Computationally Sound Mechanized Proofs

of Correspondence Assertions

Bruno Blanchet
CNRS, Ecole Normale Supérieure
blanchet@di.ens.fr

July 2007

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Introduction

Our goal: implement an automatic, computationally sound prover
for security protocols.

We have already implemented a prover for secrecy properties.

In this talk, we show how to extend it to correspondence
assertions, that is, properties of the style:

If some event has been executed, then some other events
have been executed.

Basic application: authentication.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Proofs by sequences of games

The prover produces the proof is a sequence of games, as in
Shoup’s or Bellare and Rogaway’s method:

@ In the first game, the adversary plays against the real protocol.
@ The prover transforms each game into the next by syntactic
transformations or by applying security assumptions on
cryptographic primitives.
Consecutive games are computationally indistinguishable.

@ The desired security property can be proved directly on the
last game.

Games are formalized in a process calculus.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Differences with secrecy

For the proof of correspondences:

@ The language for games in the same as for secrecy, except for
the addition of events.

@ The game transformations and the proof strategy are the
same as for secrecy. (The events are left unchanged.)

@ One needs a new algorithm for checking correspondences on
the last game.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Example: a nonce challenge

Simple example inspired by the corrected Woo-Lam public-key
protocol (1997)

B— A:(N,B)
A — B {pka, B, N},
In our language:
c0(); new rkp : keyseed;
let pka = pkgen(rka) in let ska = skgen(rka) in c1(pka);
VASnc2[ial(xN : nonce, xB : host); event ex(pka, xB, xI);
new r : seed; c3[ia](sign(concat(pka, xB, xN), ska, r))
| B<Nc4lig)(xpka : pkey);new N : nonce; c5[ig](N, B);
c6[ig](s : signature); if verify(concat(xpka, B, N), xpka, s) then
if xpka = pka then event eg(xpka, B, N)

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



All variables defined under replications are implicitly arrays.
This allows us to store all values that occur during the executions
of the game.

This replaces lists used by cryptographers and is key to
cryptographic proofs.

c0(); new rkp : keyseed;
let pka = pkgen(rka) in let ska = skgen(rka) in c1(pka);
VASne[ial(xN[ia] : nonce, xBlia] : host);

event ex(pka, xBlial, xN[ia]); new r[ia] : seed,;
c3[ia](sign(concat(pka, xB[ia], xN[ia]), ska, r[ia]))

| 1B<Nc4lig](xpkalig] : pkey); new Nl[ig] : nonce; c5[ig](N[is], B);
c6[ig](s[ig] : signature);
if verify(concat(xpkalig|, B, N[ig]), xpkalig], s[ig]) then

if kaA[iB] = pka then event eB(xpkA[iB], B, N[/B])



After game transformations

Using the unforgeability of signatures, the signature verification
with pka succeeds only for signatures generated with skp.
After game transformations, we obtain the last game:

c0(); new rkp : keyseed; let pka = pkgen'(rka) in c1(pka);
1A<nc2[ia](xN : nonce, xB : host);
event es(pka, xB, xN); let m = concat(pka, xB, xN) in
new r : seed; c3[ia](sign’(m, skgen'(rka), r))
lB<Nc4[ig](xpka : pkey); new N : nonce; c5[ig](N, B);
c6[ig](s : signature); find u < n suchthat
defined(m[u], xB[u], xN[u]) A (xpka = pka) A (B = xB|u])
A (N = xN[u]) A verify'(concat(xpka, B, N), xpka, s) then
event eg(xpka, B, N)

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Non-injective correspondences

A non-injective correspondence is a formula of the form ¢ = ¢

where
¢ = formula
M term (without arrays)
event(e(My, ..., Mpy)) event
o1 N @2 conjunction
D1V P2 disjunction

and ) is a formula that contains only events and conjunctions.

event(eg(x, y,z)) = event(ea(x, y, z))

means that, if eg(x, y, z) is executed, then ea(x, y, z) has also
been executed (except in cases of negligible probability).

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Non-injective correspondences: formal semantics

Let p be an environment that maps variables to bitstrings.
Let £ be a sequence of events.

p,E = M if and only if M evaluates to true in environment p
p, & F event(e(My, ..., My)) if and only if
for all j < m, M; evaluates to a; in p and e(a1,...,am) € €

E 1= ¢ if and only if
for all p defined on V&I‘(Q[)) such that p, & F 1,
there exists an extension p’ of p to var(¢) such that p/, & F ¢.

Qo satisfies 1) = ¢ with public variables V' if and only if
for all evaluation contexts C accessing only variables of V in Qo,
Pr[C[Qo] executes € and £ I/ ¢ = ¢] is negligible.

Bruno Blanchet Computationally Sound Mechanized Proofs. .



Injective correspondences

An injective correspondence also allows injective events
inj-event(e(M, ..., Mp)).

Each execution of the injective events in v corresponds to distinct
injective events in ¢.

inj-event(eg(x,y, z)) = inj-event(ea(x,y, z))

means that each execution of eg(x, y, z) corresponds to a distinct
execution of ea(x,y, z).

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Intuition for the proof: non-injective correspondences (1)

Prove the correspondence event(eg(x,y, z)) = event(ea(x, y, z))
in the game

.. 1Asnevent es(pka, xB,xN);let m=...in ...

| 18<n_find u < n suchthat defined(m|[u], xB[u], xN[u]) A
(xpka = pka) A (B = xB[u]) A (N = xN[u]) A
verify'(concat(xpka, B, N), xpka, s) then

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Intuition for the proof: non-injective correspondences (1)

Prove the correspondence event(eg(x,y, z)) = event(ea(x, y, z))
in the game

.. 1Asnevent es(pka, xB,xN);let m=...in ...

| 18<n_find u < n suchthat defined(m|[u], xB[u], xN[u]) A
(xpka = pka) A (B = xB[u]) A (N = xN[u]) A
verify'(concat(xpka, B, N), xpka, s) then

If event(eg(x, y,z)) has been executed, the program point
has been reached for some ig = ifg, and

So mlulig]], xglulig]], and xN[ulig]] are defined,
xpkalig] = pka, B = xB[u[ig]], and Nl[ig] = xN[u[ig]].

Since m[ulig]] is defined, the definition of m[ia] has been executed
for ia = ulig], so event ea(pka, xB[ia], xN[ia]) has been executed.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Intuition for the proof: non-injective correspondences (2)

If event(eg(x, y,z)) has been executed, the program point
has been reached for some ig = ifg, and

So mlulig]], xglulig]], and xN[ulig]] are defined,
xpkalig]l = pka, B = xB[u[ig]], and Nl[ig] = xN[u[ig]].

Since m[ulig]] is defined, the definition of m[ia] has been executed
for ia = ulig], so event ea(pka, xB[ia], xN[ia]) has been executed.

We have
® x — xpkalig] = pka
o y— B=xBlulig]] = xBlia]
o z— N[ig] = xN[u[ig]] = xN[ia]
so ea(pka, xB[ia], xN[ia]) = ea(x,y, z) has been executed.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Intuition for the proof: injective correspondences (1)

Prove the correspondence
inj-event(eg(x,y, z)) = inj-event(ea(x,y, z)) in the game

.. 1AsSn event ea(pka, xB,xN);let m=...in ...

| 1B<" find u < n suchthat defined(m[u], xB[u], xN[u]) A
(xpka = pka) A (B = xB[u]) A (N = xN[u]) A
verify' (concat(xpka, B, N), xpka, s) then

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Intuition for the proof: injective correspondences (2)

Prove the correspondence
inj-event(eg(i.x,y,z)) = inj-event(ea(/’,x,y,z)) in the game

. 1asnevent e(in,pka, xB,xN);let m=...in ...

| 8= find u < n suchthat defined(m[u], xB[u], xN[u]) A
(xpka = pka) A (B = xBlu]) A (N = xN[u]) A
verify’ (concat(xpka, B, N), xpka, s) then iB,

In order to record in which session each event is executed,
we add replication indices to events.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Intuition for the proof: injective correspondences (3)

Prove the correspondence
inj-event(eg(i.x,y,z)) = inj-event(ea(/’,x,y,z)) in the game

. 1asnevent ea(in,pka,xB,xN);let m=...in ...

| 8= find u < n suchthat defined(m[u], xB[u], xN[u]) A
(xpka = pka) A (B = xBlu]) A (N = xN[u]) A
verify’(concat(xpka, B, N), xpka, s) then is,

If event(eg(i,x, y,z)) has been executed, the program point
has been reached for some ig = i‘,’g, and

So mlulig]], xglulig]], and xN[ulig]] are defined,
xpkalig]l = pka, B = xB[u[ig]], and Nl[ig] = xN[u[ig]].

Since m[ulig]] is defined, the definition of m[ia] has been executed
for ia = ulig], so event ea(ia, pka, xB[ia], xN[ia]) has been
executed.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Intuition for the proof: injective correspondences (4)

As before, ea(ia, pka, xB[ia], xN[ia]) = ea(/’, x, y, z) for some i’

In order to show injectivity, we show that
ep executed twice, for ig =i and ig = ig, with ig # i}
= ex executed twice, for ig = ulig] and ia = u[ig], with u[ig] # ulig

By contraposition, we show ulig] = ulig] = ig = ig.

ulig] = ulig] = xN[ulig]] = xN[u[ig]]
= N[ig] = N[i% since xN[u[ig]] = N[ig]
and xN[u[ig]] = Nlig
= g = ig up to negligible probability
by eliminating collisions.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Proof technique

In order to prove 1) = ¢, two main steps:
@ Collect the facts that hold when the events in 1) are executed.

© Reason on these facts using an equational prover in order to
show that the events in ¢ have been executed (and show
injectivity when needed).

We shall now detail these points.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Collecting true facts

For each program point P, we collect a set of true facts at that
point Fp.

@ We take into account assignments and tests above P.

In if M then P, M € Fp.

@ We take into account facts that hold at all definitions of
variables.

If definei(xlﬂ?]) € Fp and M holds at all definitions of x[i],
then M{M/i} € Fp.

@ We take into account that code is always executed up to the
next output before switching to another thread.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Collecting true facts: example (1)

c0(); new rkp : keyseed; let pka = pkgen'(rka) in c1{pka);
1ASnc2[ia](xN : nonce, xB : host);
event ea(pka, xB, xN); let m = concat(pka, xB, xN) in
new r : seed; c3[ia](sign’(m, skgen'(rka), r))
1B<Nc4[ig](xpka : pkey); new N : nonce; c5[ig](N, B);
c6[ig](s : signature); find u < n suchthat
defined(m[u], xB[u], xN[u]) A (xpka = pka) A (B = xBJ[u])
A (N = xN[u]) A verify'(concat(xpka, B, N), xpka, s) then

At program point P = ,
Fp = {defined(m[u[ig]]), defined(xB[u[ig]]), defined(xN[u[ig]]),
xpkalig] = pka, B = xB[ulig]], N[ig] = xN[u[ig]], - .-



Collecting true facts: example (2)

c0(); new rky : keyseed; let pka = pkgen'(rka) in c1{pka);
1A<nc2[ia](xN : nonce, xB : host);
event ep(pka, xB, xN); let m = concat(pka, xB, xN) in
new r : seed; c3[ia](sign’(m, skgen'(rka), r))

At program point P =

Fp = {defined(m[u[ig]]), defined(xB[u[ig]]), defined(xN[u[ig]]),
xpkalig] = pka, B = xB[ulig]], N[ig] = xN[u[ig]],
event(ea(pka, xg[ulig]], xN[u[ig]])), - - -}

because defined(m[u[ig]]) € Fp.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Equational prover

We use an algorithm inspired by the Knuth-Bendix completion
algorithm to derive new equalities from known equalities.

The equational prover also eliminates collisions when they have
negligible probability.

Details of this prover can be found in the paper:
Blanchet, A Computationally Sound Mechanized Prover for
Security Protocols, TDSC, to appear.

We say that F yields a contradiction when the prover starting from
F derives false.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Proof of non-injective correspondences (1)

Let = ¢=Fi A... A\ F, = ¢ be a non-injective
correspondence, with fresh variables.

event(eg(x,y, z)) = event(ea(x,y, z)).

If F1,..., Fn have been executed,
then there exist Py,..., Py, such that, for all j < m,
o FJ = event(ej(l\/ljl, ceey Mjmj))y
@ event ej(Mjl, o Mfmj)? P; occurs in Qo, and
o event ¢;(M;,..., M; ) has been executed with
Fj = Ojevent(ej(Mjy, ..., M;,)), where 6 renames the

replication indices at P; to fresh replication indices.

event eg(xpka, B, ) has been executed, with
event(eg(x,y, z)) = event(eg(xpkalig], B, N[ig])), ¢ = {ig/ig}.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Proof of non-injective correspondences (2)

Then the facts Fj = 0, Fp, U{;M}; = Mj1,...,0;M,, = Mjm }
hold.

Fplig/ig} U{x = xpkaligl,y = B,z = Nlig]} hold, where Fp has
been described previously.

For each such Pq,..., P,,, we show that
F=F1U...UF, implies 8¢
for some 6 equal to the identity on var(t)), by the equational prover.

(For this proof, we prove atomic facts contained in 8¢, we choose ¢
by matching facts to prove with elements of F, and we show that
F implies M by showing that F U {—=M} yields a contradiction.)

x = xpkaligl,y = B,z = N[ig], xpkalig] = pka, B = xB[u[ig]],
N[ig] = xN[ulig]], event(ea(pka, xg[uli]], xN[u[i]]))
imply event(ea(x, y, z)).

Bruno Blanchet Computationally Sound Mechanized Proofs. . .




Authentication and key exchange

We have also given:

@ a proof of mutual authentication from correspondence
assertions;
@ a proof of authenticated key exchange from a combination of

correspondence assertions and secrecy (also shown by our
prover).

Difficulty: the secrecy is the secrecy of a single variable,
the shared key is stored in two variables, k4 in participant A,
kg in participant B.

Intuitively, we show by correspondences that each key kg of B
with A is an element of array k4, so secrecy of kj is sufficient.

Details in the paper.

Bruno Blanchet Computationally Sound Mechanized Proofs. . .



Experimental results

We have tested our prover on the following protocols:

Woo-Lam shared-key original and corrected versions
Woo-Lam public-key original and corrected versions
Needham-Schroeder public-key original and corrected versions
Denning-Sacco public-key original and corrected versions
Needham-Schroeder shared-key original and corrected
versions, with and without key confirmation

@ Yahalom, with and without key confirmation

o Otway-Rees

e © ¢ & ¢

We try to prove authentication and authenticated key exchange, as
appropriate for each protocol.

The prover obviously fails proving false properties.

It succeeds proving true ones, except in one case:

the original version of the Needham-Schroeder shared-key protocol.
(It does not see that Np[i] # Ng[i'] — 1 except in cases of
negligible probability.)



Conclusion and future work

The prover succeeds proving most desired correspondences, but
some points not directly related to correspondences could still be
improved:

@ automatic proof strategy: the prover sometimes needs
indications from the user.

@ equational theories, e.g. handle the equations of XOR.
@ handle more primitives, e.g. Diffie-Hellman key agreements.

Tool available at
http://www.di.ens.fr/ blanchet/cryptoc.html

Bruno Blanchet Computationally Sound Mechanized Proofs. . .


http://www.di.ens.fr/~blanchet/cryptoc.html

