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Introduction

Our goal: implement an automatic, computationally sound prover
for security protocols.

We have already implemented a prover for secrecy properties.

In this talk, we show how to extend it to correspondence
assertions, that is, properties of the style:

If some event has been executed, then some other events

have been executed.

Basic application: authentication.
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Proofs by sequences of games

The prover produces the proof is a sequence of games, as in
Shoup’s or Bellare and Rogaway’s method:

In the first game, the adversary plays against the real protocol.

The prover transforms each game into the next by syntactic
transformations or by applying security assumptions on
cryptographic primitives.

Consecutive games are computationally indistinguishable.

The desired security property can be proved directly on the
last game.

Games are formalized in a process calculus.
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Differences with secrecy

For the proof of correspondences:

The language for games in the same as for secrecy, except for
the addition of events.

The game transformations and the proof strategy are the
same as for secrecy. (The events are left unchanged.)

One needs a new algorithm for checking correspondences on
the last game.
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Example: a nonce challenge

Simple example inspired by the corrected Woo-Lam public-key
protocol (1997)

B → A : (N,B)

A → B : {pkA,B,N}skA

In our language:

c0();new rkA : keyseed ;

let pkA = pkgen(rkA) in let skA = skgen(rkA) in c1〈pkA〉;

!iA≤nc2[iA](xN : nonce, xB : host); event eA(pkA, xB, xN);

new r : seed ; c3[iA]〈sign(concat(pkA, xB, xN), skA, r)〉

| !iB≤nc4[iB ](xpkA : pkey);new N : nonce; c5[iB ]〈N,B〉;

c6[iB ](s : signature); if verify(concat(xpkA,B,N), xpkA, s) then

if xpkA = pkA then event eB(xpkA,B,N)
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Arrays

All variables defined under replications are implicitly arrays.
This allows us to store all values that occur during the executions
of the game.
This replaces lists used by cryptographers and is key to
cryptographic proofs.

c0();new rkA : keyseed ;

let pkA = pkgen(rkA) in let skA = skgen(rkA) in c1〈pkA〉;

!iA≤nc2[iA](xN[iA] : nonce, xB[iA] : host);

event eA(pkA, xB[iA], xN[iA]);new r [iA] : seed ;

c3[iA]〈sign(concat(pkA, xB[iA], xN[iA]), skA, r [iA])〉

| !iB≤nc4[iB ](xpkA[iB ] : pkey);new N[iB ] : nonce; c5[iB ]〈N[iB ],B〉;

c6[iB ](s[iB ] : signature);

if verify(concat(xpkA[iB ],B,N[iB ]), xpkA[iB ], s[iB ]) then

if xpkA[iB ] = pkA then event eB(xpkA[iB ],B,N[iB ])
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After game transformations

Using the unforgeability of signatures, the signature verification
with pkA succeeds only for signatures generated with skA.
After game transformations, we obtain the last game:

c0();new rkA : keyseed ; let pkA = pkgen′(rkA) in c1〈pkA〉;

!iA≤nc2[iA](xN : nonce, xB : host);

event eA(pkA, xB, xN); let m = concat(pkA, xB, xN) in

new r : seed ; c3[iA]〈sign′(m, skgen′(rkA), r)〉

| !iB≤nc4[iB ](xpkA : pkey);new N : nonce; c5[iB ]〈N,B〉;

c6[iB ](s : signature);find u ≤ n suchthat

defined(m[u], xB[u], xN[u]) ∧ (xpkA = pkA) ∧ (B = xB[u])

∧ (N = xN[u]) ∧ verify ′(concat(xpkA,B,N), xpkA, s) then

event eB(xpkA,B,N)
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Non-injective correspondences

A non-injective correspondence is a formula of the form ψ ⇒ φ
where

φ ::= formula
M term (without arrays)
event(e(M1, . . . ,Mm)) event
φ1 ∧ φ2 conjunction
φ1 ∨ φ2 disjunction

and ψ is a formula that contains only events and conjunctions.

Example

event(eB(x , y , z)) ⇒ event(eA(x , y , z))

means that, if eB(x , y , z) is executed, then eA(x , y , z) has also
been executed (except in cases of negligible probability).
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Non-injective correspondences: formal semantics

Let ρ be an environment that maps variables to bitstrings.
Let E be a sequence of events.

Definition

ρ, E ` M if and only if M evaluates to true in environment ρ
ρ, E ` event(e(M1, . . . ,Mm)) if and only if

for all j ≤ m, Mj evaluates to aj in ρ and e(a1, . . . , am) ∈ E

Definition

E ` ψ ⇒ φ if and only if
for all ρ defined on var(ψ) such that ρ, E ` ψ,
there exists an extension ρ′ of ρ to var(φ) such that ρ′, E ` φ.

Definition

Q0 satisfies ψ ⇒ φ with public variables V if and only if
for all evaluation contexts C accessing only variables of V in Q0,
Pr[C [Q0] executes E and E 6` ψ ⇒ φ] is negligible.
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Injective correspondences

An injective correspondence also allows injective events
inj-event(e(M1, . . . ,Mm)).

Each execution of the injective events in ψ corresponds to distinct
injective events in φ.

Example

inj-event(eB(x , y , z)) ⇒ inj-event(eA(x , y , z))

means that each execution of eB(x , y , z) corresponds to a distinct
execution of eA(x , y , z).
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Intuition for the proof: non-injective correspondences (1)

Prove the correspondence event(eB(x , y , z)) ⇒ event(eA(x , y , z))
in the game

. . . !iA≤n . . . event eA(pkA, xB, xN); let m = . . . in . . .

| !iB≤n . . .find u ≤ n suchthat defined(m[u], xB[u], xN[u]) ∧

(xpkA = pkA) ∧ (B = xB[u]) ∧ (N = xN[u]) ∧

verify ′(concat(xpkA,B,N), xpkA, s) then event eB(xpkA,B,N)
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Intuition for the proof: non-injective correspondences (1)

Prove the correspondence event(eB(x , y , z)) ⇒ event(eA(x , y , z))
in the game

. . . !iA≤n . . . event eA(pkA, xB, xN); let m = . . . in . . .

| !iB≤n . . .find u ≤ n suchthat defined(m[u], xB[u], xN[u]) ∧

(xpkA = pkA) ∧ (B = xB[u]) ∧ (N = xN[u]) ∧

verify ′(concat(xpkA,B,N), xpkA, s) then event eB(xpkA,B,N)

If event(eB(x , y , z)) has been executed, the program point
event eB(xpkA,B,N) has been reached for some iB = i ′B , and
eB(x , y , z) = eB(xpkA[i ′B ],B,N[i ′B ]).

So m[u[i ′B ]], xB [u[i ′B ]], and xN[u[i ′B ]] are defined,
xpkA[i ′B ] = pkA, B = xB[u[i ′B ]], and N[i ′B ] = xN[u[i ′B ]].

Since m[u[i ′B ]] is defined, the definition of m[iA] has been executed
for iA = u[i ′B ], so event eA(pkA, xB[iA], xN[iA]) has been executed.
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Intuition for the proof: non-injective correspondences (2)

If event(eB(x , y , z)) has been executed, the program point
event eB(xpkA,B,N) has been reached for some iB = i ′B , and
eB(x , y , z) = eB(xpkA[i ′B ],B,N[i ′B ]).

So m[u[i ′B ]], xB [u[i ′B ]], and xN[u[i ′B ]] are defined,
xpkA[i ′B ] = pkA, B = xB[u[i ′B ]], and N[i ′B ] = xN[u[i ′B ]].

Since m[u[i ′B ]] is defined, the definition of m[iA] has been executed
for iA = u[i ′B ], so event eA(pkA, xB[iA], xN[iA]) has been executed.

We have

x = xpkA[i ′B ] = pkA

y = B = xB[u[i ′B ]] = xB[iA]

z = N[i ′B ] = xN[u[i ′B ]] = xN[iA]

so eA(pkA, xB[iA], xN[iA]) = eA(x , y , z) has been executed.
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Intuition for the proof: injective correspondences (1)

Prove the correspondence
inj-event(eB(x , y , z)) ⇒ inj-event(eA(x , y , z)) in the game

. . . !iA≤n . . . event eA(pkA, xB, xN); let m = . . . in . . .

| !iB≤n . . .find u ≤ n suchthat defined(m[u], xB[u], xN[u]) ∧

(xpkA = pkA) ∧ (B = xB[u]) ∧ (N = xN[u]) ∧

verify ′(concat(xpkA,B,N), xpkA, s) then event eB(xpkA,B,N)
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Intuition for the proof: injective correspondences (2)

Prove the correspondence
inj-event(eB(i ,x , y , z)) ⇒ inj-event(eA(i ′,x , y , z)) in the game

. . . !iA≤n . . . event eA(iA,pkA, xB, xN); let m = . . . in . . .

| !iB≤n . . .find u ≤ n suchthat defined(m[u], xB[u], xN[u]) ∧

(xpkA = pkA) ∧ (B = xB[u]) ∧ (N = xN[u]) ∧

verify ′(concat(xpkA,B,N), xpkA, s) then event eB(iB ,xpkA,B,N)

In order to record in which session each event is executed,
we add replication indices to events.
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Intuition for the proof: injective correspondences (3)

Prove the correspondence
inj-event(eB(i ,x , y , z)) ⇒ inj-event(eA(i ′,x , y , z)) in the game

. . . !iA≤n . . . event eA(iA,pkA, xB, xN); let m = . . . in . . .

| !iB≤n . . .find u ≤ n suchthat defined(m[u], xB[u], xN[u]) ∧

(xpkA = pkA) ∧ (B = xB[u]) ∧ (N = xN[u]) ∧

verify ′(concat(xpkA,B,N), xpkA, s) then event eB(iB ,xpkA,B,N)

If event(eB(i , x , y , z)) has been executed, the program point
event eB(iB , xpkA,B,N) has been reached for some iB = i ′B , and
eB(i , x , y , z) = eB(i ′B , xpkA[i ′B ],B,N[i ′B ]).

So m[u[i ′B ]], xB [u[i ′B ]], and xN[u[i ′B ]] are defined,
xpkA[i ′B ] = pkA, B = xB[u[i ′B ]], and N[i ′B ] = xN[u[i ′B ]].

Since m[u[i ′B ]] is defined, the definition of m[iA] has been executed
for iA = u[i ′B ], so event eA(iA, pkA, xB[iA], xN[iA]) has been
executed.
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Intuition for the proof: injective correspondences (4)

As before, eA(iA, pkA, xB[iA], xN[iA]) = eA(i ′, x , y , z) for some i ′.

In order to show injectivity, we show that
eB executed twice, for iB = i ′B and iB = i ′′B , with i ′B 6= i ′′B

⇒ eA executed twice, for iA = u[i ′B ] and iA = u[i ′′B ], with u[i ′B ] 6= u[i ′′B ]

By contraposition, we show u[i ′B ] = u[i ′′B ] ⇒ i ′B = i ′′B .

u[i ′B ] = u[i ′′B ] ⇒ xN[u[i ′B ]] = xN[u[i ′′B ]]

⇒ N[i ′B ] = N[i ′′B ] since xN[u[i ′B ]] = N[i ′B ]
and xN[u[i ′′B ]] = N[i ′′B ]

⇒ i ′B = i ′′B up to negligible probability
by eliminating collisions.
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Proof technique

In order to prove ψ ⇒ φ, two main steps:

1 Collect the facts that hold when the events in ψ are executed.

2 Reason on these facts using an equational prover in order to
show that the events in φ have been executed (and show
injectivity when needed).

We shall now detail these points.
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Collecting true facts

For each program point P, we collect a set of true facts at that
point FP .

We take into account assignments and tests above P.

Example

In if M then P, M ∈ FP .

We take into account facts that hold at all definitions of
variables.

Example

If defined(x [M̃]) ∈ FP and M holds at all definitions of x [̃i ],
then M{M̃ /̃i} ∈ FP .

We take into account that code is always executed up to the
next output before switching to another thread.
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Collecting true facts: example (1)

c0();new rkA : keyseed ; let pkA = pkgen′(rkA) in c1〈pkA〉;

!iA≤nc2[iA](xN : nonce, xB : host);

event eA(pkA, xB, xN); let m = concat(pkA, xB, xN) in

new r : seed ; c3[iA]〈sign′(m, skgen′(rkA), r)〉

| !iB≤nc4[iB ](xpkA : pkey);new N : nonce; c5[iB ]〈N,B〉;

c6[iB ](s : signature);find u ≤ n suchthat

defined(m[u], xB[u], xN[u]) ∧ (xpkA = pkA) ∧ (B = xB[u])

∧ (N = xN[u]) ∧ verify ′(concat(xpkA,B,N), xpkA, s) then

event eB(xpkA,B,N)

At program point P = event eB(xpkA,B,N),

FP = {defined(m[u[iB ]]),defined(xB[u[iB ]]),defined(xN[u[iB ]]),

xpkA[iB ] = pkA,B = xB[u[iB ]],N[iB ] = xN[u[iB ]], . . .
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Collecting true facts: example (2)

c0();new rkA : keyseed ; let pkA = pkgen′(rkA) in c1〈pkA〉;

!iA≤nc2[iA](xN : nonce, xB : host);

event eA(pkA, xB, xN); let m = concat(pkA, xB, xN) in

new r : seed ; c3[iA]〈sign′(m, skgen′(rkA), r)〉

| . . .

At program point P = event eB(xpkA,B,N),

FP = {defined(m[u[iB ]]),defined(xB[u[iB ]]),defined(xN[u[iB ]]),

xpkA[iB ] = pkA,B = xB[u[iB ]],N[iB ] = xN[u[iB ]],

event(eA(pkA, xB [u[iB ]], xN[u[iB ]])), . . .}

because defined(m[u[iB ]]) ∈ FP .
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Equational prover

We use an algorithm inspired by the Knuth-Bendix completion
algorithm to derive new equalities from known equalities.

The equational prover also eliminates collisions when they have
negligible probability.

Details of this prover can be found in the paper:
Blanchet, A Computationally Sound Mechanized Prover for
Security Protocols, TDSC, to appear.

We say that F yields a contradiction when the prover starting from
F derives false.
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Proof of non-injective correspondences (1)

Let ψ ⇒ φ = F1 ∧ . . . ∧ Fm ⇒ φ be a non-injective
correspondence, with fresh variables.

Example

event(eB(x , y , z)) ⇒ event(eA(x , y , z)).

If F1, . . . ,Fm have been executed,
then there exist P1, . . . ,Pm such that, for all j ≤ m,

Fj = event(ej(Mj1, . . . ,Mjmj
)),

event ej(M
′
j1, . . . ,M

′
jmj

); Pj occurs in Q0, and

event ej(M
′
j1, . . . ,M

′
jmj

) has been executed with

Fj = θ′jevent(ej(M
′
j1, . . . ,M

′
jmj

)), where θ′j renames the
replication indices at Pj to fresh replication indices.

Example

event eB(xpkA,B,N) has been executed, with
event(eB(x , y , z)) = event(eB(xpkA[i ′B ],B,N[i ′B ])), θ′ = {i ′B/iB}.
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Proof of non-injective correspondences (2)

Then the facts Fj = θ′jFPj
∪ {θ′jM

′
j1 = Mj1, . . . , θ

′
jM

′
jmj

= Mjmj
}

hold.

Example

FP{i
′
B/iB} ∪ {x = xpkA[i ′B ], y = B, z = N[i ′B ]} hold, where FP has

been described previously.

For each such P1, . . . ,Pm, we show that
F = F1 ∪ . . . ∪ Fm implies θφ

for some θ equal to the identity on var(ψ), by the equational prover.

(For this proof, we prove atomic facts contained in θφ, we choose θ
by matching facts to prove with elements of F , and we show that
F implies M by showing that F ∪ {¬M} yields a contradiction.)

Example

x = xpkA[i ′B ], y = B, z = N[i ′B ], xpkA[i ′B ] = pkA,B = xB[u[i ′B ]],
N[i ′B ] = xN[u[i ′B ]], event(eA(pkA, xB [u[i ′B ]], xN[u[i ′B ]]))
imply event(eA(x , y , z)).
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Authentication and key exchange

We have also given:

a proof of mutual authentication from correspondence
assertions;

a proof of authenticated key exchange from a combination of
correspondence assertions and secrecy (also shown by our
prover).

Difficulty: the secrecy is the secrecy of a single variable,
the shared key is stored in two variables, kA in participant A,
kB in participant B.

Intuitively, we show by correspondences that each key kB of B

with A is an element of array kA, so secrecy of kA is sufficient.

Details in the paper.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Experimental results

We have tested our prover on the following protocols:

Woo-Lam shared-key original and corrected versions

Woo-Lam public-key original and corrected versions

Needham-Schroeder public-key original and corrected versions

Denning-Sacco public-key original and corrected versions

Needham-Schroeder shared-key original and corrected
versions, with and without key confirmation

Yahalom, with and without key confirmation

Otway-Rees

We try to prove authentication and authenticated key exchange, as
appropriate for each protocol.

The prover obviously fails proving false properties.

It succeeds proving true ones, except in one case:
the original version of the Needham-Schroeder shared-key protocol.
(It does not see that NB [i ] 6= NB [i ′] − 1 except in cases of
negligible probability.)
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Conclusion and future work

The prover succeeds proving most desired correspondences, but
some points not directly related to correspondences could still be
improved:

automatic proof strategy: the prover sometimes needs
indications from the user.

equational theories, e.g. handle the equations of XOR.

handle more primitives, e.g. Diffie-Hellman key agreements.

Tool available at
http://www.di.ens.fr/~blanchet/cryptoc.html
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