extended to all terms as a substitution By f (M,
. My)) = f(E(My),...,E(M,))andto restriction labels b¥ (a[M, . . ., My, i1,
ceing]) = a[E(My), ..., BE(My,),i1,...,iy] @and E(bolaliv, ... ,in/]]) = bolali,
...,in]], SO that it maps terms and restriction labels to patterne. riite (Red Repl)
takes an unused constant session identifierS, and creates a copy &f with session
identifier \. The rule (Red Res) creates a fresh narhesubstitutes it for in P, and
adds to the environmer the mapping of:’ to its encodingE(¢). Other semantic
rulesk, P — E, P’ simply becomeS, E, P — S, E,P’.
The instrumented proced% = instr(FP,) associated with the proce$} is built
from P, as follows:

e We label each replicatiohP of P, with a distinct, fresh session identifierso
that it become$' P.

e We label each restrictiofva) of Py with alt, s], so that it becomeg&va : at, s]),
wheres is the sequence of session identifiers that label replicatidove va) in
the abstract syntax tree &§), in the order from top to bottont;is the sequence
of variablesr that store received messages in input&e) above(va) in Py and
results of non-deterministic destructor applicatideisc = g(...) in P else Q
above(va) in Py. (A destructor is said to be non-deterministic when it may
return several different results for the same arguments.dirgdthe result
of destructor applications to is useful to improve precision, only for non-
deterministic destructors. For deterministic destrugttire result of the destruc-
tor can be uniquely determined from the other elements sb the addition is
useless. If we add the result of non-deterministic destrsdbt, we can show
that the relative completeness result of [1] still holdshe presence of non-
deterministic destructors. This result shows that, foresmg the Horn clause
approach is at least as precise as a large class of type syptem

21

Hence names are represented by functiefss] of the inputs and results of
destructor applications ihand the session identifiers in In each trace of the
process, at most one name corresponds to a gifter], since different copies
of the restriction have different values of session idemtfiin s. Therefore,
different names are not merged by the verifier.

For the adversary, we use a slightly different instrumémat We build the instru-
mented procesg’ = instrAdv(Q) as follows:

e We label each replicatioh? of @) with a distinct, fresh session identifigrso
that it become$’ P.

e We label each restrictiofva) of Q with by[a[s]], so that it become@ a:bglals]]),
wheres is the sequence of session identifiers that label replicatidooveva)
in Q. (Including the session identifiers as arguments of nonee®cessary
for soundness, as discussed in Section 4. Including theages$reviously re-
ceived as arguments of nonces is important for precisiohéncase of honest
processes, in order to relate the nonces to these messhagasowever useless
for the adversary: since we consider ahyit-adversary), we have no defi-
nite information on the relation between nonces generagatidbadversary and
messages previously received by the adversary.)

Remark 2 By moving restrictions downwards in the syntax tree of thecpss (until
the point at which the fresh name is used), one can add mouenargs to the pattern
that represents the fresh name, when the restriction is dnorder an input, replica-
tion, or destructor application. Therefore, this transfation can make our analysis
more precise. The tool can perform this transformationraataally.

Example 6 The instrumentation of the process of Section 2.3 yields:

Pli(ska, pka,pkg) =""4c(z_pkp).(va:alz_pkg,ial)...(vri:ri|zpkg,ial)...
c(m)...(vrs:r3[z_pkg, m,ial])

Pp(skp, pkg,pka) ="Zc(m/) ... (vb:b[m',ig]) ... (vry:ra[m,ig)). ..

P = (vska:skal])(vskp : skgl])...(Py(ska,pka,pkp) | Ps(sks, pkg, pk4))

The names created by the restrictiom) will be represented by the pattedfr_pk 5,
i4], so we have a different pattern for each copy of the proceslexed byi 4, and
the pattern also records the public keyk of the interlocutor ofA. Similarly, the
names created by the restrictiowb) will be represented by the patteifin’, i 5].

The semantics of instrumented processes allows exactlsatime communications
and events as the one of standard processes. More pret@séhbhe a multiset of in-
strumented processes. We defindnstr(7) as the multiset of processes®fwithout
the instrumentation. Thus we have:

Proposition 1 If Ey, {Py, Q} —* E4, Py, then there exisk; andP] such that for any
S, countable set of session identifiers, there exdétsuch thatS, {a — a[] | a € Ep},

22

{instr(Pp), instrAdv(Q)} —* S’, E{,P;, dom(E}) = Ei, unlnstr(P;) = P4, and
both traces execute the same events at the same steps afigl thetisame atoms.

Conversely, ifS, {a — a[] | a € Ep}, {instr(F), instrAdv(Q)} —* S’, E1, Py,
thenEy, { Py, Q} —* dom(E}), unlnstr(P;), and both traces execute the same events
at the same steps and satisfy the same atoms.

Proof This is an easy proof by induction on the length of the tradés reduction
rules applied in both traces are rules with the same name.]

We can define correspondences for instrumented procedsese Torrespondences
and the clauses usactsdefined by the following grammar:

F = facts
attacker(p) attacker knowledge
message(p, p’) message on a channel
m-event(p) must-event
event(p) may-event

The factattacker(p) means that the attacker may hayeand the facinessage(p, p’)
means that the messagé may appear on channel The factm-event(p) means
thatevent (M) must have been executed willi corresponding t@, andevent(p)
thatevent (M) may have been executed witlf corresponding te. We use the word
“fact” to distinguish them from atomsttacker (M), message(M, M"), andevent (M).
The correspondences do not use the faetvent(p), but the clauses use it.

The mapping £ of a semantic configuration is extended to atoms by
E(attacker(M)) = attacker(E(M)), E(message(M, M’)) = message(E (M),
E(M")), andE(event(M)) = event(E(M)), so that it maps atoms to facts. We de-
fine that an instrumented tra@esatisfies an atom by naturally adapting Definition 2.
When F' is notm-event(p), we say that an instrumented tra€e= Sy, Fy, Py —*

S’ E', P’ satisfies a facF when there exists an atomsuch that7 satisfiesa: and
E'(a) = F. We also define thatvent(M) is executed at step in the instrumented
trace7 by naturally adapting Definition 6. We say thatent(p) is executed at step
in the instrumented trac& = Sy, Ey, Py —* S’, E’, P’ when there exists a teri/
such thakvent (M) is executed at stepin 7 andE’' (M) = p.

Definition 10 Let P, be a closed process arf@) = instr(Fy). The instrumented
processP} satisfies the correspondence

lj

F= \/ Fj ~ /\ event(p;i)
j=1 k=1

againstinit-adversaries if and only if, for anynit-adversaryQ, for any trace7 =
So, Fo, {P},Q'} —* S’,E',P', with Q' = instrAdv(Q), Eo(a) = a[] forall a €
dom(Ey), and fn(P}) U Init C dom(Ey), if T satisfiescF' for some substitution
o, then there exist’ andj € {1,...,m} such thate’F; = oF and for allk <
{1,...,1;}, T satisfiesevent(c'pjx).

23

A correspondence for instrumented processes implies asgmwndence for stan-
dard processes, as shown by the following lemma, provedBin4ppendix A].

Lemma 1 Let P, be a closed process amf®} = instr(Fy). LetMj, (j € {1,...,m},

ke{l,...,l;}) beterms; lex ande; (j € {1,...,m}) be atoms. Leb,, F, F; be

the patterns and facts obtained by replacing namesth patterns:[] in the terms and
atomsM,, o, o respectively. 1fP] satisfies the correspondence

lj

F= \/ Fj ~ /\ event(p;i)
j=1 k=1

against/nit-adversaries ther, satisfies the correspondence

m lj
o= \/ Qj ~ /\ event (M)
j=1 k=1

against/nit-adversaries.

For instrumented processes, we can specify propertiesirgféo bound names of
the process, which are represented by patterns. Such dicgan is impossible in
standard processes, because bound names can be renarhed cemnhot be referenced
in terms in correspondences.

5.2 Generation of Horn Clauses

Given a closed proced% and a set of nameait, the protocol verifier first instruments
P, to obtain P} = instr(F), then it builds a set of Horn clauses, representing the
protocol in parallel with anynit-adversary. The clauses are of the fafim. . .AF, =

F, wherefFy, ..., F,, F are facts. They comprise clauses for the attacker and dause
for the protocol, defined below. These clauses form thekset ;. The predicate
m-event is defined by a set of closed fack,., such thatm-event(p) is true if and
only if m-event(p) € Fe. The facts inF,,,. do not belong tR py it The setF . is

the set of facts that corresponds to the set of allowed eementioned in Section 4.

5.2.1 Clauses for the Attacker

The clauses describing the attacker are almost the samethe ferification of secrecy
in [1]. The only difference is that, here, the attacker isegivan infinite set of fresh
nameshy[z], instead of only one fresh nandg[]. Indeed, we cannot merge all fresh
names created by the attacker, since we have to make surdiffieatnt terms are
represented by different patterns for the verification afespondences to be correctly
implemented, as seen in Section 4. The abilities of thelegtesre then represented by
the following clauses:

For eachu € Init, attacker(a[]) (Init)

24

attacker(bo[z]) (Rn)
For each public constructgr of arity n,

attacker(z1) A ... A attacker(z,) = attacker(f(z1,...,2n)) (R0)
For each public destructgr,

for each rewrite rulgy (M, ..., M,) — M in def(g), (Rg)

attacker(My) A ... A attacker(M,,) = attacker(M)
message(z, y) A attacker(x) = attacker(y) (RI)
attacker(z) A attacker(y) = message(z,y) (Rs)

The clause (Init) represents the initial knowledge of thacker. The clause (Rn) means
that the attacker can generate an unbounded number of neasndrhe clauses (Rf)
and (Rg) mean that the attacker can apply all operationd terahs it has, (Rf) for
constructors, (Rg) for destructors. For (Rg), notice thatrewrite rules inlef(g) do
not contain hames and that terms without names are alsompats® the clauses have
the required format. Clause (RI) means that the attacketistem on all channels it
has, and (Rs) that it can send all messages it has on all dsanhas.

If ¢ € Init, we can replace all occurrencesméssage(c|], M) with attacker(M)
in the clauses. Indeed, these facts are equivalent by theeddRI) and (Rs).

5.2.2 Clauses for the Protocol

When a functiorp associates a pattern with each name and variablef &l construc-
tor, we extendb as a substitution by(f (M, ..., M,)) = f(p(My),..., p(My)).

The translatio P]pH of a proces< is a set of clauses, whepas a function that
associates a pattern with each name and variable Harsda sequence of facts of the
form message(p, p’) or m-event(p). The environmenp maps each variable and name
to its associated pattern representation. The sequérkezps track of events that have
been executed and of messages received by the processth&raeanay trigger other
messages. The empty sequence is denotdl] Hye concatenation of a faét to the
sequencd is denoted by A F'. The patterrpi is always a session identifier variable
of V.

[o]oH =0

[P | QlpH = [PlpH U [Q]pH

[\ PLpH = [P)(oli - i)
[(va:a[My,..., My, i1,...,in])P]pH =

[[P]]([CL = a[p(Ml)v s 7p(Mn)7p(i1)7 s 7p(in')]])H
[M(z).PloH = [P](ple — 2])(H A message(p(M), z))

[M(N).PlpH = [PlpH U{H = message(p(M), p(N))}

[let x = g(My, ..., M,) in P else Q]pH = U{[[P]]((Up)[m — a'p])(cH)
| g(p),...,pl,) — p'isindef(g) and(o,o’) is a most general pair of
substitutions such thatp(M;) = o'p,...,op(M,) = o'p),} U [Q]pH

25

[if M = N then P else Q)pH = [P](op)(cH) U [Q]pH

whereo is the most general unifier @f A1) andp(V)

[event(M).P]pH = [P]p(H A m-event(p(M))) U {H = event(p(M))}

The translation of a process is a set of Horn clauses thaesgghat it may send
certain messages or execute certain events. The clausesrala to those of [1],
except in the cases of replication, restriction, and thetihdof events.

The nil process does nothing, so its translation is empty.

The clauses for the parallel composition of proced@esd (@ are the union of
clauses forP andq@.

The replication only inserts the new session identifiierthe environmenp. It
is otherwise ignored, because all Horn clauses are appgicabitrarily many
times.

For the restriction, we replace the restricted nanire question with the pattern
alp(My),...,p(My,), p(i1),. .., p(in’)]. By definition of the instrumentation,
this pattern contains the previous inputs, results of netertninistic destructor
applications, and session identifiers.

The sequencdd is extended in the translation of an input, with the input in
guestion.

The translation of an output adds a clause, meaning thatutpeibis triggered
when all conditions inH are true.

The translation of a destructor application is the uniorhefdlauses for the cases
where the destructor succeeds (with an appropriate suti@ti} and where the
destructor fails. For simplicity, we assume that #ie branch of destructors
may always be executed,; this is sufficient in most casese sirexise branch is
often empty or just sends an error message. We outline a mecese treatment
in Section 9.2.

The conditionalif M = N then P else Q is in fact equivalent to
let © = equal(M,N) in P else @), where the destructafqual is defined by
equal(z,z) — x, SO the translation of the conditional is a particular cdsth®
destructor application. We give it explicitly since it isrpaularly simple.

The translation of an event adds the hypothesisvent(p(M)) to H, meaning
that P can be executed only if the event has been executed firshdtarore, it
adds a clause, meaning that the event is triggered whenraditans in H are
true.

Remark 3 Depending on the form of the correspondences we want to pravean
sometimes simplify the clauses generated for events. Sepiat all arguments of
events in the process and in correspondences are of theffavfy, . . ., M,,) for some
function symbolf.

26

If, for a certain function symbaof, eventsevent(f(...)) occur only before~ in
the desired correspondences, then it is easy to see in tbeifay theorems that hy-
potheses of the form-event(f(...)) in clauses can be removed without changing the
result, so the clauses generated by the eweatt(A/) when) is of the formf(...)
can be simplified into:

[event(M).P]pH = [P]pH U {H = event(p(M))}

(Intuitively, since the eventsvent(f(...)) occur only before~ in the desired corre-
spondences, we never prove that an everint(f(...)) has been executed, so the
factsm-event(f(...)) are useless.)

Similarly, if event(f(...)) occurs only after~ in the desired correspondences,
then clauses that conclude a fact of the farmant(f(...)) can be removed without
changing the result, so the clauses generated by the evemt (1/) when}/ is of the
form f(...) can be simplified into:

[event(M).P]pH = [P]p(H A m-event(p(M)))

(Intuitively, since the eventsvent(f(...)) occur only after~ in the desired correspon-
dences, we never prove properties of the formetitnt(f(...)) has been executed,
then ...”, so clauses that conclugleent(f(...)) are useless.)

This translation of the protocol into Horn clauses introglkiapproximations. The
actions are considered as implicitly replicated, sincedlaeses can be applied any
number of times. This approximation implies that the todlsféo prove protocols
that first need to keep some value secret and later reveaditintance, consider the
procesgvd)(d(s).¢(d) | d(x)). This process preserves the secrecy,dfecauss is
output on the private channdland received by the input afy before the adversary
gets to knowd by the output ofd on the public channel. However, the Horn clause
method cannot prove this property, because it treats tluisegs like a variant with
additional replicationgvd)(!d(s).c(d) | !d(x)), which does not preserve the secrecy
of s. Similarly, the proces$vd)(d(M) | d(z).d(z).event(e1)) never executes the
eventey, but the Horn clause method cannot prove this property lsecadreats this
process like(vd)(\d(M) | d(z).d(z).event(e1)), which may execute;. The only
exception to this implicit replication of processes is theation of new names: since
session identifiers appear in patterns, the created namexisely related to the session
that creates it, so name creation cannot be unduly repeaeigiithe same session. Due
to these approximations, our tool is not complete (it maydpoe false attacks) but, as
we show below, it is sound (the security properties thatat/ps are always true).

5.2.3 Summary and Correctness

Letp = {a — a[] | a € fa(P))}. We define the clauses corresponding to the
instrumented process; as:

Repg.mit = [Polod U {attacker(a[]) | a € Init} U {(Rn), (Rf), (Rg), (R), (Rs)}

27

Example 7 The clauses for the processof Section 2.3 are the clauses for the adver-
sary, plus:

attacker(pk(skal[])) 2
attacker(pk(skp[])) (3)
H,y = attacker(pencrypt, ((a[z-pkp,ial, pk(skal])),z-pkg,r1]r-pkp,ial)) (4)
Hjy = attacker(pencrypt, (z.b, v _pk g, r3[r_pkp,p2,ial)) (5)
Hy = event(ea(pk(skal]), pk(sk[]), alpk(skg[]),ia], b)) (6)
Hs = attacker(sencrypt(sAal], a[pk(skgl]),i4])) (7)
Hs = attacker(sencrypt(sAb[], z-b)) (8)

wherep, = pencrypt, ((a[r_pkp,ial, b,z pkg), pk(skal]),zrs)
H, = attacker(x_pk) A m-event(ey (pk(skal]), z_pk g, alx_pkg,ia]))
Hy = H; A attacker(p2) A m-event(es(pk(skal]), z-pk g, alx_pkg,ia], b))
Hy = Hy{ph(skp])/2 b}

attacker(py) A m-event(eq(x_pk 4, pk(skg[]),z-a,b[p1,iB]))

= attacker(pencrypt, ((«a,b[p1,is], pk(skB[])), v_pk 4, r2[p1,iB])) ©)
wherep, = pencrypt,((v-a,z_pk 4), pk(skp[]), 1)
Hy = event(ep(pk(skal]), pk(skgl]), z-a,blp|,ig])) (10)
H, = attacker(sencrypt(sBa[],z-a)) (11)
H, = attacker(sencrypt(sBb|],b[p},i5])) (12)

wherep| = pencrypt,, ((x_a, pk(skal])), pk(skp[]), z_r1)
H, = attacker(p}) A m-event(ea(pk(skal]), pk(skg[]), z_a,b[p},ip])) A
attacker(pencrypt,, (b[p}, is], pk(sks[]), z-r3))

Clauses (2) and (3) correspond to the output®jrihey mean that the adversary has
the public keys of the participants. Clauses (4) and (5)espond to the first two
outputs inP4. For example, (5) means that, if the attacker hask ; and the sec-
ond message of the protocp} and the events; (pk(skal]), z-pk g, alz_pkg,ial)
andes(pk(skall), z_pkg,alz_pkg,ia],z-b) are allowed, then the attacker can get
pencrypt,, (z.b, v _pkp,r3[r_pkp,p2,ial), becauseP, sends this message after re-
ceivingz_pk 5 andp, and executing the events andes. When furthermore_pk 5 =
pk(skg[]), Pa executes eventy and outputs the encryption efla[] underalz_pk 5,

i4] and the encryption ofBb[] underz_b. These event and outputs are taken into
account by Clauses (6), (7), and (8) respectively. Sinyil&lauses (9), (11), and (12)
correspond to the outputs iRz and (10) to the eventz. These clauses have been
simplified using Remark 3, taking into account that eo, andes appear only on the
right-hand side of~, ande4 andeg only on the left-hand side of in the queries of
Examples 1, 2, and 3.

Theorem 1 (Correctness of the clauseshet P, be a closed process an@ be an
Init-adversary. Let?] = instr(Pp) and@’ = instrAdv(Q). Consider a tracel =

28

So, Fo, {P},Q'} —* S',E',P', with fn(P}) U Init C dom(Ey) and Ep(a) = a[]
for all a € dom(Ep). Assume that, if satisfiesevent(p), thenm-event(p) € Fre.
Finally, assume thaf satisfiest”. ThenF" is derivable fromiR p; rnis U Frne-

This result shows that, if the only executed events are thtewed in 7, and
a fact I is satisfied, therF' is derivable from the clauses. It is proved in [18, Ap-
pendix B]. Using a technique similar to that of [1], its praefies on a type system to
express the soundness of the clause$frand on the subject reduction of this type
system to show that soundness of the clauses is presenied dilrexecutions of the
process.

6 Solving Algorithm

We first describe a basic solving algorithm without optintias. Next, we list the
optimizations that we use in our implementation, and we @ittve correctness of the
algorithm. The termination of the algorithm is discusse&éttion 8.

6.1 The Basic Algorithm

To apply the previous results, we have to determine whetliactas derivable from
Rp;. it U Fme. This may be undecidable, but in practice there exist aigms that
terminate on numerous examples of protocols. In particwlaican use variants of res-
olution algorithms, such as the algorithms described in 14321, 70]. The algorithm
that we describe here is the one of [14], extended with a skpbase to determine
derivability of any query. It also corresponds to the exi@m$o m-event facts of the
algorithm of [21].

We first define resolution: when the conclusion of a clafisenifies with an hy-
pothesisFy of a clauseR’, we can infer a new clausk o, R’, that corresponds to
applying R and R’ one after the other. Formally, this is defined as follows:

Definition 11 Let R = H = C andR’ = H' = C’ be two clauses. Assume that
there existd, € H’ such thatC andF; are unifiable, and is the most general unifier
of C'andFy. In this case, we definB o, R’ = o(H U (H' \ {Fp})) = oC".

An important idea to obtain an efficient solving algorithmasspecify conditions that
limit the application of resolution, while keeping com@eéess. The conditions that we
use correspond to resolution with free selection [9, 36, &8klection function chooses
selected facts in each clause, and resolution is performkgcba selected facts, that is,
the clauseR oy, R’ is generated only when the conclusion is selectel and Fy is
selected inR’.

Definition 12 We denote bygel a selection function, that is, a function from clauses to
sets of facts, such thatl(H = C) C H. If F € sel(R), we say thaf is selected in
R. If sel(R) = (), we say that no hypothesis is selectediinor that the conclusion of
the clause is selected.

29

The choice of the selection function can change dramaittzd speed of the algorithm.
Since the algorithm combines clauses by resolution onlynwhe facts unified in the
resolution are selected, we will choose the selection fandb reduce the number
of possible unifications between selected facts. Havingrséselected facts slows
down the algorithm, because it has more choices of resolitio perform, therefore
we will select at most one fact in each clause. In the caseadbpols, facts of the form
attacker(x), with = variable, can be unified will all facts of the forattacker(p).
Therefore we should avoid selecting them. Thevent facts must never be selected
since they are not defined by known clauses.

Definition 13 We say that a facF’ is unselectablavhen F' = attacker(x) for some
variablexz or F' = m-event(p) for some patterrp. Otherwise, we say thdft is se-
lectable

We require that the selection function never selects uotdde hypotheses and
thatsel(H = attacker(z)) # () whenH contains a selectable fact.

A basic selection function for security protocols is then

1] if VE' € H, F is unselectable

selo(H = C) = {{FO} whereF, € H andFj is selectable, otherwise
In the implementation, the hypotheses are representedisty arld the selected fact is
the first selectable element of the list of hypotheses.

The solving algorithm works in two phases, summarized irufggd. The first
phasesaturate, transforms the set of clauses into an equivalent but singple. The
second phaselerivable, uses a depth-first search to determine whether a fact can be
inferred or not from the clauses.

The first phase contains 3 steps.

e The first step inserts ifR the initial clauses representing the protocol and the
attacker (clauses that arey), after simplification bysimplify (defined below
in Section 6.2) and elimination of subsumed clausesiby. We say that#{; =
Cy subsumedis = Cs, and we write(H; = C;) J (Hs = C3), when there
exists a substitutioar such thatvC; = Cy andocH; C H,. (Hy and Hy are
multisets, and we use here multiset inclusion Rifsubsumegz, andR and R’
are inR, thenR is removed byelim(R).

e The second step is a fixpoint iteration that adds clausesectdsy resolution.
The composition of clause® and R’ is added only if no hypothesis is selected
in R, and the hypothesi$, of R’ that we unify is selected. When a clause
is created by resolution, it is added to the set of claugedter simplification.
Subsumed clauses are eliminated fr&n

e Atlast, the third step returns the set of clauseRafith no selected hypothesis.

Basically,saturate preserves derivabilityF" is derivable fronfRq U Fy,.. if and only if
it is derivable fromsaturate(Rp) U Fre. A formal statement of this result is given in
Lemma 2 below.

30

First phase: saturation
saturate(Ry) =
1.R « 0.
For eachR € Ry, R « elim(simplify(R) UR).
2. Repeat until a fixpoint is reached
for eachR € R such thasel(R) = (),
for eachR’ € R, for eachF} € sel(R’) such thatR o, R’ is defined,
R — elim(simplify(Rop, R')UR).
3. Return{ R € R | sel(R) = 0}.
Second phase: backwards depth-first search
0 if 3R e R,R" IR
{R} otherwise, ifsel(R) = 0
U{deriv(simplify’ (R’ op, R),{R}UR,R1) | R’ € Ry,
F, € sel(R) such thatR’ o, R is defined} otherwise
derivable(F, R1) = deriv(F = F,0,R1)

deriv(R,R,R1) =

Figure 4: Solving algorithm

The second phase searches the facts that can be inferre®Rfremsaturate(Ry).
This is simply a backward depth-first search. The dalivable(F, R;) returns a set of
clausesk = H = C with empty selection, such th&t can be obtained by resolution
from R4, C is an instance of’, and all instances of' derivable fromR; can be
derived by using as last clause a clausel@fvable(F,R). (Formally, if F’ is an
instance off" derivable fromR,, then there are a clausé = C € derivable(F, Rq)
and a substitutios such thatF” = ¢C ando H is derivable fronR.)

The search itself is performed ligriv(R, R, R1). The functionderiv starts with
R = F = F and transforms the hypothesis &f by using a claus&?’ of R; to
derive an elementy, of the hypothesis oRR. SoR is replaced withR’ op, R (third
case of the definition aderiv). The factFy is chosen using the selection functish.
The obtained claus&’ or, R is then simplified by the functiorimplify’ defined in
Section 6.2. (Henceeriv derives the hypothesis dt using a backward depth-first
search. At each step, the claugecan be obtained by resolution from clausesaf,
andR concludes an instance 6f) The sefR is the set of clauses that we have already
seen during the search. Initiall, is empty, and the clauge is added tdR in the third
case of the definition aferiv.

The transformation oRk described above is repeated until one of the following two
conditions is satisfied:

e Ris subsumed by a clause®: we are in a cycle; we are looking for instances
of facts that we have already looked for (first case of the difimof deriv);

e sel(R) is empty: we have obtained a suitable clafisand we return it (second
case of the definition aferiv).

31

6.2 Simplification Steps

Before adding a clause to the clause base, it is first simgliffeing the following
functions. Some of them are standard, such as the elimmafitautologies and of
duplicate hypotheses; others are specific to protocols. simelification functions
take as input a clause or a set of clauses and return a setisésla

Decomposition of Data Constructors A data constructor is a constructfrof arity
n that comes with associated destructgydor i € {1,...,n} defined byg;(f(z1,
...,xy)) — x,;. Data constructors are typically used for representing datictures.
Tuples are examples of data constructors. For each dat&ructos f, the following
clauses are generated:

attacker(xz1) A ... A attacker(z,) = attacker(f(x1,...,2y)) (Rf)
attacker(f(z1,...,2,)) = attacker(z;) (Ro)

Therefore, attacker(f(p1,...,pn)) IS derivable if and only ifvi € {1,...,n},
attacker(p;) is derivable. So the functiofecomp transforms clauses as follows. When
a fact of the formattacker(f(p1,...,pn)) is met, it is replaced withttacker(p;) A

... N\ attacker(p,). If this replacement is done in the conclusion of a clause
H = attacker(f(p1,...,pn)), n clauses are created? = attacker(p;) for each

i € {1,...,n}. This replacement is of course done recursivelyp;iftself is a data
constructor application, itis replaced again. The functiecomphyp performs this de-
composition only in the hypothesis of clauses. The fun&tidnezomp and decomphyp
leave the clauses (Rf) and (Rg) for data constructors umggthn(Whemttacker ()
cannot be selected, the clauses (Rf) and (Rg) for data cmbsts are in fact not
necessary, because they generate only tautologies dasodution. However, when
attacker(x) can be selected, which cannot be excluded in extensionsasutite one
presented in Section 9.3, these clauses may become ngciessaundness.)

Elimination of Tautologies The functionelimtaut removes clauses whose conclu-
sion is already in the hypotheses, since such clauses denetae new facts.

Elimination of Duplicate Hypotheses The functionelimdup eliminates duplicate
hypotheses of clauses.

Elimination of Uselessattacker(x) Hypotheses If a clauseH = C contains in its
hypothesesattacker(x), wherex is a variable that does not appear elsewhere in the
clause, the hypothesigtacker(z) is removed by the functioalimattz. Indeed, the
attacker always has at least one messagettseker(z) is always satisfied.

Secrecy Assumptions When the user knows that a faEtwill not be derivable, he
can tell it to the verifier. (When this fact is of the formtacker(p), the user tells that
p remains secret; that is why we use the name “secrecy asaunmgpji Let 7, be a
set of facts, for which the user claims that no instance dfetacts is derivable. The

32

solvep; mit(F) =
1. LetR, = saturate(Rp;, 1nit)-
2. For eacht” € F, o, if derivable(F’, R1) # 0, then terminate with error.
3. Returnderivable(F, R1).

Figure 5: Summary of the solving algorithm

function elimnot removes all clauses that have an instance of a fadi,in in their

hypotheses. As shown in Figure 5, at the end of the saturdtiersolving algorithm
checks that the facts itF,.; are indeed underivable from the obtained clauses.
this condition is satisfiedplvepé,fmt(F) returns clauses that conclude instances of

Otherwise, the user has given erroneous information, seranraessage is displayed.

Even when the user gives erroneous secrecy assumptiongerifier never wrongly
claims that a protocol is secure.

Mentioning such underivable facts prunes the search spgcemoving useless
clauses. This speeds up the search process. In most casesctiet keys of the
principals cannot be known by the attacker, so examples dénivable facts are
attacker(sk[]) andattacker(skp[]).

Elimination of Redundant Hypotheses When a clause is of the forld A H' = C,
and there exists such thatr H C H' ando does not change the variablesif and
C, then the clause is replaced witH = C by the functionelimredundanthyp. These
clauses are semantically equivalent: obviougly, = C subsumedd A H' = C;
conversely, if a fact can be derived by an instantH’ = ¢'C of H' = C, then it
can also be derived by the instance H A ¢'H' = ¢'C of H A H' = C, since the
elements ob’'c H can be derived because they are-iil’.

This replacement is especially useful whEncontainsm-event facts. Otherwise,
the elements oH could be selected and transformed by resolution, until treyof
the formattacker(x), in which case they are removed bymatiz if ox # = (because
x does not occur infd’ and C sincec does not change the variables &f and C)
or by elimdup if ox = x (becausettacker(z) = cattacker(z) € cH C H’). In
contrastm-event facts remain forever, because they are unselectable. Oeeon
user settings, this replacement can be applied faiakpplied only wherH contains
am-event fact, or switched off, since testing this property takesetiamd slows down
small examples. On the other hand, on big examples, suchnas sbthose gener-
ated by TulaFale [12] for verifying Web services, this teicjue can yield important
speedups.

Putting All Simplifications Together The functionsimplify groups all these simpli-
fications. We defingimplify = elimattx o elimtaut o elimnot o elimredundanthyp o
elimdup o decomp. In this definition, the simplifications are ordered in suakiay that
simplify o simplify = simplify, SO it is not necessary to repeat the simplification.
Similarly, simplify’ = elimattz o elimnot o elimredundanthyp o elimdup o
decomphyp. In simplify’, we usedecomphyp instead ofdecomp, because the conclu-

33

If

sion of the considered clause is the fact we want to derivi,mast not be modified.

6.3 Soundness

The following lemmas show the correctnesssefurate and derivable (Figure 4).
Proofs can be found in [18, Appendix C]. Intuitively, the imtness obaturate ex-
presses that saturation preserves derivability, providedecrecy assumptions are sat-
isfied.

Lemma 2 (Correctness okaturate) Let F' be a closed fact. If, for alF’ € F,,
no instance off” is derivable fromsaturate(Ro) U Fie, then F' is derivable from
Ro U Fe if and only if ' is derivable fromsaturate(Ro) U Frye-

This result is proved by transforming a derivationfofrom R U F,,,. into a derivation
of F' (or a fact inF,.) from saturate(Rg) U Fme. Basically, when the derivation
contains a claus®&’ with sel(R') #), we replace in this derivation two claus&s
with sel(R) = (), and R’ that have been combined by resolution during the execution
of saturate with a single clause? o, R’. This replacement decreases the number
of clauses in the derivation, so it terminates, and, upamitetion, all clauses of the
obtained derivation satisiel(R') = () so they are isaturate(Ro) U Fine.

Intuitively, the correctness alferivable expresses that #’, instance off", is deriv-
able, thenF” is derivable fromR by a derivation in which the clause that concludes
F'is inderivable(F, R1), provided the secrecy assumptions are satisfied.

Lemma 3 (Correctness ofderivable) Let I’ be a closed instance df. If, for all

F" € Foot, derivable(F”,Rq) = 0, thenF’ is derivable fromR; U F,,. if and only
if there exist a clausédd = C in derivable(F,R;) and a substitutiors such that
oC = F’" and all elements of H are derivable frontR{ U Fiye.

Basically, this result is proved by transforming a derivatof F/ from R; U Fy,e into

a derivation ofF” (or a fact inF,.) whose last clause (the one that concluéigpis
H = C and whose other clauses are stillin U F,,... The transformation relies on
the replacement of clauses combined by resolution durieg@tiecution oflerivable.

It is important to applyaturate beforederivable, so that all clauses iR; have no
selected hypothesis. Then the conclusion of these clasigegéneral nosttacker(x)
(with the simplifications of Section 6.2 and the selectionctipn sely, it is never
attacker(z)), so that we avoid unifying withttacker(x).

Finally, the following theorem shows the correctnessaep; r..; (Figure 5).
Below, when we require thablvep,; 1,;:(F') has a certain value, we also implicitly
require thatsolvepy mat (F') does not terminate with error. Intuitively, if an instance
F' of F' is satisfied by a trac&, thenF’ is derivable fronR p; rnit U Fre, SO, by the
soundness of the solving algorithm, it is derivable by avdeion whose last clause isin
solvep; i (F). Then there must exist a clause= C € SOlVepéA’]nit(F) that can be
used to derivé”, soF" = oC and the hypothesisH is derivable fronR p; r,isUF me-

In particular, the events in H are satisfied, that is, are i, SO these events have
been executed in the tragdeé Theorem 2 below states this result formally. It is proved
by combining Lemmas 2 and 3, and Theorem 1.

34

Theorem 2 (Main theorem) Let P, be a closed process arff, = instr(P,). LetQ
be anlnit-adversary and)’ = instrAdv(Q).

Consider a traceZ = Sy, Eo,{P},Q'} —* S’,E', P’, with fn(F}) U Init C
dom(Eyp) and Ey(a) = a[] for all a € dom(Ej).

If 7 satisfies an instancd” of F, then there exist a clausél = C €
solveps it (F") and a substitutionr such thatF” = oC and, for all m-event(p) in
oH, T satisfiesvent(p).

Proof Since for allF” € Fyot, derivable(F”,R1) = (), by Lemma 3, no instance of
F" is derivable fronR; U Fe = saturate(R p; rnit) U Fme. This allows us to apply
Lemma 2.

Let Fine = {m-event(p’) | 7 satisfiesvent(p’)}. By Theorem 1, sinc€ sat-
isfies ', F' is derivable fromR p; 1, U Fume. By Lemma 2,F" is derivable from
saturate(RpéJm»t)U]’-‘me = R1UFue. By Lemma 3, there exista clauge= H = C
in solveps 1, (F") = derivable(F, R1) and a substitutiorr such thatrC' = F” and all
elements ob H are derivable fromR; U Fy,e. For allm-event(p) in 0 H, m-event(p)
is derivable fromR; U F.... Since no clause ifR; has a conclusion of the form
m-event(p’), m-event(p) € Fe. Given the choice af,,, this means thal satisfies
event(p). O

Theorem 2 is our main correctness result: it allows one tevdhat some events
must have been executed. The correctness of the analysisrfespondences follows
from this theorem.

Example 8 For the proces# of Section 2.3/nit = {c}, andP’ = instr(P), our tool
shows that
solvep: it (event(ep(x1, X2, 23, 24))) = {m-event(e1(pk 4, Pk g, Pa)) A
m-event(ea(pk 4, pk g, PasDb)) A
m-event(ez(pk 4, Pk g, Pas Pb))
= event(ep(pk 4, Pk 5, Pas b))}
wherepk 4 = pk(skal]), pkp = pk(sks[]), pa = a[pkp,ia
py = blpencrypt,,((Pa, Pk 4), Pk g, 1Pk g, 14)), iB]
By Theorem 2, if7 satisfiesevent(es(p1, p2, p3,p4)), this event is an instance of
event(ep(z1, 22,23, 24)), SO, given the value ofolvep: jn;(event(ep(x1, 2, 3,

r4))), there existg such thakevent(eg(py, p2, ps3,pa)) = cevent(eg(pk 4, pk g, Pa;
py)) andT satisfies

event(oey (pk 4, pk g, pa)) = event(ey (p1,p2,p3))
event(oez(pk 4, pk g, pa, Pb)) = event(ea(p1, p2, p3, p4))
event(o.€3(pkAa pkB7paapb)) = event(eg(pl,pg,pg,p4))

Therefore, ifevent(ep(My, Mo, M3, My)) has been executed, therent(eq (M,

MQ,M3)), event(eg(Ml,Mg,Mg,M4)), and event(eg(Ml,Mg,Mg,M4)) have
been executed.

35

7 Application to Correspondences

7.1 Non-injective Correspondences

Correspondences for instrumented processes can be chaesgiadwn by the following
theorem:

Theorem 3 Let P, be a closed process arig) = instr(F). Letp,, (j € {1,...,m},

k e {1,...,1;}) be patterns; let" and F; (j € {1,...,m}) be facts. Assume that
for all R € solvep; 1, (F), there existj € {1,...,m}, o/, and H such thatR =
H Am-event(a'p;1) A ... Am-event(a'pj;,) = o' F}.

Then Py satisfies the correspondende = /7., (Fj ~ /\ﬁg':levent(pjk))
againstinit-adversaries.

Proof Let @ be anInit-adversary and)’ = instrAdv(Q). Consider a tracd =
So, Fo, {P},Q'} —* S',E',P', with fn(P}) U Init C dom(Ey) and Ep(a) = a[]
for all a € dom(Ep). Assume thatl” satisfiess F. By Theorem 2, there exi® =
H' = C" € solvep; 1,i:(F) ando” such thatr /' = ¢”C” and for allm-event(p)
ino”H', T satisfiesevent(p). All clausesR in solvep; p, (F) are of the formH A
m-event(o'p;1) A ... Am-event(o'p;i;) = o' F; for somej ando’. So, there exisf
ando’ such that for alk € {1,...,1;}, m-event(o'p;;) € H andC’ = ¢'F};. Hence
oF =0"C" =d¢"d'F;andforallk € {1,...,1;}, m-event(c”o'pji) € c”"H', s0T
satisfiesvent(c”o’'p;1), SO we have the result. ad

From this theorem and Lemma 1, we obtain correspondencestdadard pro-
cesses.

Theorem 4 Let P, be a closed process andl) = instr(Fy). Let M, (j € {1,...,
m} ke {l,...,l;}) beterms; letvande; (j € {1,...,m}) be atoms. Lep;;, F, F;
be the patterns and facts obtained by replacing nametth patternsa|] in the terms
and atomsM, o, a; respectively. Assume that, for all claussn SOlVepéJnit(F),
there existj € {1,...,m}, o/, and H such thatR = H A m-event(c'p;1) A ... A
m-event(o'pji;) = o' Fj.

Then P, satisfies the correspondenee = /7, (aj ~ /\ﬁj’z1 event(Mjk))
against/nit-adversaries.

Example 9 For the procesd of Section 2.3,Init = {c}, and P’ = instr(P),
the value ofsolvep: 1t (event(ep(z1, 22,23, 24))) given in Example 8 shows that
P satisfies the correspondeneent(eg(z1, 2, 3, x4)) ~> event(er(x1,x2,x3)) A
event(es(x1, 2,23, 24)) A event(es(z1, 22, 3, 24)) againstinit-adversaries.

As particular cases of correspondences, we can show seanecyon-injective
agreement:

Corollary 1 (Secrecy) Let P, be a closed process arff, = instr(P). Let N be a
term. Letp be the pattern obtained by replacing namesith patternsa[] in the term

36

N. Assume thafolvep, 1,i:(attacker(p)) = (). ThenP, preserves the secrecy of all
instances ofV from Init.

Intuitively, if no instance ohttacker(p) is derivable from the clauses representing the
protocol, then the adversary cannot have an instance oétheX corresponding t@.

Example 10 For the proces$ of Section 2.3,/nit = {c}, and P’ = instr(P), our
tool shows thasolvep 1, (attacker(sAa[])) = 0. SoP preserves the secrecy ela
from Init. The situation is similar fosAb, sBa, andsBb.

Corollary 2 (Non-injective agreement) Let P, be a closed process an#] =

instr(Pp). Assume that, for eacR € solvep; pq(event(e(z1,...,x,))) such that

R = H = event(e(p1,...,pn)), We havem-event(e’(p1,...,p,)) € H. ThenF,
satisfies the correspondeneeent(e(x1, ..., x,)) ~ event(e' (z1,...,x,)) against
Init-adversaries.

Intuitively, the condition means that, iévent(e(p1,...,p,)) can be derived,
m-event(e’(p1,...,pn)) OCcurs in the hypotheses. Then the theorem says that, if
event(e(M, ..., M,)) has been executed, thement(e'(Mi,..., M,)) has been
executed.

Example 11 For the proces$ of Section 2.3,[nit = {c}, and P’ = instr(P), the
value ofsolvep: 1t (event(ep(z1, 22,23, 24))) given in Example 8 also shows that
P satisfies the correspondensent(eg (21, 2, x3,24)) ~ event(es(x1, 2, 3, 24))
against/nit-adversaries. The tool shows in a similar way tliasatisfies the cor-
respondencesvent (e (1,2, x3,24)) ~> event(es(x1,xo,x3,24)) against Init-
adversaries.

7.2 General Correspondences

In this section, we explain how to prove general correspooee. Moreover, we also
show that, when our verifier proves injectivity, it provesentness as well. For exam-
ple, when it proves a correspondereent (M) ~ inj event(M'), it shows that, when
the eventvent (M) has been executed, not only the evenént (M’) has been exe-
cuted, but also this event has been executed recently. Asieeg by Lowe [55], the
precise meaning of “recent” depends on the circumstantesnibe thatvent (M)

is executed within the duration of the part of the processraftent (M), or it can be
within a certain number of time units. Here, we define recesdras follows: the run-
time of the session that executesent (M) overlaps with the runtime of the session
that executes the correspondisngent (M) event.

We can formally define recent correspondences for instrtedgorocesses as fol-
lows. We assume that, iRy, the events are under at least one replication. We define
an instrumented proceg$ = instr’(FP), whereinstr’ (P) is defined likeinstr(F),
except that the eventsrent (M) in Py are replaced witkvent (M, i), wherei is the
session identifier that labels the down-most replicatioovelevent(M) in Py. The
session identifief indicates the session in which the considered event is égcu

37

Whenk = k; ...k, is a non-empty sequence of indices, we denote: pyhe
sequence obtained by removing the last index fiorh[= &y ... ky,—1.

Definition 14 Let P be a closed process afy = instr’(FP). We say thaf?] satisfies
the recent correspondence

m .7
event(p) = \/ event(pj /\ injl kg ik
i=1 k=1

where

ik JkJ

agy = event(pzg) ~ \/ \ inilzz; 55,
j=1 k=1

againstinit-adversaries if and only if for anynit-adversary@, for any trace7 =
So, Eo, {P},Q'}y —* S, E', P, with Q' = instrAdv(Q), Eo(a) = a[] for all a €
dom(Eo), and fn(Fy) U Init C dom(Ep), there exists a functiop for each non-

empty jk, such that for all non-emptyk, ¢75 Maps a subset of steps Dfto steps of
7T and

e For all 7, if the eventevent (op, A.) is executed at stepin 7 for somes and
Ae, then there exist’ andJ = (j3)z such thato’p) = op and, for all non-
empty k, D makeji(,s) (T) is defined,event (o Prskeii(E, 7)» %) is executed at
SteP P aneii(x,) (7) In T, and if [inj] .\ o % ;) = inj, then the runtimes of
session(Ag) andsession(Ag) overlap (recentness).

The runtime ofsession(\) begins when the rul8, E,P U {I'P} — S\ {\},
E,PU{P{)\i},'"P}is applied and ends wheh{)\/i} has disappeared.

e For all non-emptyjk, if [inj]5z = inj, theng-7 is injective.

e For all non-emptyjk, for all j andk, if ¢754%(7) is defined, thenpz(7) is
defined andpsz,, (1) < ¢5(7). Forallj andk, if ¢;,(7) is defined, then
bi(T) < 7T

We do not define recentness for standard processes, siachfftdult to track formally
the runtime of a session in these processes. Instrumerdedgses make that very easy
thanks to session identifiers. It is easy to infer correspands for standard processes
from recent correspondences for instrumented procesgés wroof similar to that of
Lemma 1.

Lemma 4 Let P, be a closed process and, = instr’ (FPp). Let Mz, M, and M} be
terms. Letp-, p, p; be the patterns obtained by replacing namesith patternsa]
in the termsM k,M M’ respectively. P} satisfies the recent correspondence

m]

event(p) = \/ event(p] /\ inj)jkq;x
j=1 k=1

38

where

ik JkJ

a5 = event(pyp) ~ \/ /\ [l 457
7j=1k=1

againstinit-adversaries ther, satisfies the correspondence

m J
event(M \/ event(M /\ inj] jkqjk
j=1 k=1
where
7”Jk JkJ
/
¢ = event(M: \/ /\ i JJkaqu
J=1k=1

againstinit-adversaries.

Let P be a closed process aff = instr’ (). We adapt the generation of clauses
as follows: the set of Clauséé’P6 it 1S defined aR p/ 1, €xcept that

[M(N).PlpH = [P]pH U{H{pv,uv,/0} = message(p(M), p(N))}

["PlpH = [Pl(pli —) (H{pjv,uv./0})
[event(M,4).P]pH = [P]p(H A m-event(p(M),0)) U {H = event(p(M),i)}

where[d is a special variable. The predicateent has as additional argument the ses-
sion identifier in which the event is executed. The prediaatevent has as additional
argument an environment that gives values that variables will contain at the first
output or replication that follows the evertil is a placeholder for this environment.
(Recall thatV/, is the set of ordinary variables an] the set of session identifier vari-
ables, scp|v uv, is the environment restricted to variables, names beinlydzd.) We
definesolve’ Py Init assolvepy r,it except that it applies t&’ ! Init instead ofR p; rrit-

Letus flrst consider the particular case of injective cqmmjences. We consider
general correspondences in Theorem 5 below.

Proposmon 2 (Injective correspondences)Let P, be a closed process anlétO =
instr’(Py). We assume that, i}y, all events are of the formavent (f (M, ..., M,))
and that different occurrences efent have different root function symbols

We also assume that the pattem9’;, p;;. satisfy the following conditions» and
p; for j € {1,...,m} are of the formf(. . .) for some function symbgl and for all 5,
k such thatinj]; = inj, p;r = f;x(...) for some function symbg;.

Letsolvelpéﬁlnit(event(p, i) ={Rjr |j€{1,....,m},r €{1,...,n;}}. Assume
that there exist:jx, ¢, andp;r, (j € {1,...,m},r € {1,...,n;}, k € {1,...,;})
such that

e Forallj € {1,...,m}, forall r € {1,...,n;}, there existd ando such that
Rj = H AN m-event(opji, pjr1) A ... A m-event(apji;, pjri;) = event(op;-,

Tir).

39

e Foral j € {1,...,m}, for all » and v’ in {1,...,n;}, for all k& €
{1,...,1;} such that[inj};x = inj, pjrx(x;x){\/i;} does not unify with
pjrlk(.’ﬂjk){A//’ijr/} when\ 7£ M.

ThenP} satisfies the recent correspondence

m J
event(p) = \/ event(p] /\ inj] jrevent(p;i)
i=1 k=1

againstinit-adversaries.

This proposition is a particular case of Theorem 5 below.s Iprioved in [18, Ap-
pendix E]. By Theorem 3, after deleting session identifieid @nvironments, the first
item shows thaP; satisfies the correspondence

lj

event(p) = \/ event(p}) ~ /\ event(p;i) (13)
j=1l.m,r k=1

The environments and session identifiers as well as the ddtem serve in prov-
ing injectivity. Suppose thafinj];, = inj, and denote by an unknown term.

If two instances ofevent(p,i) are executed inP} for the branchj of the corre-
spondence, by the first item, they are instancegwfnt(o;,p},i;.) for somer,

so they aresvent (010, P}, 01ijr,) andevent(o50;.,p}, 05i;r,) for somes; and

ob. Furthermore, there Is only one occurrenceeoknt(f(...),7) in P, so the
eventevent(f(...),7) can be executed at most once for each value of the session
identifier i, so o{i;,, # o04i;r,. Then, by the first item, corresponding events
event (o} ojr, pjk, -) andevent(cy0;,,pjk, -) have been executed, with associated en-
vironmentsoi p;r, . andoyp;r, ;. By the second iteny;,, x(z;1){A1/i-, } does not
unify with pj,, k(1) {2/, } for different values\; = o}i;,, andis = o)i;,, Of

the session identifier. (In this condition, can be equal te;, and when; = r5 = r,

the condition simply means that. occurs inp;,x.) SO0, pjr k(T jk) # T9Pjrak (Tjk),

so the eventsvent(o}oj,,pjr),-) and event(chojr,pjk),-) are distinct, which
shows injectivity. This point is very similar to the fact thajective agreement is
implied by non-injective agreement when the parameterserits contain nonces gen-
erated by the agent to whom authentication is being madeuisecthe event can be
executed at most once for each value of the nonce. (The sdssiotifieri;, in our
theorem plays the role of the nonce.) [Andrew Gordon, pexscommunication].

Corollary 3 (Recent injective agreement)Let Py be a closed process an#l] =
instr’(Py). We assume that, iff, all events are of the forravent(f (M, ..., My))
and that different occurrences efrent have different root function symbols. Let
{Ri,..., Ry} = solvep, p,;;(event(e(z1,...,2m),7)). Assume that there exist
ir, andp, (r € {1,...,n}) such that

e Forallr € {1,...,n}, R, = H Am-event(e'(p1,...,pm), pr) = event(e(ps,
. yPm), i) fOor somepy,...,p,, andH.

40

e Forall randr'in {1,...,n}, p.(x){\/i,} does not unify with, (x){\ /i, }
when\ #£).

ThenP| satisfies the recent correspondereent(e(z1, . . . , .,)) ~> inj event(e'(x1,
..., x;)) againstInit-adversaries.

Proof This result is an immediate consequence of Proposition 2. m]

Example 12 For the proces$ of Section 2.3’ = instr'(P), andInit = {c}, we
have

solvep: 1, (event(ep (1, 22, T3, 24),1)) =
{H A m-event(es(pk 4, pk g, a[pk 5,1 40], b[P1,%B0]), P)
= event(ep(pk 4, pkg, a[pkg,i40],b[P1,%80]),i80)}
wherepk 4 = pk(skall), pkp = pk(skg[])
p1 = pencrypt, ((a[pkg,ia0l, Pk a), Pk, m1[Pk 5, 740])
p2 = pencrypt,, ((a[pk g, iaol, blp1,ipo], k), Pk a4, 2[P1, iB0))

p= {iA — 140,2-pkp — pkg,m '—>p2}

Intuitively, this result shows that each event(pk 4, pk 5, alpk 5,340, b[p1,iB0)),
executed in the session of indéx = ip is preceded by an evewrt(pk 4, pk g,
alpk g,i40),b[p1,iB0]) €Xecuted in the session of index = i 40 With z_pk 5 = pkg
andm = po. Sinceipy occurs in this event (or in its environméptdifferent ex-
ecutions ofep, which have different values afzy, cannot correspond to the same
execution ok3, so we have injectivity. More formally, the second hypota@$ Corol-
lary 3 is satisfied becausg(m){)\/ipo} does not unify withp(m){\ /igo} when
A # X, sinceipg occurs inp(m) = po. Then, P’ satisfies the recent correspondence
event(ep(x1, T2, T3,x4)) ~ inj event(ez(x1, 2, 23, 4)) againstinit-adversaries.
The tool shows in a similar way thaP’ satisfies the recent correspondence
event(ea(x1, To,x3,x4)) ~ inj event(es(x1, 22, 3, x4)) against/nit-adversaries.

Let us now consider the case of general correspondences. bdsie idea is
to decompose the general correspondence to prove intoates@respondences.
For instance, the correspondensent(eg (1, 22, x3,24)) ~ (event(es(x1,x2, 23,
x4)) ~ event(ea(xy,wa,x3,24))) is implied by the conjunction of the correspon-
dencesevent(ep(x1, 22, x3,24)) ~ event(es(xy,x2,x3,x4)) andevent(es (1, z2,
x3,x4)) ~ event(ea(z1,x2,23,24)). HOwever, as noted in Section 3.3, this proof
technique would often fail because, in order to prove thét,, z2, 23, x4) has been
executed, we may need to know thai(x,xs, x3,24) has been executed, and not
only thates(x1,x2, 23, x4) has been executed. To solve this problem, we use the fol-
lowing idea: when we know thatg(z1,z9, z3,24) has been executed, we may be
able to show that certain particular instancesgifc1, z2, x5, x4) have been executed,
and we can exploit this information in order to prove thatr;, 22, 23, z4) has been

4In general, the environment may contain more variables thaewvet itself, so looking for the session
identifiers in the environment instead of the event is more pfue

41

executed. In other words, we rather prove the corresporedenent(eg(z1, z2, 3,
z4)) = v, orevent(ep(z1, z2, T3, 24)) ~ opevent(es(z1,z2, 3, 24)) and for all

r < m, o.event(es(z1, z2, T3, T4)) ~ orevent(es(zy,za, x3,24)). When the con-

sidered general correspondence has several nesting, lexefserform such a decom-

position recursively. The next theorem generalizes anuddizes these ideas.

Below, the notation(Envyz)57 represents a familyrnv of sets of pairs(p, i)
wherep is an environment andis a session identifier, one for each non-empty
The notation(Env ;; 77)7; represents a subfamily ¢Env-7)= in which the first two
indices argjk, and this famlly is reindexed by omitting the flxed indicés

Theorem 5 Let P, be a closed process anfgf, = instr’(P,). We assume that, if,
all events are of the formavent(f(Mi,...,M,)) and that different occurrences of
event have different root function symbols.

Let us defineerify(q’, (Envig)jz), wherejk is non-empty, by:

V1. If¢’ = event(p) for somep, thenverify(¢', (Envj)5z) is true.

V2.1 ¢ = event(p) = VL, (event(p)) ~ Aj[injlind},) and ¢y =
event(p;r) ~ ... for somep, p’;, andp;i, wherem # 1, 1; # 0, or p # pi,
thenverify (¢’ (Em) 7)) is true if and only if there eX|st($JT jr such that the
following three condltlons hold:

V2.1. We haveolve'lgé71nit(event(p, i)) C{HA /\;j:1 m-event(o;,pjk, Pirk) =
event(o;,p}, i;-) forsomeH, j € {1,...,m}, r, and(pjrk, ijr) € Envjy
forall k}.

V2.2. Forallyj, r, kg, the common variables betweeﬂq;.k0 on the one hand and
ojrp; and ojrqgk for all k # ko on the other hand occur iai;,p;i, .

V2.3. Forallj, r, k, verify (o, ¢y, (Env . 75)7%) is true.
Consider the following recent correspondence:

m l;

q = event(p) = \/ event(pj /\ inj)jxq;x
j=1 k=1

where

m- ik

Jkj
Tk = event (py; \/ /\ inj] kik 95Kk

We assume that the patterns in the correspondence satesfpltbwing conditions;p
andp’ for j € {1,...,m} are of the formf(...) for some function symbgl and, for
all non-empty;jk such thatinjl;z = inj, p;z = f7(...) for some function symbgt.
We also assume thatiiij occurs inqj—k, then[injﬁj—k = inj.

Assume that there exi§Env7;)7; and (z57)57, wherejik is non-empty, such that

H1. verify(q, (Envy;)jz) is true.

42

H2. For all non-emptyjk, if [injl;z = inj, then for all (p, 1), (p',7") € Envjg,
p(z55){A/i} does not unify with' (z57){A"/i'"} whenA # X'.
ThenP} satisfies the recent correspondencagainst/nit-adversaries.
This theorem is rather complex, so we give some intuitioe hkts proof can be found
in [18, Appendix E].

Point V2.1 allows us to infer correspondences by Theorenfit&t deleting session
identifiers and environment$, satisfies the correspondences:

lj
event(p) = \/ event(oj,pf) ~ /\ event(oj,pjk) (14)
j=l..m,r k=1
and, using the recursive calls of Point V2.3,

l

ki

/ 4 !
cvent(olpi) = N event(odg, mi) = A\ event(ot, i)
j:l..m.jfk,r k=1
(15)
against/nit-adversaries, Wher@’jﬁjr = 05kjr 077k - - - Ojr @nd we denote by 7.

the substitutiorv;,. obtained in recursive calls teerify indexed byjrk. In order to
infer the desired correspondence, we need to show injgctivdperties and to combine
the correspondences (14) and (15) into a single corresperdénjectivity comes from
Hypothesis H2: this hypothesis generalizes the secondatétroposition 2 to the case
of general correspondences.

The correspondences (14) and (15) are combined into a singlespondence us-
ing Point V2.2. We illustrate this point on the simple exaepf the correspondence
event(p) = (event(p}) ~» (event(p11) ~ event(p1111))). By V2.1 and the recursive
call of V2.3, we have correspondences of the form:

event(p) = \/ (event(oq,-p}) ~ event(oy1,p11)) (16)

T

event(oq,p11) = \/ (event(o1,1101+p11) ~ event(o1,117017P1111)) (17)

r’

for someosy,. andoy,11,». The correspondence (17) implies the simpler corresparaden
event(oy,p11) ~ event(o1,p1111)- (18)

Furthermore, if an instance efent(p) is executede; = event(op), then by (16),
for somer and o such thatop = o}o1,.p}, the eventes = event(c|oy,p11) has
been executed beforg. By (18), for somes) such thato|o1,.p11 = oho1.p11,
the evente; = event(choy,p1111) has been executed beforge. We now need to
reconcile the substitutions; and ¢%; this can be done thanks to V2.2. Let us de-
fine ¢’ such thato”x = ojx for z € fv(o1,p11) U fo(o1,p)) ando”’z = oha
for x € fu(o1,-p1111) U fu(o1,-p11). Such a substitutioa” exists because the com-
mon variables betweefv(c1,p11) U fv(o1,-p}) and fo(o1,.p1111) U fo(o1,-p11) OC-
cur in oy1,p11 by V2.2, and for the variables € fu(oy,.p11), ol = ohz since

43

olo1rp11 = ohoirpi1. So, for somer ando” such thatop = o”04,p], the event
es = event(c”01,-p11) has been executed befareandes = event(c”0,p1111) has
been executed beforg. This result proves the desired correspondeneat(p) =
(event(p}) ~ (event(p11) ~ event(p1111)). Point V2.2 generalizes this technique to
any correspondence.

In the implementation, the hypotheses of this theorem agelad as follows. In
order to checkverify(¢', (Envy;)7;), we first computesolvels, 1, (event(p,). By
matching, we check V2.1 and obtain the values gf p;,+, andi;, for all j, r, andk.
We add(pj k., i;r) t0 Envji,. We computefjrp; andajrq;.k for eachy, r, andk, and
check V2.2 and V2.3.

After checkingverify(q’, (Envﬁ)ﬁ), we finally check Hypothesis H2 for eagh.
We start with a set that contains the whole domaip &r some(p, i) € Envjz. For
each(p, i) and (p', i) in Envsz, we remove from this set the variablessuch that
p(x){\/i} unifies withp' (xz){\'/i'} for A # X. When the obtained set is non-empty,
Hypothesis H2 is satisfied by taking for; any element of the obtained set. Otherwise,
Hypothesis H2 is not satisfied.

Example 13 For the exampld® of Section 2.3, the previous theorem does not enable
us to prove the correspondensent(eg (1, €2, 23, 4)) ~ (inj event(es(z1, z2, 3,
x4)) ~ (inj event(ea(x1, T2, x3,4)) ~> inj event(es (x1, x2, x3)))) directly. Indeed,
Theorem 5 would require that we show a correspondence obthedvent(oes(x,
X2,T3,%4)) ~> inj event(cei(x1,x2,23)). However, such a correspondence does
not hold, because after executing a single evgnthe adversary can replay the first
message of the protocol, so thatexecutes several events

It is still possible to prove this correspondence by comgnihe automatic
proof of the slightly weaker correspondenge = event(ep(x1,z2,x3,24)) ~>
(inj event(es(x1,x2,x3,24)) ~ (inj event(ei(x1,x2,x3)) A inj event(es(z1, T2,
x3,%4)))), which does not order the evenrtsandes, with a simple manual argument.
(This technique applies to many other examples.) Let usgite the latter corre-
spondence.

Let P’ = instr’(P) and Init = {c}. We have

soIve’P,Jm-t(event(eB(xl,1’2,:173, x4),1)) =
{H A m-event(es(pk 4, pk g, a[pkz,740], b[P1,7B0]), P111)
= event(e(pk 4, Pk, a[pk g, ia0l, b[p1,iBo]), iBo)}
solvelp, p, (event(es(pk 4, pk g, a[pk g, ia0], blp1,iB0)), 1)) =
{m-event (e (pk 4, pk g, a[pk ,340]), p111111)
A m-event(ez(pk 4, pk g, a[pk g, ia0l, b[p1,iBo)), p111112)
= event(es(pk 4, pk g, alpk g, i40],b[p1,7B0]),740)}

44

wherepk 4 = pk(skal]), pkp = pk(skp[])
p1 = pencrypt, ((a[pk g, iaol, vk 4), Pk g, 1 [Pk 5, 740])
p2 = pencrypt, ((a[pkp,iaol; blp1,iBol, Pk), Pk 45 72[P1,%B0))
p111 = pii1111 = {44 = iao, v_pkp — pkg,m— pa}
prine = {ip — ipo,m’ — pi}

Intuitively, as in Example 12, the value blve’, ;,,;, (event(ep (21, z2, T3, 24), 1))
guarantees that each event(pk 4, pk 5, a[pk 5,740], b[p1,iB0]), €XECUted in the ses-
sion of indexig = ip(is preceded by an event(pk 4, pk g, a[pk 5, i 40, b[p1, iB0))
executed in the session of indéx = iqo With x_pkg = pky andm = po.
Sinceipg occurs in this event (or in its environment), we have injatti The value
of solve’p: 1, (event(es(pk 4, pk , a[pk z,ia0], blp1,iso]), 7)) guarantees that each
eventes(pk 4, vk g, a[pk 5, i 40], b[p1, iBo]) €xecuted in the session of index = i 40

is preceded by events (pk 4, pk 5, a[pk 5, i 40]) €xecuted in the session of index =
iao With z_pkp = pkp andm = ps, andea(pk 4, pk g, a[pk g, 0], b[p1,ipo]) €XE-
cuted in the session of indéx = i with m’ = p;. Sincei 49 occurs in these events
(orin their environments), we have injectivity. So we obtdie desired correspondence
event(ep(x1, T2, T3,24)) ~ (inj event(es(x1, 2, x3,24)) ~ (inj event(e; (x1, z2,
x3)) A inj event(eq(z1, T2, 3, 24)))).

More formally, let us show that we can apply Theorem 5. We have p| =
€B($17x27$37$4), b1 = 63(101,332,5337964); P1111 = 61(96175527103)' Pi112 = 62($1,
T, %3,24). We showverify(q, (Envj;)7z). Given the first value obolve’p: 1t
shown above, we satisfy V2.1 by letting; = {z1 — pky, 22 — pkg,x3 —
a[pkB,iAo], T4 b[phiBO]} andiq; = B0, with (p111, 7:11) € FEnvi;. The common
variables betweerarnqn = event(eg(pkA,pkB,a[pkB,iAO],b[pl,iBO])) > (lIlJ
event(e1 (pk 4, pk g, alpk g, i40])) Ainj event(ea(pk 4, Pk 5, a[pk g, i 40], b[P1,iB0])))
andoq1p| = ep(pk 4, Pk g, a[pk 5,740], b[P1,7B0]) Areiao andipo, and they occur in
o11p11 = es(pk 4, vk g, a[pkg,i40],b[p1,iB0]). SO we have V2.2. Recursively, in
order to obtain V2.3, we have to showrify(c11q11, (Envy,53)57). Given the sec-
ond value ofsolve’, ,,;; shown above, we satisfy V2.1 by letting;1; = Id and
i11111 = G40, With (p111111,411111) € Enviin and (piiiie, i) € Envine.
(We prefix the indices with 11 in order to represent that these values concern the
recursive call withj = 1, »r = 1, andk = 1.) V2.2 holds trivially, because
0111110114111k, = O111110116vent(pi11,), Since the considered correspondence
has one nesting level only. V2.3 holds becaysa; reduces tcevent(pii11), SO
verify (1111101111115 (Envlmj—k)j—k) holds by V1, and the situation is similar for
qi112. Therefore, we obtain H1. In order to show H2, we have to fird such
that p111(x11){)\/i11} does not unify withp,11(z11){\ /i11} whenX # X. This
property holds withe1; = m, becausé,; = ipgo occurs inpi11(m) = pa. Simi-
larly, p111111(21111){ /411111 } does not unify withpi11111 (21111){\ /11111 } when
A #£ N, for x1111 = ia, SiNCe€i11111 = iap OCCUIS iNpii1111(ia). Finally,
pri1112(21112){A /111111 } does not unify withpi1112(21112){ A /i11111 } when # X
for x1112 = m/, sinceiy1111 = a0 OCCUrS iNpy11112(m’) = p1. So, by Theorem 5,
the process’ satisfies the recent correspondeneent(ep (1,22, 3, T4)) ~> (inj
event(eg(x1,x2,23,24)) ~ (inj event(ey(z1,x2,x3)) A inj event(ez(z1, T2, x3,

45

x4)))) against/nit-adversaries.

We can then show thaP’ satisfies the recent correspondereent(eg (1, 22,
x3,%4)) ~ (inj event(es(x, v2,23,24)) ~ (inj event(ez(w1, x2, ¥3,24)) ~ inj
event(ey (z1, z2,23)))). We just have to show that the even{(x1, xo, x3, z4) IS €X-
ecuted after; (z1, 2, 23). The nonces is created just before executirg(x:, z2,
x3) = e1(pk 4,x-pkp,a), and the eventa(x1, 2, 23, x4) = ex(x_pk 4, Pk, x_a,b)
containsz in the variablers = x_a. Soey has been executed after receiving a message
that containg:, so aftera has been sent in some message, so after executingegvent

8 Termination

In this section, we study termination properties of our athm. We first show that it
terminates on a restricted class of protocols, natagded protocolsThen, we study
how to improve the choice of the selection function in ordeobtain termination in
other cases.

8.1 Termination for Tagged Protocols

Intuitively, a tagged protocol is a protocol in which eaclplagation of a constructor
can be immediately distinguished from others in the prdtidooexample by a tag: for
instance, when we want to encryptunderk, we add the constant tag, to m, so that
the encryption becomesncrypt((cto, m), k) where the tagt, is a different constant
for each encryption in the protocol. The tags are checkedhwlestructors are applied.
This condition is easy to realize by adding tags, and it is algood protocol design:
the participants use the tags to identify the messages ugamisly, thus avoiding
type flaw attacks [51].

In [21], in collaboration with Andreas Podelski, we haveagiwconditions on the
clauses that intuitively correspond to tagged protocats, we have shown that, for
tagged protocols using only public channels, public-keyptography with atomic
keys, shared-key cryptography and hash functions, an@&wesy properties, the solv-
ing algorithm using the selection functied terminates.

Here, we extend this result by giving a definition of taggeat@cols for processes
and showing that the clause generation algorithm yieldssela that satisfy the con-
ditions of [21], so that the solving algorithm terminate#\ qimilar result has been
proved for strong secrecy in the technical report [16].)

Definition 15 (Tagged protocol) A tagged protocol is a procedy together with a
signature of constructors and destructors such that:

C1. The only constructors and destructors are those of E@uplusequal.
C2. Inevery occurrence dff (x) andM (N) in Py, M is a name free iP,.

C3. Inevery occurrence ¢f(...) with f € {sencrypt, sencrypt,,, pencrypt,,, sign,

nmrsign, h, mac} in Py, the first argument of is a tuple(ct, My, ..., M,),
where the tag:t is a constant. Different occurrences fohave different values
of the tagct.

46

C4. In every occurrence dkt © = g(...) in P else @, for g € {sdecrypt,
sdecryptp,pdecryptp,checksignature,getmessage} in Py, P = lety =
1th,(z) in if y = ct then P’ for somect andP'.

In every occurrence ofmrchecksign in Py, its third argument igct, My, .. .,
M,,) for somect, My, ..., M,.

C5. The destructor applications (including equality te$tave noelse branches.
There exists a trace d?, (without adversary) in which all program points are
executed exactly once.

C6. The second argument péncrypt,, in the trace of Condition C5 is of the form
pk(M) for somelM.

C7. The arguments agft andhost in the trace of Condition C5 are atomic constants
(free names or names created by restrictions not undersnpaoih-deterministic
destructor applications, or replications) and they aretaud.

Condition C1 limits the set of allowed constructors and desbrs. We could give
conditions on the form of allowed destructor rules, but ¢hesnditions are complex,
so it is simpler and more intuitive to give an explicit listoition C2 states that all
channels must be public. This condition avoids the needherpredicatanessage.
Condition C3 guarantees that tags are added in all messaggt§ondition C4 guar-
antees that tags are always checked.

In most cases, the trace of Condition C5 is simply the intdneleecution of the
protocol. All terms that occur in the trace of Condition C5/égairwise distinct
tags (since each program point is executed at most onceagadt different program
points are different by Condition C3). We can prove that $ioajjuarantees that the
terms of all clauses generated for the prod@shave instances in the set of terms that
occur in the trace of Condition C5 (using the fact that allgseon points are executed
at least once). These properties are key in the terminatioofp More concretely,
Condition C5 means that, after removing replicationg?gf the resulting process has
a trace that executes each program point (at least) onceéhislitrace, all destructor
applications succeed and the process reduces to a configuvath an empty set of
processes. Since, after removing replications, the nurob&aces of a process is
always finite, Condition C5 is decidable.

Condition C6 means that, in its intended execution, thegaatuses public-key
encryption only with public keys, and Condition C7 meang tbag-term secret (sym-
metric and asymmetric) keys are atomic constants.

Example 14 A tagged protocol can easily be obtained by tagging the Namdh
Schroeder-Lowe protocol. The tagged protocol consisteefdllowing messages:

Message 1. A — B: {cto,a,pks}pk,
Message 2. B — A: {cti,a,b,pkp}pk,
Message 3. A — B: {ct2, b}y,

47

Each encryption is tagged with a different tefy, ct;, andct,. This protocol can be
represented in our calculus by the following proc&ss

Pu(ska, pk o, pk) = lc(z_pkg).(va)event(e1(pk 4, x_pk, a)).
(vri)e(pencrypt, ((cto, a, pk), x_pkp,71))-
c(m).let (= ct1,= a,z.b,= x_pkp) = pdecrypt,(m, ska) in
event(es(pk 4, z_pkp,a,x.b)).(vr3)e{pencrypt, ((cta, .b), x_pkp,73))
if x_pkp = pkp then event(ea(pk 4, x_pkpg,a,xb)).
¢(sencrypt((cts, sAa), a)).c(sencrypt((cty, sAb), z_b))
Py (skp, pkg, pk o) = lc(m').let (= ct1,x_a, x_pk) = pdecrypt,(m, skp) in
(vb)event(es(x_pk 4, pkg,x_a,b)).
(vra)e(pencrypt, ((ctz, x_a,b, pkg), v _pk 4,72)).
c(m”).let (= cts, = b) = pdecrypt,,(m"”, skp) in
if x_pk, = pk 4 then event(eg(z_pk 4, Pk, x_a,b)).
c(sencrypt((cts, sBa), x_a)).c(sencrypt((ctg, sBb), b))
Pr =le(zy).c(x2).¢{xa).(c(x3).c(xq) | c(x5).c(x6))
P = (vska)(vskp)let pk 4 = pk(ska) in let pkg = pk(skp) in
e(pk A)e(pkp)-(Pa(ska,pk o, pkp) | Pp(skp, pkp,pka) | Pr)
The encryptions that are used for testing the secrecy ofemare also tagged, with
tagscts to ctg. Furthermore, a proced?r is added in order to satisfy Condition C5,
because, withouPr, in the absence of adversary, the process would block wheest
to send the public keysk , andpk 5. The execution of Condition C5 is the intended
execution of the protocol. In this execution, the procBgsreceives the public keys
pk 4 andpk g; it forwardspk 5 on channet to P4, so that a session betwedrand B
starts. Themd and B run this session normally, and finally output the encrysioh
sAa, sAb, sBa, andsBb; these encryptions are received By. The other conditions
of Definition 15 are easy to check, $dis tagged.
Proposition 3 below applies tB, and also to the process withoBt, because the

addition of Py in fact does not change the clauses. (The only clause gedefraim
Pr is a tautology, immediately removed k¥imtaut.)

We prove the following termination result in [18, Appendi}; ve give a short
proof sketch below.

Proposition 3 For sel = selp, the algorithm terminates on tagged protocols for queries
of the forma ~ false whena is closed and all facts itF,,.; are closed.

The proof first considers the particular case in whi¢hand host have a single argu-
ment in the execution of Condition C5, and then generaligandéipping all arguments
of pk andhost (which are atomic constants by Condition C7) to a single @orisThe
proof of the particular case proceeds in two steps. The fieptshows that the clauses
generated from a tagged protocol satisfy the condition2 4 [Basically, these condi-
tions require that the clauses for the protocol satisfy titleiing properties:

48

T1. The patterns in the clauses aagged that is, the first argument of all occur-
rences of constructors except tuples, andhost is of the form(ct, My, .. .,
M,,). The proof of this property relies on Conditions C3 and C4.

T2. LetS; be the set of subterms of patterns that correspond to the teahoccur in
the execution of Condition C5. Every clause has an instana#ich all patterns
are inS;. The proof of this property relies on Condition C5.

T3. Each non-variable, non-data tagged pattern has at mesingtance irt;. (A
pattern is said to beon-datawhen it is not of the formf(...) with f a data
constructor, that is, here, a tuple.) This property comm® f€ondition C3 which
guarantees that the tags at distinct occurrences aredistil, forpk(p) and
host(p), from the hypothesis thgik and host have a single argument in the
execution of Condition C5.

Note that the patterns in the clauses (Rf) and (Rg) that caore tonstructors and
destructors are not tagged, so we need to handle them dpeCiahditions C1 and C6
are useful for that.

The second step of the proof uses the result of [21] in ordeshalude termination.
Basically, this result shows that Properties T1 and T2 agegwed by resolution. The
proof of this result relies on the fact that, if two non-vat@non-data tagged patterns
unify and have instances iy, then their instances ifi; are equal (by T3). So, when
unifying two such patterns, their unification still has astance inS;. Furthermore,
we show that the size of the instanceSin of a clause obtained by resolution is not
greater than the size of the instancesSinof one of the initial clauses. Hence, we can
bound the size of the instance$h of generated clauses, which shows that only finitely
many clauses are generated.

The hypothesis that all facts if,,.; are closed is not really a restriction, since we
can always remove facts froffi,.; without changing the result. (It may just slow down
the resolution.) The restriction to queries~ false allows us to removen-event facts
from clauses (by Remark 3). For more general queriesyent facts may occur in
clauses, and one can find examples on which the algorithmrisiésrminate. Here is
such an example:

=\ (y); let z = sencrypt((cto,y), ksp) in
ch(sencrypt((cta, sencrypt((ct1, 2), ksa)), ksp)); event(h((cts,y))); ch(z)
P = dy(2'); dy(2); let (= cto,y) = sdecrypt(z, ksp) in

let (= cta,y') = sdecrypt(2', ksp) in event(h((cts, y,y"))); 4 (/)
Py = (vksg); (1{Co) | 'Ps | 'Pp | ¢i(y"))
This example has been built on purpose for exhibiting nomitgation, since we did
not meet such non-termination cases in our experimentsraéhprotocols. One can
interpret this example as follows. The participahshares a keyg4 with a server
S. Similarly, B shares a key:sp with S. The code ofS is represented bys, the
code of B by Pg, andA is assumed to be dishonest, so it is represented by the adver-
sary. The proces®s builds two ticketssencrypt((cto,y), ksp) and sencrypt((cta,

49

sencrypt((cty, sencrypt((cto,y), ksp)),ksa)), ksp). The first ticket is forB, the
second ticket should first be decrypted Bythen sent to4, which is going to decrypt

it again and sent it back t®. In the example P just decrypts the two tickets and
forwards the second one tb It is easy to check that this process is a tagged protocol.
This process generates the following clauses:

attacker(y) =

attacker(sencrypt((cta, sencrypt((cty, sencrypt((cto,y), ksg)), ksa)), ksp))
(19)

attacker(y) A m-event(h((cts,y))) = attacker(sencrypt((cto,y), ksg)) (20)

attacker(sencrypt((cto,y), ksp)) A attacker(sencrypt((cte,y'), ksp))
A m-event(h((cts,y,y"))) = attacker(y’)

attacker(Cp) (22)

(21)

The first two clauses come frotfig, the third one fromPg, and the last one from
the output inP,. Obviously, clauses (Init) (in particulattacker(ks4) sincekgsa €
n(Py)), (RY) for sencrypt andh, and (Rg) forsdecrypt are also generated. Assuming
the first hypothesis is selected in (21), the solving alganiperforms a resolution step
between (20) and (21), which yields:

attacker(y) A attacker(sencrypt((ct2,y'), ksg)) A
m-event(h((cts,y))) A m-event(h((cts,y,y’))) = attacker(y’)

The second hypothesis is selected in this clause. By regpWith (19), we obtain

attacker(y) A attacker(y’) A m-event(h((cts,y))) A

m-event(h((cts,y, sencrypt((cty, sencrypt((cto,y'), ksp)), ksa))))
= attacker(sencrypt((ct1, sencrypt((cto,y'), ksp)), ksa))

By applying (Rg) forsdecrypt and resolving withattacker(ct,) andattacker(kgsa),
we obtain:

attacker(y) A attacker(y’) A m-event(h((cts,y))) A

m-event(h((cty,y, sencrypt((cty, sencrypt((cto,y'), ksg)), ksa))))
= attacker(sencrypt((cto,y'), ksp))

This clause is similar to (20), so we can repeat this resmiyprocess, resolving with
(21), (19), and decrypting the conclusion. Hence we obtain

/\ attacker(y;) A m-event(h((cts, y1))) A

J=1 n—1

/\ m-event(h((ctq, y;, sencrypt((ct1, sencrypt((cto, y;+1), ksB)), ksa))))
= attacker(sencrypt((cto, yn), ksB))
for all n > 0, so the algorithm does not terminate.

As noticed in [21], termination could be obtained in the prese ofm-event facts
with an additional simplification:

50

Elimination of useless-event facts: elim-m-event eliminatesm-event
facts in which a variable occurs, and: only occurs inm-event facts and
in attacker(x) hypotheses.

This simplification is always sound, because it createsangér clause. It does not
lead to a loss of precision when all variables of events aftealso occur in the event
before~. (This happens in particular for non-injective agreemehtideed, assume
that m-event(p) contains a variable which does not occur in the conclusidnis &
preserved by resolution, so when we obtain a claussrent(p’) A H = event(p”),
wherem-event(p’) comes fromm-event(p), p’ contains a variable that does not occur
in p’, so this occurrence efi-event(p’) cannot be used to prove the desired correspon-
dence. However, in the general case, this simplificatioddda a loss of precision. (It
may miss somen-event facts.) That is why this optimization was present in early im
plementations which verified only authentication, and veasrlabandoned. We could
reintroduce it when all variables of events afteralso occur in the event before, if

we had termination problems coming framevent facts for practical examples. No
such problems have occurred up to now.

8.2 Choice of the Selection Function

Unfortunately, not all protocols are tagged. In particufgmotocols using a Diffie-
Hellman key agreement (see Section 9.1) are not tagged setise of Definition 15.
The algorithm still terminates for some of them (Skeme [%8]decrecy, SSH) with
the previous selection functiasely. However, it does not terminate with the selec-
tion functionsely for some other examples (Skeme [53] for one authenticatiop-p
erty, the Needham-Schroeder shared-key protocol [61]es@rsions of the Woo-Lam
shared-key protocol [71] and [5, Example 6.2].) In this Eettwe present heuristics
to improve the choice of the selection function, in order ¥oid most simple non-
termination cases. As reported in more detail in Sectionti€se heuristics provide
termination for Skeme [53] and the Needham-Schroeder dHarg protocol [61].

Let us determine which constraints the selection functivoukl satisfy to avoid
loops in the algorithm. First, assume that there is a cldligeF' = o F, whereo is a
substitution such that adt” F* are distinct fom € N.

e Assume thaf is selected in this clause, and there is a clali$e= F’, where
F’ unifies with ", and the conclusion is selectedifi = F”. Leto’ be the most
general unifier of” and F’. So the algorithm generates:

n—1
ocdH No'H=0c'cF ... oH A /\ o'c'H = o'o"F
=0
assuming that the conclusion is selected in all these cdaasd that no clause is
removed because it is subsumed by another clause. So théhaigaould not

terminate. Therefore, in order to avoid this situation, Wwewsd avoid selecting
Finthe claused A F' = oF.

51

e Assume that the conclusion is selected in the cldiise F' = ¢ F', and there is
aclausefl’ A o' F = C (up to renaming of variables), whesé commutes with
o (in particular, wherr ando’ have disjoint supports), and thatF’ is selected
in this clause. So the algorithm generates:

n—1
cdHANocH No'F =oC ... /\U’UiH/\UnH//\O'/FiO'nC

1=0
assuming that’ F' is selected in all these clauses, and that no clause is remove
because it is subsumed by another clause. So the algorittuta wot terminate.
Therefore, in order to avoid this situation, if the conatusis selected in the
clauseH A F = oF, we should avoid selecting facts of the foat¥', wheres’
ando have disjoint supports, in other clauses.

In particular, since there are clauses of the fatitacker(z1) A ... A attacker(z,,) =
attacker(f(x1,...,x,)), by the first remark, the factgtacker(x;) should not be se-
lected in this clause. So the conclusion will be selectelimdlause and, by the second
remark, facts of the formttacker(x) with z variable should not be selected in other
clauses. We find again the constraint used in the definiticalgf

We also have the following similar remarks after swappingatasion and hypoth-
esis. Assume that there is a clausen o F' = F', whereo is a substitution such that
all o™ F are distinct fom € N. We should avoid selecting the conclusion in this clause
and, if we select I in this clause, we should avoid selecting conclusions ofdh
o' F, wheres’ ando have disjoint supports, in other clauses.

We define a selection function that takes into account afiglmemarks. For a clause
H = C, we define the weight,y, (F') of a factF' € H by:

—oo if F'is an unselectable fact
-2 ifJdo,cF =C

—1 otherwise, ifF' € Syyp

0 otherwise.

Whyp (F) =

The setSyy,, is defined as follows: at the beginning,,, = 0; if we generate a clause
H A F = oF whereo is a substitution that maps variablesiofto terms that are not
all variables and, in this clause, we select the conclusien we add tdy,,, all facts
o' F with o ands”’ of disjoint support (and renamings of these facts). For Eaity we
have replaced the condition “aif* F' are distinct forn € N” with “ ¢ maps variables
of F' to terms that are not all variables”. (The former impliesltteer but the converse
is wrong.) Our aim is only to obtain good heuristics, sincer¢hexists no perfect
selection function that would provide termination in alkea. The se$,,,, can easily
be represented finitely: just store the fagtsvith, for each variable, a flag indicating
whether this variable can be substituted by any term’bpr only by a variable.
Similarly, we define the weight of the conclusion:

-2 f3Jo,AF € H,oC = F
Weonel = § —1 otherwise, ifC' € Seonal
0 otherwise.

52

The setS..uq is defined as follows: at the beginning,... = 0; if we generate a
clauseH A oF = F whereo is a substitution that maps variables/oto terms that
are not all variables and, in this clause, we setefet then we add tb,,.. all facts
o' F with o ando’ of disjoint support (and renamings of these facts).

Finally, we define

selh(H=C) = {@ TVEF € H, wnyp(F) < {eonel: . .

{Fv} whereF, € H of maximum weight, otherwise.
Therefore, we avoid unifying facts of smallest weight whiattis possible. The se-
lected factF can be any element dff of maximum weight. In the implementation,
the hypotheses are represented by a list, and the selectas flae first element of the
list of hypotheses of maximum weight.

We can also notice that the bigger the fact is, the strongecamnstraints to unify
it with another fact. So selecting a bigger fact should redihe possible unifications.
Therefore, we consideel,, defined asel; except thatv,y, (F) = size(F) instead of
0 in the last case.

When selecting a fact that has a negative weight, we are in biie @ases when
termination will probably not be achieved. We thereforeteamiiarning in this case, so
that the user can stop the program.

9 Extensions

In this section, we briefly sketch a few extensions to the &anrk presented previ-
ously. The extensions of Sections 9.1, 9.2, and 9.3 werepted in [19] for the proof
of process equivalences. We sketch here how to adapt theme fwraeof of correspon-
dences.

9.1 Equational Theories and Diffie-Hellman Key Agreements

Up to now, we have defined cryptographic primitives by assoaj rewrite rules to
destructors. Another way of defining primitives is by eqomél theories, as in the
applied pi calculus [4]. This allows us to model, for instayeariants of encryption for
which the failure of decryption cannot be detected or moraex primitives such as
Diffie-Hellman key agreements. The Diffie-Hellman key agneat [39] enables two
principals to build a shared secret. It is used as an elemest@p in more complex
protocols, such as Skeme [53], SSH, SSL, and IPsec.

As shown in [19], our verifier can be extended to handle sonuatimnal theories.
Basically, one shows that each trace in a model with an espadttheory corresponds
to a trace in a model in which function symbols are equippéeti ailditional rewrite
rules, and conversely. (We could adapt [19, Lemma 1] to shmaw this result also
applies to correspondences.) Therefore, we can show thatrespondence proved
in the model with rewrite rules implies the same correspandean the model with
an equational theory. Moreover, we have implemented alyos that compute the
rewrite rules from an equational theory.

53

In the experiments reported in this paper, we use equattbeaties only for the
Diffie-Hellman key agreement, which can be modeled by usimgftinctionsf and f*
that satisfy the equation

fly, f'(2) = f(, f'(y)- (23)

In practice, the functions arg(z,y) = y* mod p and f’(z) = ® mod p, where

p is prime andb is a generator oZ;. The equationf(y, f'(x)) = (b*)? mod p =
(b¥)* mod p = f(x, f'(y)) is satisfied. In our verifier, following the ideas used in
the applied pi calculus [4], we do not consider the undegyiomber theory; we work
abstractly with the equation (23). The Diffie-Hellman keyresgment involves two
principalsA and B. A chooses a random namsg, and sendg’(x) to B. Similarly,

B chooses a random name, and sendg’(x;) to A. ThenA computesf (zo, f'(z1))
and B computesf(x1, f'(x9)). Both values are equal by (23), and they are secret:
assuming that the attacker cannot hayer x4, it can compute neithef(zo, f'(z1))

nor f(x1, f'(zo)).

In our verifier, the equation (23) is translated into the rewnules

F, (@) = @, f'(y) flay) = fa,y)

Notice that this definition off is non-deterministic: a term such #$a, /(b)) can
be reduced tg (b, f'(a)) and f(a, f'(b)), so thatf(a, /(b)) reduces to its two forms
modulo the equational theory. The fact that these rewrlesmnodel the equation (23)
correctly follows from [19, Section 5].

When using this model, we have to adapt the verification ofesmondences. In-
deed, the conditions on the clauses must be cheokadulo the equational theary
(Using the rewrite rules, we can implement unification modille equational the-
ory, basically by rewriting the terms by the rewrite rule$dve performing syntactic
unification.) For example, in the case of non-injective agrent, even if the pro-
cessP, satisfies non-injective agreement against-adversaries, it may happen that
a Clausem-event(e,(p17 s ,pn){f(p% f/(p1)>/z}) = event(e(pl, cee apﬂ){f(pla
f'(p2))/2}) isinsolveps i (event(e(zy,...,x,))). The specification is still satisfied
in this case, becaugéph oo 7pﬂ){f(p17 fl(p2>)/z} = (pla s 7pn){f(p21 f/(pl))/z}
modulo the equational theory. So we have to test thdf, i event(e(p1,...,pn)) iS
in solvep, mit(event(e(x1,...,,))), then there exispy, ..., p,, equal topy,...,p,
modulo the equational theory such thatevent(e’(p},...,p})) € H. More gener-
ally, the equality? = H Am-event(o'p;j1) A ... Am-event(c'p;;;) = event(o'p}) in
the hypothesis of Theorem 3 is checked modulo the equatibeaty (using matching
modulo the equational theory to fimd). Point V2.1 of the definition oferify and Hy-
pothesis H2 of Theorem 5 are also checked modulo the eqabti@ory. Furthermore,
the following condition is added to Point V2.2 of the defioitiof verify:

For all j, r, and k, we letq. = ojrq;x andp. = ojrp;r, and we
require that, for all substitutions and¢’, if op. = o'p. and for all
z € fu(qe) \ fo(pe), ox = o'z, thenogq. = o'q. (where equalities are
considered modulo the equational theory).

This property is useful in the proof of Theorem 5 (see [18, éqix E]). It always
holds when the equational theory is empty, becayse= o’p. implies that for all

54

x € fu(pe), ox = o'z, so for allx € fu(q.), cx = o’x. However, it does not hold in
general for any equational theory, so we need to check it@ttplwvhen the equational
theory is non-empty. In the implementation, this conditi®checked as follows. Let
0 be a renaming of variables pf to fresh variables. We check that, for evety most
general unifier ofp. and 8p. modulo the equational theory,,q. = o,6q. modulo
the equational theory. When this check succeeds, we can firewendition above as
follows. Leto, be defined by, for alk: € fv(q.), oox = ox and, for allx € fu(0p.),
oox =o' z. If op. = 0'pe, thenogpe = op. = 0'pe = 00fpe, SO0 Unifiesp,. and
fp., hence there exist; and a most general unifier, of p. andép. such thatr, =
o10,. We haVG?—uQc = oublqc, S00q. = 00Gc = 010uqc = 010,0q. = 000q. = U/QC-

This treatment of equations has the advantage that resolcgin still use syntactic
unification, so it remains efficient. However, it also hasifations; for example, it
cannot handle associative functions, such as XOR, becawssiid generate an in-
finite number of rewrite rules for the destructors. We reef29, 32] for treatments
of XOR and to [28, 49, 57, 59] for treatments of Diffie-Hellmkey agreements with
more detailed algebraic relations. The NRL protocol areymndles a limited version
of associativity for strings of bounded length [44], whick would handle.

9.2 Precise Treatment ofelse Branches

In the generation of clauses described in Section 5.2, weidenthat thesise branch
of destructor applications may always be executed. Ourémphtation takes into
account theselse branches more precisely. In order to do that, it uses a seteafial
variablesG Var and a predicat@ounif, also used in [19], such that, for all closed
patternsp andp’, nounif (p, p’) holds if and only if there is no closed substitution
with domain G Var such thap = op’. The factnounif(p, p’) means thap # p’ for

all values of the special variables @Var.

One can then check the failure of an equality te&f = M’ by
nounif (p(M), p(M")) and the failure of a destructor applicatigiM, ..., M,)
BY Agipr,....pn)—pedet(g) ROUnif ((0(M), ..., p(My)), GVar(py, ..., pn)), Where
GVar(p) is the patterrp after renaming all its variables to elements @/ar and
p is the environment that maps variables to their correspangatterns. Intuitively,
the rewrite ruleg(ps, ..., p,) — p can be applied if and only {fp(M1), ..., p(My,))
is an instance ofpy, ..., p,). Sothe rewrite rulg(p, ..., p,) — p cannot be applied
if and only if nounif ((p(My), ..., p(M,)), GVar(p1,...,pn)).

The predicateounif is handled by specific simplification steps in the solver, de-
scribed and proved correct in [19].

9.3 Scenarios with Several Stages

Some protocols can be broken into several parts, or stagedered 0, 1, ..., such that
when the protocol starts, stage 0 is executed; at some poiimé, stage 0 stops and
stage 1 starts; later, stage 1 stops and stage 2 starts, and Sberefore, stages allow
us to model a global clock. Our verifier can be extended to saeharios with several
stages, as summarized in [19]. We add a construcP to the syntax of processes,
which means that procegaruns only in stage, wheret is an integer.

55

The generation of clauses can easily be extended to pracestestages. We
use predicatesttacker; andmessage, for each stage, generate the clauses for the
attacker for each stage, and the clauses for the protocolpsédicateattacker; and
message, for each process that runs in stag&urthermore, we add clauses

attacker;(r) = attacker;(x) (RY)

in order to transmit attacker knowledge from each statpethe next stage + 1.
Scenarios with several stages allow us to model properiased to the compro-
mise of keys. For example, we can model forward secrecy piepas follows. Con-
sider a public-key protocaP (without stage prefix) and the proceBS=0: P | 1 :
¢(sk);¢(skp), which runsP in stage 0 and later outputs the secret keys @nd B
on the public channet in stage 1. If we prove thaP’ preserves the secrecy of the
session keys oP, then the attacker cannot obtain these session keys evelatéi
compromises the private keys dfand B, which is forward secrecy.

9.4 Compromise of Session Keys

We consider the situation in which the attacker compronssase session keys of the
protocol. Our goal is then to show that the other session &éttse protocol are still
safe. For example, this property does not hold for the NemdBehroeder shared-key
protocol [61]: in this protocol, when an attacker managegdbsome session keys,
then it can also get the secrets of other sessions.

If we assume that the compromised sessions are all run hibfostandard sessions
(to model that the adversary needs time to break the sessj@before being able to
use the obtained information against standard sessidmes),this can be modeled as
a scenario with two stages: in stage 0, the process runs &ietbgersion of the
protocol that outputs its session keys; in stage 1, the atdrgkssions runs; we prove
the security of the sessions of stage 1.

However, we can also consider a stronger model, in which dnepcomised ses-
sions may run in parallel with the non-compromised oneshigxdase, we have a single
stage.

Let P, be the process representing the whole protocol. We cortbidethe part of
Py not under replications corresponds to the creation of kengy secrets, and the part
of Py under at least one replication corresponds to the ses3idmsay that the names
generated under at least one replicatiojraresession namesVe add one argument
i to the function symbols|. . .] that encode session names in the instrumented process
PJ; this additional argument is namedmpromise identifieand can take two values,
sg Or s1. We consider that, during the execution of the protocolheaplicated subpro-
cesdQ x of Py generates two sets of copies@®@}, one with compromise identifieg,
one withs;. The attacker compromises sessions that involve only sadiprocesses
Qx with the compromise identifiesy. It does not compromise sessions that involve at
least one copy of some proceds, with compromise identifies; .

The clauses for the proces#} are generated as in Section 5.2 (except for the addi-
tion of a variable compromise identifier as argument of sessames). The following

56

clauses are added:

For each constructaf, comp(z1) A ... A comp(zy) = comp(f(z1,...,2x))
For each(va : af...]) undern replications and: inputs and non-deterministic
destructor applications i),

comp(z1) A ... Acomp(xy) = comp(alxy,...,Tk|) ifn=0
comp(z1) A ... Acomp(xg) = comp(a[zy, ..., Tk, i1, .-, in,So]) ifn>0
comp(x1) A ... Acomp(xy) = attacker(alxy, ..., Tk, 41,...,4n,50]) ifn>0

The predicateomp is such thaicomp(p) is true when all session names jprhave
compromise identifieg,. These clauses express that the attacker has the sessies nam
that contain only the compromise identifigy.

In order to prove the secrecy of a session nanvee query the facittacker(s[z1,
.oy Xk, i1, ..., 0n,81]). If this fact is underivable, then the protocol does not have
the weakness of the Needham-Schroeder shared-key protesdloned above: the
attacker cannot have the secsedf a session that it has not compromised. In con-
trast,attacker(s[z1, ..., zk, 41, - . -, in, So]) iS @lways derivable, since the attacker has
compromised the sessions with identifigr

We can also prove correspondences in the presence of keyraanise. We want
to prove that the non-compromised sessions are secure, poowe that, if an event
event(M) has been executed in a copy of so@g with compromise identifieg;,
then the required event&ent(Mj—k) have been executed in any process. (A copy of
Qx with compromise identifies; may interact with a copy of)y with compromise
identifier s and, in this case, the everetsent(Mj—k) may be executed in the copy of
Qv with compromise identifiegy.) We obtain this result by adding the compromise
identifier i. as argument of the predicatesevent andevent in clauses, and corre-
spondingly adding; as argument oévent (M) andevent();), and a fresh variable
as argument of the other everetSent(Mj—k) in queries. We can then prove the cor-
respondence in the same way as in the absence of key compronfie treatment of
correspondenceststacker(M) ~» ... andmessage(M, M') ~» ... in which M and
M’ do not contain bound names remains unchanged.

10 Experimental Results

We have implemented our verifier in Ocaml and have perforrasts ton various pro-
tocols of the literature. The tests reported here concecresg and authentication
properties for simple examples of protocols. More compkeaaeples have been stud-
ied, using our technique for proving correspondences. Weadaletail them in this
paper, because they have been the subject of specific p2p8r20].

Our results are summarized in Figure 6, with referencesa@épers that describe
the protocols and the attacks. In these tests, the protacelfully modeled, includ-
ing interaction with the server for all versions of the NeshSchroeder, Woo-Lam
shared key, Denning-Sacco, Otway-Rees, and Yahalom mistothe first column in-
dicates the name of the protocol; we use the following abatiems: NS for Needham-
Schroeder, PK for public-key, SK for shared-key, corr. forrected, tag. for tagged,

57

unid. for unidirectional, and bid. for bidirectional. We Vgatested the Needham-
Schroeder shared key protocol with the modeling of key camige mentioned in
Section 9.4, in which the compromised sessions can be edautparallel with the
non-compromised ones (version marked “comp.” in Figure B)e second column
indicates the number of Horn clauses that represent thegoiot The third column
indicates the total number of resolution steps performediialyzing the protocol.

The fourth column gives the execution time of our analyzems, on a Pentium M
1.8 GHz. Several secrecy and agreement specifications ecgexhfor each protocol.
The time given is the total time needed to check all specifinat The following
factors influence the speed of the system:

e We use secrecy assumptions to speed up the search. Thesptssa say that
the secret keys of the principals, and the random valueseobiffie-Hellman
key agreement in the Skeme protocol, remain secret. Ongegettae verifier is
two times slower without secrecy assumptions, in our tests.

e \We mentioned several selection functions, and the spedtkafytstem can vary
substantially depending on the selection function. In #gwst of Figure 6, we
used the selection functiael,. With sel;, the system is two times slower on
average on Needham-Schroeder shared-key, Otway-Reesattiaat of [64]
of Otway-Rees, and Skeme but faster on the bidirectionapl#fied Yahalom
(59 ms instead of 91 ms). The speed is almost unchanged fatloerrtests. On
average, the verifier is 1.8 times slower witf, than withsels, in our tests.

The selection functiorel, gives approximately the same speedds, except
for Skeme, for which the analysis does not terminate wéth. (We comment
further on termination below.)

e The tests of Figure 6 have been performed without eliminatdforedundant hy-
potheses. With elimination of redundant hypotheses thatb@om-event facts,
we obtain approximately the same speed. With eliminatioallafedundant hy-
potheses, the verifier is 1.3 times slower on average in tiest® because of the
time spent testing whether hypotheses are redundant.

When our tool successfully proves that a protocol satisfiesr@io specification,
we are sure that this specification indeed holds, by our sweswitheorems. When
our tool does not manage to prove that a protocol satisfiestairwespecification, it
finds at least one clause and a derivation of this clause tmtadicts the specifica-
tion. The existence of such a clause does not prove that there attack: it may
correspond to a false attack, due to the approximationsdotred by the Horn clause
model. However, using an extension of the technique of [@vents, in most cases,
our tool reconstructs a trace of the protocol, and thus proivat there is actually an
attack against the considered specification. In the tedtgyofe 6, this reconstruction
succeeds in all cases for secrecy and non-injective camegmces, in the absence of
key compromise. The trace reconstruction is not implentepét in the presence of
key compromise (Section 9.4) or for injective corresporgsn (It presents additional
difficulties in the latter case, since the trace should eteesome event twice and others
once in order to contradict injectivity, while the deriaticorresponds to the execution

58

Protocol #| #res.|Time Cases with attacks

cl. | steps| (ms)| Secrecy | A B Ref.
NS PK [61] 32| 1988| 95| NoncesB| None| All [54]
NS PK corr. [54] 36| 1481| 51| None None | None
Woo-Lam PK [71] 23| 104 7 All [41]
Woo-Lam PK corr. [73] 27 156 6 None
Woo-Lam SK [47] 25 184 8 All [8]
Woo-Lam SK corr. [47] 21 244 4 None
Denning-Sacco [38] 30 440| 18| Key B All [5]
Denning-Sacco corr. [5] 30 438| 16| None Inj
NS SK [61], tag. 31| 2721| 41| None None | None
NS SK corr. [62], tag. 32| 2102| 57| None None | None
NS SK [61], tag., comp. 50| 25241| 167 | Key B None| Inj [38]
NS SK corr. [62], tag., comp.53 | 23956| 225 | None None | None
Yahalom [27] 26| 1515| 34| None Key | None
Simpler Yahalom [27], unid] 21| 1479| 30| None Key | None
Simpler Yahalom [27], bid. | 24| 3685| 91| None All None | [68]
Otway-Rees [63] 34| 1878| 59| None Key | Inj,Key| [27]
Simpler Otway-Rees [5] 28| 1934| 31| None All All [64]
Otway-Rees, variant of [64] 35| 3349| 87| Key B All All [64]
Main mode of Skeme [53] | 39| 4139| 154 | None None | None

Figure 6: Experimental results

of events once, with badly related session identifiers.héndases in which trace re-
construction is not implemented, we have checked manushiythe protocol is indeed
subject to an attack, so our tool found no false attack in eisestof Figure 6: for all
specifications that hold, it has proved them.

The last four columns give the results of the analysis. Thkinto “Se-
crecy” concerns secrecy properties, the colurinconcerns agreement specifica-

tions event(e(x1,...,x,)) ~ [inj] event(e’(z1,...,2,)) in which A executes the
eventevent(e(M, ..., M,)), the columnB agreement specificationsent(e(z1,
oy Xp)) ~ [inj] event(e' (a1, ..., z,)) in which B executes the evertrent (e(M;,

..., M,)). The last column gives the reference of the attacks whenkati@re found.
The first six protocols of Figure 6 (Needham-Schroeder pltdly and Woo-Lam one-
way authentication protocols) are authentication prdscbor them, we have tested
non-injective and recent injective agreement on the nantlkeeoparticipants, and non-
injective and injective full agreement (agreement on alivdt data). For the Needham-
Schroeder public key protocol, we have also tested the ggoferonces. “Nonces”
means that the noncég, and N, manipulated by3 may not be secret, “None” means
all tested specifications are satisfied (there is no attéaH},that our tool finds an
attack against all tested specifications. The Woo and Larogots areone-wayau-
thentication protocols: they are intended to authentidate B, but notB to A, so we
have only tested them witB containingevent (e(M, ..., M,)).

Numerous versions of the Woo and Lam shared-key protoc@ haen published

59

in the literature [71], [8], [5, end of Example 3.2], [5, Expla 6.2], [73], [47] (flawed
and corrected versions). Our tool terminates and provesainectness of the corrected
versions of [8] and of [47]; it terminates and finds an attacktlee flawed version
of [47]. (The messages received or sentdylo not depend on the hodt wants to
talk to, soA may start a session with the adversétyand the adversary can reuse the
messages of this session to talkBan A’s name.) We can easily see that the versions
of [71] and [5, Example 6.2] are also subject to this attaskndf our tool does not
terminate on them. The only difference between the prototl7] and that of [71] is
that [47] adds tags to distinguish different encryptioesitAs shown in Section 8.1,
adding tags enforces termination. Our tool finds the attd¢R® bottom of page 52]
on the versions of [5, end of Example 3.2] and [73]. For examible version of [73]

is

Messagel. A— B: A

Message2. B — A: Npg

Message 3. A — B: {A,B,Np}r,s
Message4. B — S: {A,B,{A, B, Np}k,s}Kps
Message 5. S — B: {A,B,Np}ky,s

and the attack is

Message 1. I(A) - B: A

Message 2. B — I(A): Np

Message 3. I(A) — B: Np

Message 4. B — I(A): {A,B,NB}kgs
Message 5. I(A) — B: {A,B,NB}kgs

In message 3, the adversary sefMjs instead of{ A, B, Ng}k,,. B cannot see the
difference and, acting as defined in the protod®lunfortunately sends exactly the
message needed by the adversary as messagerbttiaks he talks to4, while A and

S can perfectly be dead. The attack found against the verdi{B end of Example
3.2] is very similar.

The last five protocols exchange a session key, so we hawsltagteement on
the names of the participants, and agreement on both thieipants and the session
key (instead of full agreement, since agreement on themeksly is more important
than agreement on other values). In Figure 6, “K&ymeans that the key obtained by
B may not be secret, “Key” means that agreement on the sessjois kvrong, “Inj”
means that injective agreement is wrong, “All” and “Noneé as before.

In the Needham-Schroeder shared key protocol [61], therlassages are

Message 4. B — A: {Nplx
Message5. A — B: {Np —1}g

whereNg is a nonce. Representigs — 1 with a functionminusone(z) = = —1, with
associated destructtusone defined byplusone(minusone(z)) — =z, the algorithm
does not terminate with the selection functiehy. The selection functions:|; or sely
given in Section 8.2 however yield termination. We can alstice that the purpose of
the subtraction is to distinguish the reply 4ffrom B’s message. As mentioned in [5],
it would be clearer to have:

60

Message 4. B — A: {Messagel: Ng}xi
Message5. A — B: {Messagé : Ng}x

We have used this encoding in the tests shown in Figure 6. dalithen terminates
with selection functionsely, sel;, andsels. [21] explains in more detail why these two
messages encoded witkinusone prevent termination witlkely, and why the addition
of tags “Message 4", “Message 5" yields termination. Adding tags may strengthen
the protocol (for instance, in the Needham-Schroeder dhag protocol, it prevents
replaying Message 5 as a Message 4), so the security of thedagrsion does not
imply the security of the original version. As mentioned %}, [using the tagged ver-
sion is a better design choice because it prevents confdgfiegent messages, so this
version should be implemented. Our tool also does not tetmion Skeme with selec-
tion functionsely, for an authentication query, but terminates with selectimctions
sel; orsely. All other examples of Figure 6 terminate with the three ctide functions
selg, sely, andsel,.

Among the examples of Figure 6, only the Woo-Lam shared keyopol, flawed
and corrected versions of [47] and the Needham-Schroe@gedlikey protocol have
explicit tags. Our tool terminates on all other protocol&reif they are not tagged. The
termination can partly be explained by the notion of “imjthctagged” protocols [21]:
the various messages are not distinguished by explicit tagfsby other properties
of their structure, such as the arity of the tuples that thaytain. In Figure 6, the
Denning-Sacco protocol and the Woo-Lam public key prota@zelimplicitly tagged.
Still, the tool terminates on many examples that are not ewelicitly tagged.

For the Yahalom protocol, we show that,Af thinks thatk is a key to talk with
A, then A also thinks that is a key to talk withB. The converse is clearly wrong,
because the session key is sent frdnto B in the last message, so the adversary can
intercept this message, so thaihas the key but naB.

For the Otway-Rees protocol, we do not have agreement oredséos key, since
the adversary can intercept messages in such a way that diogoaat has the key and
the other one has no key. There is also an attack in which latitipants get a key,
but not the same one [45]. The latter attack is not found byt@alt since it stops with
the former attacks.

For the simplified version of the Otway-Rees protocol giver{5], B can ex-
ecute its evenevent(e(M,..., M,)) with A dead, and4 can execute its event
event(e(M, ..., M,))with B dead. As Burrows, Abadi, and Needham already noted
in [27], even the original protocol does not guaranteBthat A is alive (attack against
injective agreement that we also find). [47] said that theéqmal satisfied its authenti-
cation specifications, because they showed that neithar B can conclude that is
a key for talking betweent and B without the server first saying so. (Of course, this
property is also important, and could also be checked wittverifier.)

11 Conclusion
We have extended previous work on the verification of segpridtocols by logic pro-

gramming techniques, from secrecy to a very general classrodspondences, includ-
ing not only authentication but also, for instance, coroesfences that express that the

61

messages of the protocol have been sent and received ingheted order. This tech-
nigue enables us to check correspondences in a fully automay, without bounding

the number of sessions of the protocols. This techniqueyiddts an efficient verifier,

as the experimental results demonstrate.

Acknowledgments

We would like to thank Maih Abadi, £rome Feret, €dric Fournet, and Andrew Gor-
don for helpful discussions on this paper. This work waslpane at Max-Planck-
Institut fur Informatik, Saarkitcken, Germany.

References

(1]

(2]

3]

[4]

(5]

[6]

[7]

(8]

9]

M. Abadi and B. Blanchet. Analyzing security protocol#lwsecrecy types and
logic programs.Journal of the ACM52(1):102—-146, Jan. 2005.

M. Abadi and B. Blanchet. Computer-assisted verifioatid a protocol for certi-
fied email.Science of Computer Programmirg(1-2):3-27, Oct. 2005. Special
issue SAS’03.

M. Abadi, B. Blanchet, and C. Fournet. Just fast keyingthe pi calculus.
ACM Transactions on Information and System Security (TG3SE)(3):1-59,
July 2007.

M. Abadi and C. Fournet. Mobile values, new names, andigcommuni-
cation. In28th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL'QJages 104-115, London, United Kingdom,
Jan. 2001. ACM Press.

M. Abadi and R. Needham. Prudent engineering practicerfgptographic pro-
tocols. IEEE Transactions on Software Engineeri2g(1):6—15, Jan. 1996.

X. Allamigeon and B. Blanchet. Reconstruction of attaelgainst cryptographic
protocols. In18th IEEE Computer Security Foundations Workshop (CSFYV-18
pages 140-154, Aix-en-Provence, France, June 2005. IEEE.

R. Amadio and S. Prasad. The game of the name in cryptbgraables. In P. S.
Thiagarajan and R. Yap, editor8dvances in Computing Science - ASIAN'99
volume 1742 of_ecture Notes on Computer Scienpages 15-27, Phuket, Thai-
land, Dec. 1999. Springer.

R. Anderson and R. Needham. Programming Satan’s complmtd. van Leeu-
ven, editorComputer Science Today: Recent Trends and Developnvehise
1000 ofLecture Notes on Computer Scienpages 426—440. Springer, 1995.

L. Bachmair and H. Ganzinger. Resolution theorem prgvim A. Robinson and
A. Voronkov, editorsHandbook of Automated Reasoninglume 1, chapter 2,
pages 19-100. North Holland, 2001.

62

[10] M. Backes, A. Cortesi, and M. Maffei. Causality-basédtaaction of multiplicity
in security protocols. 1120th IEEE Computer Security Foundations Symposium
(CSF'07) pages 355-369, Venice, Italy, July 2007. IEEE.

[11] M. Bellare and P. Rogaway. Entity authentication and #istribution. In D. R.
Stinson, editorAdvances in Cryptology — CRYPTO 1998lume 773 ofLec-
ture Notes on Computer Scienpages 232—249, Santa Barbara, California, Aug.
1993. Springer.

[12] K. Bhargavan, C. Fournet, A. D. Gordon, and R. PucellallafFale: A secu-
rity tool for web services. IrfFormal Methods for Components and Objects
(FMCO 2003) volume 3188 of_ecture Notes on Computer Scienpages 197—
222, Leiden, The Netherlands, Nov. 2003. Springer. Papegit@ol available at
http://securing.ws/.

[13] B. Blanchet. An efficient cryptographic protocol vegifbased on Prolog rules. In
14th IEEE Computer Security Foundations Workshop (CSF)Wabges 82—-96,
Cape Breton, Nova Scotia, Canada, June 2001. IEEE Compatets

[14] B. Blanchet. From secrecy to authenticity in securityotpcols. In
M. Hermenegildo and G. Puebla, edito@sh International Static Analysis Sym-
posium (SAS’02)volume 2477 ofLecture Notes on Computer Sciengages
342-359, Madrid, Spain, Sept. 2002. Springer.

[15] B. Blanchet. Automatic proof of strong secrecy for s@guprotocols. InIEEE
Symposium on Security and Privapages 86-100, Oakland, California, May
2004.

[16] B. Blanchet. Automatic proof of strong secrecy for gétyu protocols.
Technical Report MPI-1-2004-NWG1-001, Max-Planck-Ingtiftr Informatik,
Saarbiicken, Germany, July 2004.

[17] B. Blanchet. Security protocols: From linear to classiogic by abstract inter-
pretation.Information Processing Letter85(5):473—-479, Sept. 2005.

[18] B. Blanchet. Automatic verification of correspondemder security protocols.
Report arXiv:0802.3444v1, 2008. Available latt p: // ar xi v. or g/ abs/
0802. 3444v1.

[19] B. Blanchet, M. Abadi, and C. Fournet. Automated veaifion of selected equiv-
alences for security protocolsJournal of Logic and Algebraic Programming
75(1):3-51, Feb.—Mar. 2008.

[20] B. Blanchet and A. Chaudhuri. Automated formal anaysi a protocol for se-
cure file sharing on untrusted storage.llBEE Symposium on Security and Pri-
vacy, pages 417-431, Oakland, CA, May 2008. IEEE.

[21] B. Blanchet and A. Podelski. Verification of cryptoghég protocols: Tagging
enforces terminationtheoretical Computer Sciencg33(1-2):67-90, Mar. 2005.
Special issue FoSSaCS’03.

63

[22] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. keldbn. Static valida-
tion of security protocolsJournal of Computer Security3(3):347—-390, 2005.

[23] P. Broadfoot, G. Lowe, and B. Roscoe. Automating dad@pendence. 16th Eu-
ropean Symposium on Research in Computer Security (ESCRS volume
1895 ofLecture Notes on Computer Scienpages 175-190, Toulouse, France,
Oct. 2000. Springer.

[24] P.J. Broadfoot and A. W. Roscoe. Embedding agents mitie intruder to detect
parallel attacksJournal of Computer Security2(3/4):379-408, 2004.

[25] M. Bugliesi, R. Focardi, and M. Maffei. Analysis of typeanalyses of authenti-
cation protocols. IProc. 18th IEEE Computer Security Foundations Workshop
(CSFW'05) pages 112-125, Aix-en-Provence, France, June 2005. |EBRpC
Soc. Press.

[26] M. Bugliesi, R. Focardi, and M. Maffei. Dynamic types fauthenticationJour-
nal of Computer Security15(6):563-617, 2007.

[27] M. Burrows, M. Abadi, and R. Needham. A logic of autheation. Proceedings
of the Royal Society of London A26:233-271, 1989. A preliminary version
appeared as Digital Equipment Corporation Systems Rds€&wwter report No.
39, February 1989.

[28] Y. Chevalier, R. Kisters, M. Rusinowitch, and M. Turuani. Deciding the sdguri
of protocols with Diffie-Hellman exponentiation and prothum exponents. In
P. K. Pandya and J. Radhakrishnan, editB&T TCS 2003: Foundations of Soft-
ware Technology and Theoretical Computer Science, 23rdetemce volume
2914 of Lecture Notes on Computer Sciengages 124-135, Mumbai, India,
Dec. 2003. Springer.

[29] Y. Chevalier, R. Kisters, M. Rusinowitch, and M. Turuani. An NP decision pro-
cedure for protocol insecurity with XOR-heoretical Computer Sciencg&38(1—
3):247-274, June 2005.

[30] J. Clark and J. Jacob. A survey of authentication pratbterature: Versionl.0.
Technical report, University of York, Department of ComgruScience, Nov.
1997.

[31] E. Cohen. First-order verification of cryptographiofurcols. Journal of Com-
puter Security11(2):189-216, 2003.

[32] H. Comon-Lundh and V. Shmatikov. Intruder deducticsmstraint solving and
insecurity decision in presence of exclusive or.Symposium on Logic in Com-
puter Science (LICS’03pages 271-280, Ottawa, Canada, June 2003. IEEE Com-
puter Society.

[33] V. Cortier, J. Millen, and H. Ruel3. Proving secrecy isyeanough. Inl4th
IEEE Computer Security Foundations Workshop (CSFWdabes 97-108, Cape
Breton, Nova Scotia, Canada, June 2001. IEEE Computert$ocie

64

[34] C.J.F.CremersScyther - Semantics and Verification of Security ProtodeisD.
dissertation, Eindhoven University of Technology, Nov0&0

[35] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A dextion system and com-
positional logic for security protocoldournal of Computer Securitit 3(3):423—
482, 2005.

[36] H. de Nivelle.Ordering Refinements of Resolutid?hD thesis, Technische Uni-
versiteit Delft, Oct. 1995.

[37] M. Debbabi, M. Mejri, N. Tawbi, and |. Yahmadi. A new algiinm for the au-
tomatic verification of authentication protocols: Fromdfieations to flaws and
attack scenarios. IDIMACS Workshop on Design and Formal Verification of
Security ProtocolsRutgers University, New Jersey, Sept. 1997.

[38] D. E. Denning and G. M. Sacco. Timestamps in key distidyuprotocols.Com-
mun. ACM 24(8):533-536, Aug. 1981.

[39] W. Diffie and M. Hellman. New directions in cryptograpifEE Transactions
on Information TheorylT-22(6):644—654, Nov. 1976.

[40] D. Dolev and A. C. Yao. On the security of public key protts. IEEE Transac-
tions on Information TheoryT-29(12):198-208, Mar. 1983.

[41] A. Durante, R. Focardi, and R. Gorrieri. CVS at work: Aoet on new failures
upon some cryptographic protocols. In V. Gorodetski, V.r&ka, and L. Popy-
ack, editorsMathematical Methods, Models and Architectures for Coraphiet-
works Security (MMM-ACNS’01)olume 2052 of_ecture Notes on Computer
Sciencepages 287-299, St. Petersburg, Russia, May 2001. Springer

[42] N. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Meet rewriting and
the complexity of bounded security protocoldournal of Computer Security
12(2):247-311, 2004.

[43] S. Escobar, C. Meadows, and J. Meseguer. A rewritirgetlinference system for
the NRL protocol analyzer and its meta-logical propertigseoretical Computer
Science367(1-2):162-202, 2006.

[44] S. Escobar, C. Meadows, and J. Meseguer. Equationptagyaphic reasoning
in the Maude-NRL protocol analyzeElectronic Notes in Theoretical Computer
Sciencel71(4):23-36, July 2007.

[45] F. J. T. Rbrega, J. C. Herzog, and J. D. Guttman. Strand spacesnBsecurity
protocols correctJournal of Computer Security (2/3):191-230, 1999.

[46] A. Gordon and A. Jeffrey. Typing one-to-one and one¥tany correspondences
in security protocols. In M. Okada, B. Pierce, A. Scedriv, Fékuda, and

A. Yonezawa, editorsSoftware Security — Theories and Systems, Mext-NSF-JSPS

International Symposium, ISSS 2008lume 2609 of ecture Notes on Computer
Sciencepages 263-282, Tokyo, Japan, Nov. 2002. Springer.

65

[47] A. Gordon and A. Jeffrey. Authenticity by typing for sety protocols.Journal
of Computer Securify11(4):451-521, 2003.

[48] A. Gordon and A. Jeffrey. Types and effects for asyminettyptographic proto-
cols. Journal of Computer Security2(3/4):435-484, 2004.

[49] J. Goubault-Larrecq, M. Roger, and K. N. Verma. Absdi@tand resolution
modulo AC: How to verify Diffie-Hellman-like protocols autmatically. Journal
of Logic and Algebraic Programmin®4(2):219-251, Aug. 2005.

[50] J. D. Guttman and F. J. T.ABrega. Authentication tests and the structure of
bundles.Theoretical Computer Scienc283(2):333-380, 2002.

[51] J. Heather, G. Lowe, and S. Schneider. How to prever tigw attacks on secu-
rity protocols. In13th IEEE Computer Security Foundations Workshop (CSFW-
13), pages 255-268, Cambridge, England, July 2000.

[52] J. Heather and S. Schneider. A decision procedure ®rettistence of a rank
function. Journal of Computer Security3(2):317-344, 2005.

[53] H. Krawczyk. SKEME: A versatile secure key exchange hagism for internet.
In Internet Society Symposium on Network and DistributeceBysEecurity-eb.
1996. Available ahtt p: // bi | bo. i su. edu/ sndss/ sndss96. ht i .

[54] G. Lowe. Breaking and fixing the Needham-Schroederiptk#y protocol using
FDR. InTools and Algorithms for the Construction and Analysis t&ns
volume 1055 ofLecture Notes on Computer Scienpages 147—-166. Springer,
1996.

[55] G. Lowe. A hierarchy of authentication specifications10th Computer Security
Foundations Workshop (CSFW '9pages 31-43, Rockport, Massachusetts, June
1997. IEEE Computer Society.

[56] C. Lynch. Oriented equational logic programming is gbete. Journal of Sym-
bolic Computation21(1):23-45, 1997.

[57] C. Meadows and P. Narendran. A unification algorithm tfeg group Diffie-
Hellman protocol. InNorkshop on Issues in the Theory of Security (WITS'02)
Portland, Oregon, Jan. 2002.

[58] C. A. Meadows. The NRL protocol analyzer: An overviedournal of Logic
Programming 26(2):113-131, 1996.

[59] J. Millen and V. Shmatikov. Symbolic protocol analysigth an abelian group
operator or Diffie-Hellman exponentiation.Journal of Computer Security
13(3):515-564, 2005.

[60] J. C. Mitchell, M. Mitchell, and U. Stern. Automated dysis of cryptographic
protocols using Mup. In 1997 IEEE Symposium on Security and Privgmages
141-151, 1997.

66

[61] R. M. Needham and M. D. Schroeder. Using encryption fathantication in
large networks of computer€ommun. ACM21(12):993-999, Dec. 1978.

[62] R. M. Needham and M. D. Schroeder. Authentication liexis Operating Sys-
tems Review21(1):7, 1987.

[63] D. Otway and O. Rees. Efficient and timely mutual autloaion. Operating
Systems Revigw®1(1):8-10, 1987.

[64] L. C. Paulson. The inductive approach to verifying ¢pgraphic protocolslour-
nal of Computer Securitys(1-2):85-128, 1998.

[65] A.W. Roscoe and P. J. Broadfoot. Proving security protewith model checkers
by data independence techniquésurnal of Computer Security (2, 3):147-190,
1999.

[66] M. Rusinowitch and M. Turuani. Protocol insecurity tviinite number of ses-
sions is NP-completeTheoretical Computer Scienc299(1-3):451-475, Apr.
2003.

[67] D. X. Song, S. Berezin, and A. Perrig. Athena: a novelrapph to efficient
automatic security protocol analysidournal of Computer Securit®(1/2):47—
74, 2001.

[68] P. Syverson. A taxonomy of replay attacks. 7th IEEE Computer Security
Foundations Workshop (CSFW-9gages 131-136, Franconia, New Hampshire,
June 1994. IEEE Computer Society.

[69] P. Syverson and C. Meadows. A formal language for crygtphic protocol
requirementsDesigns, Codes, and Cryptograpf1/2):27-59, 1996.

[70] C. Weidenbach. Towards an automatic analysis of sgcprbtocols in first-
order logic. In H. Ganzinger, editat6th International Conference on Automated
Deduction (CADE-16)volume 1632 ofLecture Notes in Artificial Intelligence
pages 314-328, Trento, Italy, July 1999. Springer.

[71] T.Y.C. Woo and S. S. Lam. Authentication for distribditgystems.Computer
25(1):39-52, Jan. 1992.

[72] T. Y. C. Woo and S. S. Lam. A semantic model for authemiticaprotocols. In
Proceedings IEEE Symposium on Research in Security andd@ripages 178—
194, Oakland, California, May 1993.

[73] T.Y.C.Woo and S. S. Lam. Authentication for distribdi/stems. In D. Denning
and P. Denning, editordnternet Besieged: Countering Cyberspace Scofflaws
pages 319-355. ACM Press and Addison-Wesley, Oct. 1997.

67

