
Proving protocols Generating protocol implementations Friday

CryptoVerif

Bruno Blanchet

INRIA Paris-Rocquencourt
bruno.blanchet@inria.fr

November 2014

Bruno Blanchet (INRIA) CryptoVerif November 2014 1 / 24

Proving protocols Generating protocol implementations Friday

CryptoVerif, http://cryptoverif.inria.fr/

CryptoVerif is an automatic prover that:

generates proofs by sequences of games.

proves secrecy and correspondence properties.

provides a generic method for specifying properties of
cryptographic primitives which handles MACs (message
authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions,
Diffie-Hellman key agreements, Xor, . . .

works for N sessions (polynomial in the security parameter), with an
active adversary.

gives a bound on the probability of an attack (exact security).

has automatic and manual modes.

Bruno Blanchet (INRIA) CryptoVerif November 2014 2 / 24

Proving protocols Generating protocol implementations Friday

Proofs by sequences of games

Proofs in the computational model are typically proofs by sequences of
games [Shoup, Bellare&Rogaway]:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is 0 for this game.)

Game 0

Protocol
to prove

←→
p1

negligible

Game 1 ←→
p2

negligible

. . .
←→
pn

negligible

Game n

Property
obvious

Bruno Blanchet (INRIA) CryptoVerif November 2014 3 / 24

Proving protocols Generating protocol implementations Friday

Input and output of the tool

1 Prepare the input file containing

the specification of the protocol to study (initial game),
the security assumptions on the cryptographic primitives,
the security properties to prove.

2 Run CryptoVerif
3 CryptoVerif outputs

the sequence of games that leads to the proof,
a succinct explanation of the transformations performed between
games,
an upper bound of the probability of success of an attack.

Bruno Blanchet (INRIA) CryptoVerif November 2014 4 / 24

Proving protocols Generating protocol implementations Friday

Process calculus for games

Games are formalized in a process calculus:

It is adapted from the pi calculus.

The semantics is purely probabilistic (no non-determinism).

The runtime of processes is bounded:

bounded number of copies of processes,
bounded length of messages on channels.

Bruno Blanchet (INRIA) CryptoVerif November 2014 5 / 24

Proving protocols Generating protocol implementations Friday

Indistinguishability

G ≈p G ′

means that an adversary has probability at most p of distinguishing G
from G ′.

The probability p may depend on the runtime of the adversary, the
number of calls to the oracles in the games, etc.

Bruno Blanchet (INRIA) CryptoVerif November 2014 6 / 24

Proving protocols Generating protocol implementations Friday

Indistinguishability

G ≈p G ′

means that an adversary has probability at most p of distinguishing G
from G ′.

The probability p may depend on the runtime of the adversary, the
number of calls to the oracles in the games, etc.

Bruno Blanchet (INRIA) CryptoVerif November 2014 6 / 24

Proving protocols Generating protocol implementations Friday

Proof technique

1 Start from the provided initial game

2 Transform it step by step using a collection of generic game
transformations, such that each game is indistinguishable from the
next one (up to probability pi).
We obtain a sequence of games G0 ≈p1 G1 ≈ . . . ≈pm Gm, which
implies G0 ≈p1+···+pm Gm.

3 On the last game Gm, use a syntactic criterion to prove the desired
security property (up to probability p).
If some trace property holds up to probability p in Gm, then it holds
up to probability p + p1 + · · ·+ pm in G0.

Bruno Blanchet (INRIA) CryptoVerif November 2014 7 / 24

Proving protocols Generating protocol implementations Friday

Game transformations

We transform a game G0 into an indistinguishable one using:

indistinguishability properties L ≈p R given as axioms and that come
from security assumptions on primitives (e.g. encryption is
IND-CPA).
These properties are used inside a context:

G1 ≈0 C [L] ≈p′ C [R] ≈0 G2

syntactic transformations: simplification, expansion of assignments,
. . .

Bruno Blanchet (INRIA) CryptoVerif November 2014 8 / 24

Proving protocols Generating protocol implementations Friday

Proof strategy: advice

One tries to execute each transformation given by the
definition of a cryptographic primitive.

When it fails, it tries to analyze why the transformation failed, and
suggests syntactic transformations that could make it work.

One tries to execute these syntactic transformations.
(If they fail, they may also suggest other syntactic
transformations, which are then executed.)

We retry the cryptographic transformation, and so on.

Bruno Blanchet (INRIA) CryptoVerif November 2014 9 / 24

Proving protocols Generating protocol implementations Friday

Proof of security properties: one-session secrecy

One-session secrecy: the adversary cannot distinguish any of the secrets
from a random number with one test query.

Criterion for proving one-session secrecy of x :
x is defined by new x [i] : T and there is a set of variables S such that
only variables in S depend on x .
The output messages and the control-flow do not depend on x .

Bruno Blanchet (INRIA) CryptoVerif November 2014 10 / 24

Proving protocols Generating protocol implementations Friday

Proof of security properties: one-session secrecy

One-session secrecy: the adversary cannot distinguish any of the secrets
from a random number with one test query.

Criterion for proving one-session secrecy of x :
x is defined by new x [i] : T and there is a set of variables S such that
only variables in S depend on x .
The output messages and the control-flow do not depend on x .

Bruno Blanchet (INRIA) CryptoVerif November 2014 10 / 24

Proving protocols Generating protocol implementations Friday

Proving protocol implementations (joint work with David
Cadé)

The previous approach proves protocol specifications.

However, one does not run the specification, one runs an
implementation.

⇒ We need to prove protocol implementations secure!

Bruno Blanchet (INRIA) CryptoVerif November 2014 11 / 24

Proving protocols Generating protocol implementations Friday

Our approach

Generate protocol implementations from specifications.

Specification proved secure in the computational model by
CryptoVerif.

Specification translated into an OCaml implementation by our
compiler.

Remark: FS2CV does the translation in the other direction!

Bruno Blanchet (INRIA) CryptoVerif November 2014 12 / 24

Proving protocols Generating protocol implementations Friday

Overview of our approach

CryptoVerif
specification

Our Compiler

Protocol Code

OCaml Compiler

Network Code
Cryptographic
primitives

CryptoVerif

Implementation

Proof in the compu-
tational model

Caption: Tool Input Result

Bruno Blanchet (INRIA) CryptoVerif November 2014 13 / 24

Proving protocols Generating protocol implementations Friday

Choice of the target language

Why OCaml?

Memory safe. Easier to show that the network code does not access
the protocol memory.
Clean semantics.
Crypto library available.

Writing a compiler into another language would not be difficult.

Proving the security of the generated protocol may be more difficult.

Bruno Blanchet (INRIA) CryptoVerif November 2014 14 / 24

Proving protocols Generating protocol implementations Friday

Annotations

The specification is enriched with annotations that give implementation
details:

Separation in multiple programs, e.g. key generation, client, server.

External data files, to store long-term keys and tables of keys.

Correspondence between CryptoVerif and OCaml types and
functions.

Bruno Blanchet (INRIA) CryptoVerif November 2014 15 / 24

Proving protocols Generating protocol implementations Friday

Compiler

Our compiler translates annotated CryptoVerif specifications into an
OCaml implementation.

The compiler is proved secure

Theorem (informal)

If a security property holds (up to probability p) on the CryptoVerif
specification, then it also holds (up to the same probability) on the
generated implementation.

This theorem requires some assumptions (next slide).

Bruno Blanchet (INRIA) CryptoVerif November 2014 16 / 24

Proving protocols Generating protocol implementations Friday

Assumptions

Assumptions on the network code:

No unsafe OCaml functions (such as Obj.magic).
No mutation of values received from or passed to generated functions.
No fork after obtaining and before calling an oracle that can be called
only once.

Assumptions on program execution:

Programs are executed in the order specified in the CryptoVerif
process.
Several programs that insert data in the same table are not run
concurrently.

Other:

Types that represent CryptoVerif data are not recursive.
The files used by generated code are not read/written by other code.

Bruno Blanchet (INRIA) CryptoVerif November 2014 17 / 24

Proving protocols Generating protocol implementations Friday

Assumptions

Assumptions on the network code:

No unsafe OCaml functions (such as Obj.magic).
No mutation of values received from or passed to generated functions.
No fork after obtaining and before calling an oracle that can be called
only once.

Assumptions on program execution:

Programs are executed in the order specified in the CryptoVerif
process.
Several programs that insert data in the same table are not run
concurrently.

Other:

Types that represent CryptoVerif data are not recursive.
The files used by generated code are not read/written by other code.

Bruno Blanchet (INRIA) CryptoVerif November 2014 17 / 24

Proving protocols Generating protocol implementations Friday

Assumptions

Assumptions on the network code:

No unsafe OCaml functions (such as Obj.magic).
No mutation of values received from or passed to generated functions.
No fork after obtaining and before calling an oracle that can be called
only once.

Assumptions on program execution:

Programs are executed in the order specified in the CryptoVerif
process.
Several programs that insert data in the same table are not run
concurrently.

Other:

Types that represent CryptoVerif data are not recursive.
The files used by generated code are not read/written by other code.

Bruno Blanchet (INRIA) CryptoVerif November 2014 17 / 24

Proving protocols Generating protocol implementations Friday

Application: SSH

Secure SHell: an important protocol

SSH Transport Layer

Key exchange

enc&MAC tunnel

→
←

→
←

Authentication

of the client

Connection

various
applications

SSH v. 2.0

Bruno Blanchet (INRIA) CryptoVerif November 2014 18 / 24

Proving protocols Generating protocol implementations Friday

SSH Transport Layer Protocol: key exchange

Client C Server S

idC=SSH-2.0-versionC−−−−−−−−−−−−−→
idS=SSH-2.0-versionS←−−−−−−−−−−−−−

KEXINIT,cookieC ,algosC−−−−−−−−−−−−−−−→
KEXINIT,cookieS ,algosS←−−−−−−−−−−−−−−

x
R← [2, q − 1], e = g x KEYDH INIT,e−−−−−−−−−→ y

R← [1, q − 1], f = g y

K = f x KEYDH REPLY,pkS ,f ,sign(H,skS)←−−−−−−−−−−−−−−−−−−−− K = ey

pkS , sign(H, skS) ok?
NEWKEYS−−−−−−→
NEWKEYS←−−−−−−

algos = diffie-hellman-group14-sha1, ssh-rsa, aes128-cbc, hmac-sha1
H = SHA1(idC , idS , cookieC , algosC , cookieS , algosS , pkS , e, f ,K)

Bruno Blanchet (INRIA) CryptoVerif November 2014 19 / 24

Proving protocols Generating protocol implementations Friday

SSH Transport Layer Protocol: packet protocol

sessionid = H

IVC = SHA1(K ,H, “A′′, sessionid)

IVS = SHA1(K ,H, “B ′′, sessionid)

Kenc,C = SHA1(K ,H, “C ′′, sessionid)

Kenc,S = SHA1(K ,H, “D ′′, sessionid)

KMAC ,C = SHA1(K ,H, “E ′′, sessionid)

KMAC ,S = SHA1(K ,H, “F ′′, sessionid)

packet = packet length||padding length||payload ||padding

Client C
enc(Kenc,C ,packet,IVC),MAC(KMAC ,C ,sequence numberC ||packet)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Server S
enc(Kenc,S ,packet,IVS),MAC(KMAC ,S ,sequence numberS ||packet)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bruno Blanchet (INRIA) CryptoVerif November 2014 20 / 24

Proving protocols Generating protocol implementations Friday

CryptoVerif proof

Modeled the SSH Transport Layer Protocol in CryptoVerif.

Proved

authentication of the server to the client (automatically)
secrecy of the session key (with user guidance)

The authentication of the client to the server requires the
authentication protocol.

Secrecy of messages sent over the tunnel cannot be proved:

Length of the packet leaked,
CBC mode with chained IVs.

Bruno Blanchet (INRIA) CryptoVerif November 2014 21 / 24

Proving protocols Generating protocol implementations Friday

Generated implementation

Manually written cryptographic primitives.

based on CryptoKit.

Manually written network code:

Key generators,
Client,
Server.

They call the code generated from the CryptoVerif model.

Format respected at the bit level.

Interact with other SSH implementations (OpenSSH).

Some features omitted:

Key re-exchange
IGNORE, DISCONNECT messages

Bruno Blanchet (INRIA) CryptoVerif November 2014 22 / 24

Proving protocols Generating protocol implementations Friday

Conclusion

CryptoVerif specifications

proved secure in the computational model by CryptoVerif,
translated into OCaml implementations.

Our approach favors the methodology:
1 Write a formal specification;
2 Prove it;
3 Then, build an implementation.

Future work: extend the specification language,
with loops, mutable variables,

extensions of CryptoVerif and of the compiler

Bruno Blanchet (INRIA) CryptoVerif November 2014 23 / 24

Proving protocols Generating protocol implementations Friday

More details on Friday

Focusing on how to prove protocols using CryptoVerif.

Morning: course. Details on how CryptoVerif works, with demos and
examples

Afternoon: tutorial.

Bruno Blanchet (INRIA) CryptoVerif November 2014 24 / 24

	Proving protocols
	Generating protocol implementations
	Friday

