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Introduction

Communications over an

insecure network

\
A (Alice) \\// B (Bob)

C (attacker)

A talks to B on an insecure network
= need for cryptography in order to make communications secure
for instance, encrypt messages to preserve secrets.

Y
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Introduction

Examples

Many protocols exist, for various goals:

)

e © © 6 ¢ ¢ ¢

secure channels: SSH (Secure SHell);
SSL (Secure Socket Layer), renamed TLS (Transport Layer Security);
[Psec

e-voting

contract signing

certified email
wifi (WEP/WPA/WPA?2)
banking

mobile phones

Bruno Blanchet (Google - Inria) ProVerif & CryptoVerif May 2016 3/43



Introduction

Why verify security protocols ?

The verification of security protocols has been and is still a very active
research area.

@ Their design is error prone.

@ Security errors are not detected by testing:
they appear only in the presence of an adversary.

@ Errors can have serious consequences.
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Introduction

Attacks against TLS
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Introduction

miTLS, http://www.mitls.org/

o Formally verified reference implementation of TLS 1.2 in F7/F*
(working towards TLS 1.3)

@ Written from scratch focusing on verification

. miTLS - Home x

L C [ https://www.mitls.org:2443/wsgi/home

Home Publications Download Browse TLS Attacks People

M miTLS

T L' < A verified reference TLS implementation

This page is served using the miTLS demo HTTPS server. (Go back to production server)
« ciphersuite: TLS_RSA WITH_AES_128_CBC_SHA,
» compression: NullCompression,
« version: TLS_1p2

Bruno Blanchet (Google - Inria) ProVerif & CryptoVerif May 2016

6/ 43


http://www.mitls.org/

Introduction

Models of protocols

Active attacker:
@ the attacker can intercept all messages sent on the network
@ he can compute messages

@ he can send messages on the network
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Introduction

Models of protocols: the symbolic model

The symbolic model or “Dolev-Yao model” is due to Needham and
Schroeder (1978) and Dolev and Yao (1983).

@ Cryptographic primitives are blackboxes. sencrypt
@ Messages are terms on these primitives. sencrypt(Hello, k)

@ The attacker is restricted to compute only using these primitives.
= perfect cryptography assumption

@ So the definitions of primitives specify what the attacker can do.
One can add equations between primitives.
Hypothesis: the only equalities are those given by these equations.

This model makes automatic proofs relatively easy.
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Introduction

Models of protocols: the computational model

The computational model has been developped at the beginning of the
1980’s by Goldwasser, Micali, Rivest, Yao, and others.

@ Messages are bitstrings. 01100100
@ Cryptographic primitives are functions on bitstrings.
sencrypt(011,100100) = 111

@ The attacker is any probabilistic polynomial-time Turing machine.

@ The security assumptions on primitives specify what the attacker
cannot do.

This model is much more realistic than the symbolic model, but until
recently proofs were only manual.
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Introduction

Models of protocols: side channels

The computational model is still just a model, which does not exactly
match reality.

In particular, it ignores side channels:
@ timing
@ power consumption
@ noise
@ physical attacks against smart cards

which can give additional information.
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Symbolic model

Verifying protocols in the symbolic model

Main idea (for most verifiers):
@ Compute the knowledge of the attacker.
Difficulty: security protocols are infinite state.
@ The attacker can create messages of unbounded size.

@ Unbounded number of sessions of the protocol.
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Symbolic model

Verifying protocols in the symbolic model

Solutions:

@ Bound the state space arbitrarily:
exhaustive exploration (model-checking: FDR, SATMC, ...);
find attacks but not prove security.

@ Bound the number of sessions: insecurity is NP-complete (with
reasonable assumptions).
OFMC, CI-AtSe

@ Unbounded case:
the problem is undecidable.
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Symbolic model

Solutions to undecidability

To solve an undecidable problem, we can
@ Use approximations, abstraction.
@ Not always terminate.
@ Rely on user interaction or annotations.

o Consider a decidable subclass.
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Symbolic model

Solutions to undecidability

¢ Typing (Cryptyc)

Abstraction User help
Tree automata (TA4SP) Logics (BAN, PCL, ...)
° °
Control—ﬂow analysis Theorem proving (Isabelle)
°
Horn clauses (ProVerif) Tamarin e
°
Not always terminate Decidable subclass
Maude-NPA (narrowing) _
° Strong tagging scheme
Scyther (strand spaces) o
°
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Symbolic model

ProVerif, http://proverif.inria.fr

4
N
&
4

Symbolic security protocol verifier.

Fully automatic.

Works for unbounded number of sessions and message space.
Handles a wide range of cryptographic primitives, defined by rewrite
rules or equations.

@ Handles various security properties: secrecy, authentication, some
equivalences.

@ Does not always terminate and is not complete. In practice:
e Efficient: small examples verified in less than 0.1 s;
complex ones from a few minutes to hours.
@ Very precise: no false attack in 19 protocols of the literature tested for
secrecy and authentication.

Bruno Blanchet (Google - Inria) ProVerif & CryptoVerif May 2016 15 / 43


http://proverif.inria.fr

Symbolic model

Protocol: Properties to prove:
Pi calculus + cryptography Secrecy, authentication,
Primitives: rewrite rules, equations | process equivalences

[ Automatic translator }

‘Horn clauses Derivability queries ‘
[ Resolution with selection }
Non-derivable: the property is true Derivation

Attack: the property is false False attack: | don't know

Bruno Blanchet (Google - Inria) ProVerif & CryptoVerif May 2016 16 / 43



Symbolic model

Syntax of the process calculus

Pi calculus 4 cryptographic primitives

M,N .= terms

X, ¥, Zy. .. variable

a,b,c,s,... name

f(My,...,M,) constructor application
P,Q:= processes

out(M, N); P output

in(M, x); P input

let x=g(My,...,M,) in P else Q destructor application

if M = N then P else Q conditional

0 nil process

Pl@Q parallel composition

P replication

new ga; P restriction
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Symbolic model

Constructors and destructors

Two kinds of operations:

@ Constructors f are used to build terms
f(Mi,...,Mp,)

Shared-key encryption sencrypt(M, N).

@ Destructors g manipulate terms
let x =g(Mi,...,M,) in P else Q
Destructors are defined by rewrite rules g(My, ..., M,) — M.

Decryption sdecrypt(M’, N): sdecrypt(sencrypt(m, k), k) — m.

We represent in the same way public-key encryption, signatures, hash
functions, ...
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Symbolic model

Example: The Denning-Sacco protocol (simplified)

Message 1. A — B: {{k}sks}pk, Kk fresh
Message 2. B — A: {s}«

new ska; new skg;let pk, = pk(ska) in let pkg = pk(skg) in
OUt(C7 pkA); OUt(Ca PkB);

(A) lin(c, x_pkg); new k; out(c, pencrypt(sign(k, ska), x_pkg)).
in(c, x); let s = sdecrypt(x, k) in 0

(B) | lin(c,y);let y' = pdecrypt(y, skg) in
let k = checksign(y’, pk ) in out(c,sencrypt(s, k))
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Symbolic model

The Horn clause representation

The first encoding of protocols in Horn clauses was given by Weidenbach
(1999).

The main predicate used by the Horn clause representation of protocols is
attacker:

attacker(M) means ‘“the attacker may have M".

We can model actions of the adversary and of the protocol participants
thanks to this predicate.

Processes are automatically translated into Horn clauses (joint work with
Martin Abadi).
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Symbolic model

Coding of primitives

@ Constructors f(My, ..., M)
attacker(xi) A ... A attacker(x,) — attacker(f(x1,...,%n))

Example: Shared-key encryption sencrypt(m, k)

attacker(m) A attacker(k) — attacker(sencrypt(m, k))

@ Destructors g(Mq,...,M,) = M
attacker(My) A ... A attacker(M,) — attacker(M)

Example: Shared-key decryption sdecrypt(sencrypt(m, k), k) — m

attacker(sencrypt(m, k)) A attacker(k) — attacker(m)
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Symbolic model

Coding of a protocol

If a principal A has received the messages My, ..., M, and sends the
message M,

attacker(My) A ... A attacker(M,) — attacker(M).

Example

Upon receipt of a message of the form pencrypt(sign(y, ska), pkg),
B replies with sencrypt(s, y):

attacker(pencrypt(sign(y, ska), pkg)) — attacker(sencrypt(s, y))

The attacker sends pencrypt(sign(y, ska), pkg) to B, and intercepts his
reply sencrypt(s, y).
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Symbolic model

Proof of secrecy

Theorem (Secrecy)

If attacker(M) cannot be derived from the clauses, then M is secret.

The term M cannot be built by an attacker.

The resolution algorithm will determine whether a given fact can be
derived from the clauses.
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Symbolic model

Other security properties

@ Correspondence assertions: (authentication)
If an event has been executed, then some other events must have
been executed.

@ Process equivalences: the adversary cannot distinguish between two
processes.

o Strong secrecy: the adversary cannot see when the value of the secret
changes.

@ Equivalences between processes that differ only by terms they contain
(joint work with Martin Abadi and Cédric Fournet)

In particular, proof of protocols relying on weak secrets.
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Symbolic model

Demo
Denning-Sacco example
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Symbolic model

Applications

© Case studies:
@ 19 protocols of the literature
o Certified email (with Martin Abadi)
e JFK (with Martin Abadi and Cédric Fournet)
@ Plutus (with Avik Chaudhuri)
@ Avionic protocols (ARINC 823)

Case studies by others:

@ E-voting protocols (Delaune, Kremer, and Ryan; Backes et al)
Zero-knowledge protocols, DAA (Backes et al)

Shared authorisation data in TCG TPM (Chen and Ryan)
Electronic cash (Luo et al)

¢ & ¢ ¢

@ Extensions
© ProVerif as back-end
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Symbolic model

Applications

@ Case studies
@ Extensions:

o Extensions to XOR and Diffie-Hellman (Kisters and Truderung), to
bilinear pairings (Pankova and Laud)

@ StatVerif: extension to mutable state (Arapinis et al)

@ Set-Pi: extension to sets with revocation (Bruni et al)

© ProVerif as back-end

Bruno Blanchet (Google - Inria) ProVerif & CryptoVerif May 2016 26 / 43



Symbolic model

Applications

@ Case studies

@ Extensions
© ProVerif as back-end:
o TulaFale: Web service verifier (Bhargavan et al)
FS2PV: F# to ProVerif, applied to TLS and TPM (Bhargavan et al)
JavaSpi: Java to ProVerif (Avalle et al)
Web-spi: web security mechanisms (Bansal et al)

¢ & ©
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Computational Model

Linking the symbolic and the computational models

@ Computational soundness theorems:

Secure in the secure in the
. = .
symbolic model computational model

modulo additional assumptions.

Approach pioneered by Abadi & Rogaway [2000]; many papers since
then.
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Computational Model

Linking the symbolic and the computational models:
application

@ Indirect approach to automating computational proofs:

1. Automatic symbolic
protocol verifier

J
2. Computational
proof in the soundness proof in the
symbolic model e computational model
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Computational Model

Advantages and limitations

@ -+ symbolic proofs easier to automate

@ -+ reuse of existing symbolic verifiers

@ — additional hypotheses:
@ — strong cryptographic primitives
@ — length-hiding encryption or modify the symbolic model
@ — honest keys [but see Comon-Lundh et al, POST 2012]
@ — no key cycles

@ Going through the symbolic model is a detour

@ An attempt to solve these problems:

symbolic model in which we specify what the attacker cannot do
[Bana & Comon-Lundh, POST 2012]
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Computational Model

Direct computational proofs

Following Shoup and Bellare&Rogaway, the proof is typically a sequence of
games:

@ The first game is the real protocol.

@ One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

@ The last game is “ideal”: the security property is obvious from the
form of the game.

(The advantage of the adversary is usually 0 for this game.)

— — —
Protocol P1 P2 T Pn Property
to prove [negligible negligible negligible opvious
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Computational Model

Mechanizing proofs by sequences of games

CertiCrypt, http://certicrypt.gforge.inria.fr/
@ Machine-checked cryptographic proofs in Coq
@ Interesting case studies, e.g. OAEP

@ Good for proving primitives: can prove complex mathematical
theorems

@ Requires much human effort
EasyCrypt, https://www.easycrypt.info/trac/:
@ Successor of CertiCrypt
@ Less human effort: give games and hints on how to prove
indistinguishability
@ Relies on SMT solvers

Idea also followed by Nowak et al.
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Computational Model

CryptoVerif, http://cryptoverif.inria.fr

@ Computational security protocol verifier.
@ Proves secrecy and correspondence properties.

@ Provides a generic method for specifying properties of
cryptographic primitives, which handles MACs (message
authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions, ...

Works for N sessions (polynomial in the security parameter).
Gives a bound on the probability of an attack (exact security).

Has automatic and manually guided modes.

e © ¢ ¢

Can generate OCaml implementations (joint work with David Cadé).
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Computational Model

Process calculus for games

Games are formalized in a process calculus:
@ It is adapted from the pi calculus.

@ The semantics is purely probabilistic (no non-determinism).
@ All processes run in polynomial time:

@ polynomial number of copies of processes,
o length of messages on channels bounded by polynomials.

This calculus is inspired by:
@ the calculus of [Lincoln, Mitchell, Mitchell, Scedrov, 1998],
@ the calculus of [Laud, 2005].
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Computational Model

Example

A— B:e={xi}x,mac(e,xmk) Xk fresh

Qo = in(start, ()); new x, : keyseed; let xy : key = kgen(x,) in
new x, : mkeyseed; let xp : mkey = mkgen(x]) in out(c,());

(Qal @B)

Qa =!"="in(ca, ()); new x| : key; new x” : coins;
let x,, : bitstring = enc(k2b(x,), xk, x/') in

out(ca, Xm, mac(xm, Xmk))

Qs ='"="in(cp, x., : bitstring, Xma : macstring);
if check(x},, Xmk, Xma) then

let i) (k2b(x})) = dec(x],, xx) in out(cg,())
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Computational Model

The variables defined in repeated processes (under a replication) are
arrays, with one cell for each execution, to remember the values used in
each execution.

These arrays are indexed with the execution number 7, i’.

Qa =""<"in(ca, ()); new x;[i] : key; new x"[i] : coins;
let xp[i] : bitstring = enc(k2b(x,[i]), xk, x'[1]) in
out(ca, xm|i], mac(xm[i], Xmk))

Arrays replace lists generally used by cryptographers.

They avoid the need for explicit list insertion instructions, which would be
hard to guess for an automatic tool.
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Computational Model

Indistinguishability as observational equivalence

Two processes (games) Q1, Q> are observationally equivalent when the
adversary has a negligible probability of distinguishing them:

Q=@

The adversary is represented by an acceptable evaluation context C
(essentially, a process put in parallel with the considered games).

@ Observational equivalence is an equivalence relation.

o It is contextual: @ = Qo implies C[Q1] ~ C[Qz] where C is any
acceptable evaluation context.
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Computational Model

Proof technique

We transform a game Gy into an observationally equivalent one using:

@ observational equivalences L ~ R given as axioms and that come

from security properties of primitives. These equivalences are used
inside a context:

G =~ C[L] = C[R] =~ G,
@ syntactic transformations: simplification, expansion of assignments,
We obtain a sequence of games Gy = G1 = ... = Gp,, which implies

Go ~ Gm.

If some equivalence or trace property holds with overwhelming probability
in G, then it also holds with overwhelming probability in Gp.
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Computational Model

MACs: security definition

A MAC scheme:
@ (Randomized) key generation function mkgen.
@ MAC function mac(m, k) takes as input a message m and a key k.
@ Checking function check(m, k, t) such that
check(m, k, mac(m, k)) = true.
A MAC guarantees the integrity and authenticity of the message because
only someone who knows the secret key can build the mac.

More formally, an adversary A that has oracle access to mac and check
has a negligible probability to forge a MAC (UF-CMA):

max Pr[check(m, k, t) | k & mkgen: (m, t) < Amac(k).check(.k..)]

is negligible, when the adversary A has not called the mac oracle on
message m.

Bruno Blanchet (Google - Inria) ProVerif & CryptoVerif May 2016 38 /43



Computational Model

MACs: intuitive implementation

By the previous definition, up to negligible probability,
@ the adversary cannot forge a correct MAC

@ so when checking a MAC with check(m, k, t) and

k& mkgen is used only for generating and checking MACs,
the check can succeed only if m is in the list (array) of messages
whose mac has been computed by the protocol

@ so we can replace a check with an array lookup:
if the call to mac is mac(x, k), we replace check(m, k, t) with

find j < N suchthat defined(x[j]) A
(m = x[j]) A check(m, k, t) then true else false
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Computational Model

MACs: formal implementation

check(m, mkgen(r), mac(m, mkgen(r))) = true

1
" new r : mkeyseed; (

IN(x : bitstring) — mac(x, mkgen(r)),
\N'(m : bitstring, t - macstring) — check(m, mkgen(r), t))
~ V" new r : mkeyseed; (
IN(x : bitstring) — mac'(x, mkgen'(r)),
IN'(m : bitsting, t - macstring) —
find j < N suchthat defined(x[j]) A (m = x[j]) A
check'(m, mkgen'(r), t) then true else false)

The prover understands such specifications of primitives.

They can be reused in the proof of many protocols.
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Computational Model

Proof strategy: advice

@ CryptoVerif tries to apply all equivalences given as axioms, which
represent security assumptions.

It transforms the left-hand side into the right-hand side of the
equivalence.

@ If such a transformation succeeds, the obtained game is then
simplified, using in particular equations given as axioms.

@ When these transformations fail, they may return syntactic
transformations to apply in order to make them succeed, called
advised transformations.

CryptoVerif then applies the advised transformations, and retries the
initial transformation.
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Computational Model

Applications

@ 16 “Dolev-Yao style” protocols that we study in the computational
model. CryptoVerif proves all correct properties except in one case.

@ Full domain hash signature (with David Pointcheval)
Encryption schemes of Bellare-Rogaway'93 (with David Pointcheval)

@ Kerberos V, with and without PKINIT (with Aaron D. Jaggard, Andre
Scedrov, and Joe-Kai Tsay)

@ OEKE (variant of Encrypted Key Exchange)

@ A part of an F# implementation of the TLS transport protocol
(Microsoft Research and MSR-INRIA)

@ SSH Transport Layer Protocol (with David Cadé)
@ Avionic protocols (ARINC 823, ICAO9880 3rd edition)
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Conclusion

Conclusion and future work

@ The automatic prover ProVerif works in the symbolic model.
It is essentially mature; improve its documentation and interface.

@ The automatic prover CryptoVerif works in the computational model.
Much work still to do:

@ Improvements to the game transformations and the proof strategy.
Handle more cryptographic primitives (stateful encryption, .. .)
Extend the input language (loops, mutable variables, .. .)

Make more case studies.

¢ & ©
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