
Introduction Specification language Translation Application Conclusion

From CryptoVerif Specifications to Computationally
Secure Implementations of Protocols

Bruno Blanchet and David Cadé

INRIA, École Normale Supérieure, CNRS, Paris

April 2012

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 1 / 30



Introduction Specification language Translation Application Conclusion

Protocol verification

Symbolic Computational

Specifications FDR, AVISPA, CryptoVerif,

ProVerif, . . . CertiCrypt, . . .

Implementations FS2PV, F7, Spi2Java, FS2CV, Computational F7,

Andy’s talk, . . . Andy’s talk, , . . .

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 2 / 30



Introduction Specification language Translation Application Conclusion

Protocol verification

Symbolic Computational

Specifications FDR, AVISPA, CryptoVerif,

ProVerif, . . . CertiCrypt, . . .

Implementations FS2PV, F7, Spi2Java, FS2CV, Computational F7,

Andy’s talk, . . . Andy’s talk, our work, . . .

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 2 / 30



Introduction Specification language Translation Application Conclusion

Our approach

Generate protocol implementations from specifications.

Specification proved secure in the computational model by
CryptoVerif.

Specification translated into an OCaml implementation by our
compiler.

Goal: proved implementations of cryptographic protocols.

Remark: FS2CV does the translation in the other direction!

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 3 / 30



Introduction Specification language Translation Application Conclusion

Overview of our approach

CryptoVerif
specification

Our Compiler

Protocol Code

OCaml Compiler

Network Code
Cryptographic
primitives

CryptoVerif

Implementation

Proof in the compu-
tational model

Caption: Tool Input Result

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 4 / 30



Introduction Specification language Translation Application Conclusion

Choice of the target language

Why OCaml?

Memory safe. Easier to show that the network code does not access
the protocol memory.
Clean semantics.
Crypto library available.

Writing a compiler into another language would not be difficult.

Proving the security of the generated protocol may be more difficult.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 5 / 30



Introduction Specification language Translation Application Conclusion

CryptoVerif

CryptoVerif is an automatic prover:

in the computational model.

proves secrecy and correspondence (authentication) properties.

provides a generic method for specifying properties of
cryptographic primitives.

works for N sessions (polynomial in the security parameter), with an
active adversary.

gives a bound on the probability of an attack (exact security).

possibility to guide the prover (manual mode).

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 6 / 30



Introduction Specification language Translation Application Conclusion

Proofs by sequences of games

CryptoVerif produces proofs by sequences of games, like those of
cryptographers [Shoup, Bellare&Rogaway]:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is 0 for this game.)

Game 0

Protocol
to prove

←→
p1

negligible

Game 1 ←→
p2

negligible

. . .
←→
pn

negligible

Game n

Property
obvious

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 7 / 30



Introduction Specification language Translation Application Conclusion

The CryptoVerif specification language: terms

CryptoVerif represents protocols and games in a process calculus.

M,N ::= terms
x variable
f (M1, . . . ,Mm) function application

Function symbols f correspond to functions computable by
polynomial-time deterministic Turing machines.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 8 / 30



Introduction Specification language Translation Application Conclusion

The CryptoVerif specification language: processes

Q ::= oracle definitions
0 nil
Q | Q ′ parallel composition
foreach i ≤ n do Q replication n times

O [̃i ](x1 : T1, . . . , xk : Tk) := P oracle definition

P ::= oracle body
return(M1, . . . ,Mk); Q return
end end

x
R←T ; P random number

x : T ←M; P assignment
if M then P else P ′ conditional
insert Tbl(M1, . . . ,Mk); P insert in table
get Tbl(x1 : T1, . . . , xk : Tk) suchthat M in P else P ′

get from table

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 9 / 30



Introduction Specification language Translation Application Conclusion

Example

A −→ B : enc(r ,Kab)

process Ostart() := rKab
R← keyseed ; Kab← kgen(rKab); return();

(foreach i1 ≤ N do processA |
foreach i2 ≤ N do processB)

The oracle Ostart generates Kab.

This symmetric key will not be known by the opponent.

Only after Ostart has been called, we can call at most N times
processA and at most N times processB.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 10 / 30



Introduction Specification language Translation Application Conclusion

Example

A −→ B : enc(r ,Kab)

let processA = OA() := r
R← nonce; s

R← seed ;

return(enc(nonceToBitstring(r),Kab, s)).

let processB = OB(m : bitstring) :=

let injbot(nonceToBitstring(r ′ : nonce)) = dec(m,Kab) in

return().

OA sends the encryption of r under Kab (probabilistic encryption)

OB decrypts the received message

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 11 / 30



Introduction Specification language Translation Application Conclusion

Example — summary

let processA = OA() := r
R← nonce; s

R← seed ;

return(enc(nonceToBitstring(r),Kab, s)).

let processB = OB(m : bitstring) :=

let injbot(nonceToBitstring(r ′ : nonce)) = dec(m,Kab) in

return().

process Ostart() := rKab
R← keyseed ; Kab← kgen(rKab); return();

(foreach i1 ≤ N do processA |
foreach i2 ≤ N do processB)

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 12 / 30



Introduction Specification language Translation Application Conclusion

Annotations: Separation in multiple programs

let processA = pA{OA() := r
R← nonce; s

R← seed ;

return(enc(nonceToBitstring(r),Kab, s))}.

let processB = pB{OB(m : bitstring) :=

let injbot(nonceToBitstring(r ′ : nonce)) = dec(m,Kab) in

return()}.

process keygen [Kab > fileKab] {Ostart() :=

rKab
R← keyseed ; Kab : key← kgen(rKab); return()};

(foreach i1 ≤ N do processA |
foreach i2 ≤ N do processB)

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 13 / 30



Introduction Specification language Translation Application Conclusion

Annotations: External data files

let processA = pA{OA() := r
R← nonce; s

R← seed ;

return(enc(nonceToBitstring(r),Kab, s))}.

let processB = pB{OB(m : bitstring) :=

let injbot(nonceToBitstring(r ′ : nonce)) = dec(m,Kab) in

return()}.

process keygen [Kab > fileKab] {Ostart() :=

rKab
R← keyseed ; Kab : key← kgen(rKab); return()};

(foreach i1 ≤ N do processA |
foreach i2 ≤ N do processB)

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 14 / 30



Introduction Specification language Translation Application Conclusion

Annotations: types and functions

OCaml type representing a CryptoVerif type:
implementation type keyseed = 128. (bitstring of 128 bits)
implementation type host = ”string” [serial = ”id”, ”id”].

OCaml function representing a function in the protocol specification :
implementation fun kgen = ”sym kgen”.
implementation fun injbot = ”injbot” [inverse = ”injbot inv”].

In the CryptoVerif specification, there are assumptions about these
functions.

Functional assumptions: dec(enc(m, k, s), k) = injbot(m).
Security assumptions: encryption is IND-CPA and INT-CTXT.

These assumptions must be manually verified.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 15 / 30



Introduction Specification language Translation Application Conclusion

Annotations: tables

get/insert handle tables of keys:

insert keytbl(h, k)
inserts element h, k in the table keytbl .
get keytbl(h′, k ′) suchthat h′ = h in P else P ′

stores in h′, k ′ an element of table keytbl such that h′ = h,
i.e., stores in k ′ the key of h, and runs P.
Runs P ′ when no such element exists.

Tables are stored in files:
implementation table keytbl = ”filekeytbl”.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 16 / 30



Introduction Specification language Translation Application Conclusion

Treatment of tables in CryptoVerif

For proving the protocol, CryptoVerif encodes tables as arrays:

The variables are considered as arrays with one cell for each copy of
the definition.

Useful for remembering all values taken by the variable.

foreach i ≤ n do . . . insert keytbl(h, k)
becomes
foreach i ≤ n do . . . keytbl1[i ]← h; keytbl2[i ]← k

get keytbl(h′, k ′) suchthat h′ = h in P else P ′

becomes
find u ≤ n suchthat defined(keytbl1[u], keytbl2[u]) ∧ keytbl1[u] = h
then h′← keytbl1[u]; k ′← keytbl2[u]; P else P ′

Generalized to several insertions by looking up in the variables defined
at each insertion.

Avoiding arrays is more intuitive and simplifies the compilation.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 17 / 30



Introduction Specification language Translation Application Conclusion

Treatment of tables in CryptoVerif

For proving the protocol, CryptoVerif encodes tables as arrays:

The variables are considered as arrays with one cell for each copy of
the definition.

Useful for remembering all values taken by the variable.

foreach i ≤ n do . . . insert keytbl(h, k)
becomes
foreach i ≤ n do . . . keytbl1[i ]← h; keytbl2[i ]← k

get keytbl(h′, k ′) suchthat h′ = h in P else P ′

becomes
find u ≤ n suchthat defined(keytbl1[u], keytbl2[u]) ∧ keytbl1[u] = h
then h′← keytbl1[u]; k ′← keytbl2[u]; P else P ′

Generalized to several insertions by looking up in the variables defined
at each insertion.

Avoiding arrays is more intuitive and simplifies the compilation.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 17 / 30



Introduction Specification language Translation Application Conclusion

Treatment of tables in CryptoVerif

For proving the protocol, CryptoVerif encodes tables as arrays:

The variables are considered as arrays with one cell for each copy of
the definition.

Useful for remembering all values taken by the variable.

foreach i ≤ n do . . . insert keytbl(h, k)
becomes
foreach i ≤ n do . . . keytbl1[i ]← h; keytbl2[i ]← k

get keytbl(h′, k ′) suchthat h′ = h in P else P ′

becomes
find u ≤ n suchthat defined(keytbl1[u], keytbl2[u]) ∧ keytbl1[u] = h
then h′← keytbl1[u]; k ′← keytbl2[u]; P else P ′

Generalized to several insertions by looking up in the variables defined
at each insertion.

Avoiding arrays is more intuitive and simplifies the compilation.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 17 / 30



Introduction Specification language Translation Application Conclusion

Compilation to OCaml

For each program, the compiler generates an OCaml module where it
defines a function for each oracle.

A function init : unit→ τ returns the tuple of functions
representing the oracles available at the beginning of the program.

init may also read variables from files when needed.

Each oracle O is represented by a function that

takes as argument the arguments of O
and returns

the tuple of functions representing oracles that follow O,
the result of O.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 18 / 30



Introduction Specification language Translation Application Conclusion

Compilation to OCaml: example

let processA = pA{OA() := r
R← nonce; s

R← seed ;

return(enc(nonceToBitstring(r),Kab, s))}.

The generated module PA has the following interface :

open Base

open Crypto

type type oracle OA = unit -> (unit * string)

val init : unit -> type oracle OA

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 19 / 30



Introduction Specification language Translation Application Conclusion

Compilation to OCaml: replication

When an oracle is under replication, it is compiled into an ordinary
function:

fun [[args]] -> [[body ]]

When an oracle is not under replication, it is compiled into a function
that can be called only once:

let token = ref true in

fun [[args]] ->

if (!token) then

begin

token := false;

[[body ]]
end

else raise Bad call

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 20 / 30



Introduction Specification language Translation Application Conclusion

Compilation to OCaml: terms and body (1)

CryptoVerif OCaml

M [[M]]

x [[x ]]
f (M1, . . . ,Mn) [[f ]] [[M1]] . . . [[Mn]]

P [[P]]

x
R←T ; P let [[x ]] = [[randT ]]() in [[P]]

x←M; P let [[x ]] = [[M]] in [[P]]
if M then P else P ′ if [[M]] then [[P]] else [[P ′]]
end raise Match fail

return(M1, . . . ,Mn); Q ([[Q]], ([[M1]], ..., [[Mn]]))

When a variable needs to be written to a file, it is written just after its
definition.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 21 / 30



Introduction Specification language Translation Application Conclusion

Compilation to OCaml: terms and body (2)

insert Tbl(M1, . . . ,Mn); P
compiled into
insert in table [[Tbl ]] [[[serialT1 ]] [[M1]];...;[[serialTn ]] [[Mn]]]; [[P]]

get Tbl(x1 : T1, . . . , xn : Tn) suchthat M in P else P ′

compiled into
let l = get from table [[Tbl ]]
(function [[[x1]]’; ...; [[xn]]’] ->

let [[x1]] = exc bad file [[Tbl ]] ([[deserialT1 ]] [[x1]]’) in . . .
let [[xn]] = exc bad file [[Tbl ]] ([[deserialTn ]] [[xn]]’) in

if [[M]] then ([[x1]], ..., [[xn]]) else raise Match fail

| -> raise (Bad file [[Tbl ]]))
in

if l = [] then [[P ′]] else

let ([[x1]], ..., [[xn]]) = rand list l in [[P]]

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 22 / 30



Introduction Specification language Translation Application Conclusion

Assumptions

Assumptions on the network code:

No unsafe OCaml functions (such as Obj.magic).
No mutation of values received from or passed to generated functions.
No fork after obtaining and before calling an oracle that can be called
only once.

Assumptions on program execution:

Programs are executed in the order specified in the CryptoVerif process.
Several programs that insert data in the same table are not run
concurrently.

Other:

Types that represent CryptoVerif data are not recursive.
The files used by generated code are not read/written by other code.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 23 / 30



Introduction Specification language Translation Application Conclusion

Assumptions

Assumptions on the network code:

No unsafe OCaml functions (such as Obj.magic).
No mutation of values received from or passed to generated functions.
No fork after obtaining and before calling an oracle that can be called
only once.

Assumptions on program execution:

Programs are executed in the order specified in the CryptoVerif process.
Several programs that insert data in the same table are not run
concurrently.

Other:

Types that represent CryptoVerif data are not recursive.
The files used by generated code are not read/written by other code.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 23 / 30



Introduction Specification language Translation Application Conclusion

Assumptions

Assumptions on the network code:

No unsafe OCaml functions (such as Obj.magic).
No mutation of values received from or passed to generated functions.
No fork after obtaining and before calling an oracle that can be called
only once.

Assumptions on program execution:

Programs are executed in the order specified in the CryptoVerif process.
Several programs that insert data in the same table are not run
concurrently.

Other:

Types that represent CryptoVerif data are not recursive.
The files used by generated code are not read/written by other code.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 23 / 30



Introduction Specification language Translation Application Conclusion

Application: SSH

Secure SHell: an important protocol

SSH Transport Layer

Key exchange

enc&MAC tunnel

→
←

→
←

Authentication

of the client

Connection

various
applications

SSH v. 2.0

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 24 / 30



Introduction Specification language Translation Application Conclusion

SSH Transport Layer Protocol: key exchange

Client C Server S

idC=SSH-2.0-versionC−−−−−−−−−−−−−→
idS=SSH-2.0-versionS←−−−−−−−−−−−−−

KEXINIT,cookieC ,algosC−−−−−−−−−−−−−−−→
KEXINIT,cookieS ,algosS←−−−−−−−−−−−−−−

x
R← [2, q − 1], e = g x KEYDH INIT,e−−−−−−−−−→ y

R← [1, q − 1], f = g y

K = f x KEYDH REPLY,pkS ,f ,sign(H,skS )←−−−−−−−−−−−−−−−−−−−− K = ey

pkS , sign(H, skS) ok?
NEWKEYS−−−−−−→
NEWKEYS←−−−−−−

algos = diffie-hellman-group14-sha1, ssh-rsa, aes128-cbc, hmac-sha1
H = SHA1(idC , idS , cookieC , algosC , cookieS , algosS , pkS , e, f ,K )

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 25 / 30



Introduction Specification language Translation Application Conclusion

SSH Transport Layer Protocol: packet protocol

sessionid = H

IVC = SHA1(K ,H, “A′′, sessionid)

IVS = SHA1(K ,H, “B ′′, sessionid)

Kenc,C = SHA1(K ,H, “C ′′, sessionid)

Kenc,S = SHA1(K ,H, “D ′′, sessionid)

KMAC ,C = SHA1(K ,H, “E ′′, sessionid)

KMAC ,S = SHA1(K ,H, “F ′′, sessionid)

packet = packet length||padding length||payload ||padding

Client C
enc(Kenc,C ,packet,IVC ),MAC(KMAC ,C ,sequence numberC ||packet)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Server S
enc(Kenc,S ,packet,IVS ),MAC(KMAC ,S ,sequence numberS ||packet)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 26 / 30



Introduction Specification language Translation Application Conclusion

CryptoVerif proof

Modeled the SSH Transport Layer Protocol in CryptoVerif.

Proved the authentication of the server to the client

Automatic by CryptoVerif

The authentication of the client to the server requires the
authentication protocol.

Secrecy of the key requires extensions of CryptoVerif.

Secrecy of messages sent over the tunnel cannot be proved:

Length of the packet leaked,
CBC mode with chained IVs.

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 27 / 30



Introduction Specification language Translation Application Conclusion

Generated implementation

Manually written cryptographic primitives.

based on CryptoKit.

Manually written network code:

Key generators,
Client,
Server.

They call the code generated from the CryptoVerif model.

Format respected at the bit level.

Interact with other SSH implementations (OpenSSH).

Some features omitted:

Key re-exchange
IGNORE, DISCONNECT messages

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 28 / 30



Introduction Specification language Translation Application Conclusion

Demo

ssh.ocv

Prove by CryptoVerif

Compile: key generation, client, server

Run

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 29 / 30



Introduction Specification language Translation Application Conclusion

Conclusion

CryptoVerif specifications

proved secure in the computational model by CryptoVerif,
translated into OCaml implementations.

Our approach favors the methodology:
1 Write a formal specification;
2 Prove it;
3 Then, build an implementation.

In progress: prove the soundness of the compiler.

specification secure ⇒ implementation secure

Future work: extend the specification language,
with loops, mutable variables, . . . .

extensions of CryptoVerif and of the compiler

Bruno Blanchet and David Cadé (INRIA) CryptoVerif April 2012 30 / 30


	Introduction
	Specification language
	Translation
	Application
	Conclusion

