
Automatic Verification of Cryptographic Protocols
in the Formal Model

Automatic Verifier ProVerif

Bruno Blanchet

CNRS, École Normale Supérieure, INRIA
blanchet@di.ens.fr

March 2009

Bruno Blanchet (CNRS) ProVerif March 2009 1 / 77

Overview of the protocol verifier ProVerif

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authenticity, . . .

Horn clauses Derivability queries

Resolution with selection

The property is true Potential attack

Automatic translator

Bruno Blanchet (CNRS) ProVerif March 2009 2 / 77

Overview

1. A variant of the spi-calculus
2. Intuitive presentation of the Horn clause representation
3. The solving algorithm
4. Experimental results
5. Formal translation from the spi-calculus.

Bruno Blanchet (CNRS) ProVerif March 2009 3 / 77

What is the spi calculus ?

The spi calculus is an extension of the pi calculus designed to represent
cryptographic protocols.

The pi calculus is a process calculus:

processes communicate: they can send and receive messages on
channels

several processes can execute in parallel.

In the pi calculus, messages and channels are names, that is, atomic values
a, b, c ,

Bruno Blanchet (CNRS) ProVerif March 2009 4 / 77

What is the spi calculus ? (continued)

Example: c〈a〉 | c(x).d〈x〉
The first process sends a on channel c , the second one inputs this
message, puts it in variable x and sends x on channel d .

The link with cryptographic protocols is clear:

Each participant of the protocol is represented by a process

The messages exchanged by processes are the messages of the
protocol.

However, in protocols, messages are not necessarily atomic values.

The names of the pi calculus are replaced by terms in the spi calculus.

Bruno Blanchet (CNRS) ProVerif March 2009 5 / 77

Syntax of the process calculus

Pi calculus + cryptographic primitives

M, N ::= terms
x , y , z variable
a, b, c , k , s name
f (M1, . . . ,Mn) constructor application

P, Q ::= processes

M〈N〉.P output
M(x).P input
let x = g(M1, . . . ,Mn) in P else Q destructor application
if M = N then P else Q conditional
0 nil process
P | Q parallel composition
!P replication
(νa)P restriction

Bruno Blanchet (CNRS) ProVerif March 2009 6 / 77

Constructors and destructors

Two kinds of operations:

Constructors f are used to build terms
f (M1, . . . ,Mn)

Destructors g manipulate terms
let x = g(M1, . . . ,Mn) in P else Q

Destructors are defined by rewrite rules g(M1, . . . ,Mn) → M.

Bruno Blanchet (CNRS) ProVerif March 2009 7 / 77

Examples of constructors and destructors

Shared-key encryption: {M}N ; one decrypts with the key N

Constructor: Shared-key encryption sencrypt(M, N).

Destructor: Decryption sdecrypt(M ′, N)

sdecrypt(sencrypt(M, N), N) → M.

Perfect encryption assumption: one can decrypt only if one has the key.

Bruno Blanchet (CNRS) ProVerif March 2009 8 / 77

Examples of constructors and destructors

Public-key encryption: {M}pk ; one decrypts with the secret key sk

Constructors: Public-key encryption pencrypt(M, N).
Public key generation pk(N).

Destructor: Decryption pdecrypt(M ′, N)

pdecrypt(pencrypt(M, pk(N)), N) → M.

Bruno Blanchet (CNRS) ProVerif March 2009 9 / 77

Examples of constructors and destructors (continued)

Signature: {M}sk ; one verifies with the public key pk

Constructor: Signature sign(M, N).

Destructors: Signature checking checksign(M ′, N ′)

checksign(sign(M, N), pk(N)) → M.

Message extraction getmess(M ′)

getmess(sign(M, N)) → M.

Here, we assume that the signed message sign(M, N) contains the
message M in the clear.

Exercise

Model signatures that do not reveal the signed message.

Bruno Blanchet (CNRS) ProVerif March 2009 10 / 77

Examples of constructors and destructors (continued)

One-way hash function:

Constructor: One-way hash function H(M).

Very idealized model of a hash function (essentially corresponds to the
random oracle model).

Bruno Blanchet (CNRS) ProVerif March 2009 11 / 77

Examples of constructors and destructors (continued)

Tuples:

Constructor: tuple (M1, . . . ,Mn).

Destructors: projections ith(M)

ith((M1, . . . ,Mn)) → Mi

Tuples are used to represent all kinds of data structures in protocols.

Bruno Blanchet (CNRS) ProVerif March 2009 12 / 77

Example: The Denning-Sacco protocol

Message 1. A → B : {{k}skA
}pkB

k fresh
Message 2. B → A : {s}k

(νskA)(νskB)let pkA = pk(skA) in let pkB = pk(skB) in

c〈pkA〉c〈pkB〉.

(A) ! c(x pkB).(νk)c〈pencrypt(sign(k , skA), x pkB)〉.

c(x).let s = sdecrypt(x , k) in 0

(B) | ! c(y).let y ′ = pdecrypt(y , skB) in

let k = checksign(y ′, pkA) in c〈sencrypt(s, k)〉

Bruno Blanchet (CNRS) ProVerif March 2009 13 / 77

Exercise: The Needham-Schroeder public-key protocol

Exercise

Model the following protocol:

Message 1. A → B {Na, A}pkB
Na fresh

Message 2. B → A {Na, Nb}pkA
Nb fresh

Message 3. A → B {Nb}pkB

Bruno Blanchet (CNRS) ProVerif March 2009 14 / 77

Formal semantics

The semantics is defined by reduction P → P ′: the execution of the
process is modeled by transforming it into another process.

Main reduction rule = communication

N〈M〉.Q | N(x).P → Q | P{M/x}

The communicating processes are not always in the above form,
so we need an equivalence relation to prepare the reduction.

Bruno Blanchet (CNRS) ProVerif March 2009 15 / 77

Equivalence relation

P | 0 ≡ P

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

(νa1)(νa2)P ≡ (νa2)(νa1)P
(νa)(P | Q) ≡ P | (νa)Q if a /∈ fn(P)

P ≡ Q ⇒ P | R ≡ Q | R

P ≡ Q ⇒ (νa)P ≡ (νa)Q

P ≡ P

Q ≡ P ⇒ P ≡ Q

P ≡ Q, Q ≡ R ⇒ P ≡ R

Bruno Blanchet (CNRS) ProVerif March 2009 16 / 77

Reduction relation

N〈M〉.Q | N(x).P → Q | P{M/x} (Red I/O)

let x = g(M1, . . . ,Mn) in P else Q → P{M ′/x}
if g(M1, . . . ,Mn) → M ′ (Red Destr 1)

let x = g(M1, . . . ,Mn) in P else Q → Q

if there exists no M ′ such that g(M1, . . . ,Mn) → M ′ (Red Destr 2)

!P → P | !P (Red Repl)

P → Q ⇒ P | R → Q | R (Red Par)
P → Q ⇒ (νa)P → (νa)Q (Red Res)

P ′ ≡ P, P → Q, Q ≡ Q ′ ⇒ P ′ → Q ′ (Red ≡)

Bruno Blanchet (CNRS) ProVerif March 2009 17 / 77

Another presentation of the semantics

Semantic configurations are E ,P where

E is a set of names

P is a multiset of processes

Intuitively, E ,P where E = {a1, . . . , an} and P = {P1, . . . ,Pm}
corresponds to

(νa1) . . . (νan)(P1 | . . . | Pm)

Initial configuration for P: fn(P), {P}.

Bruno Blanchet (CNRS) ProVerif March 2009 18 / 77

Another presentation of the semantics: reduction relation

E ,P ∪ { 0 } → E ,P (Red Nil)

E ,P ∪ { !P } → E ,P ∪ {P, !P } (Red Repl)

E ,P ∪ {P | Q } → E ,P ∪ {P, Q } (Red Par)

E ,P ∪ { (νa)P } → E ∪ {a′},P ∪ {P{a′/a} } (Red Res)

where a′ /∈ E .

E ,P ∪ {N〈M〉.Q, N(x).P } → E ,P ∪ {Q, P{M/x} } (Red I/O)

E ,P ∪ { let x = g(M1, . . . ,Mn) in P else Q } → E ,P ∪ {P{M ′/x} }

if g(M1, . . . ,Mn) → M ′ (Red Destr 1)

E ,P ∪ { let x = g(M1, . . . ,Mn) in P else Q } → E ,P ∪ {Q }

if there exists no M ′ such that g(M1, . . . ,Mn) → M ′ (Red Destr 2)

Bruno Blanchet (CNRS) ProVerif March 2009 19 / 77

Comparison between the two semantics

The first semantics

is more standard (comes from the original semantics of the pi
calculus)

makes it easier to add a context around an existing process (see
definition of process equivalence)

The second semantics

directs the reduction more precisely

makes a minimal use of renaming (for restrictions only)

Except when mentioned explicitly, I will rely on the second semantics.

Bruno Blanchet (CNRS) ProVerif March 2009 20 / 77

Adversary

The protocol is executed in parallel with an adversary.
The adversary can be any process.
S = finite set of names (initial knowledge of the adversary).

Definition

The closed process Q is an S-adversary ⇔ fn(Q) ⊆ S .

Bruno Blanchet (CNRS) ProVerif March 2009 21 / 77

Secrecy

Intuitive definition

The secret M cannot be output on a public channel

Definition

A trace T = E0,P0 →∗ E ′,P ′ outputs M if and only if T contains a
reduction E ,P ∪ { c〈M〉.Q, c(x).P } → E ,P ∪ {Q, P{M/x} } for some E ,
P, x , P, Q, and c ∈ S .

Definition

The closed process P preserves the secrecy of M from S ⇔
∀S-adversary Q, ∀T = fn(P) ∪ S , {P, Q} →∗ E ′,P ′, T does not output
M.

Bruno Blanchet (CNRS) ProVerif March 2009 22 / 77

Several variants of the spi calculus

Presented variant [Abadi, Blanchet, POPL’02 and JACM’05]

The spi-calculus [Abadi, Gordon, I&C, 1999]

The applied pi calculus [Abadi, Fournet, POPL’01]
Very powerful, thanks to equational theories

A calculus for asymmetric communication
[Abadi, Blanchet, FoSSaCS’01 and TCS’03]

Bruno Blanchet (CNRS) ProVerif March 2009 23 / 77

Overview

1. A variant of the spi-calculus
2. Intuitive presentation of the Horn clause representation
3. The solving algorithm
4. Experimental results
5. Formal translation from the spi-calculus.

Bruno Blanchet (CNRS) ProVerif March 2009 24 / 77

Our goal

Goal: a verifier for cryptographic protocols

Fully automatic

For an unbounded number of sessions
and an unbounded message size

Handles many cryptographic primitives

Proves various properties: secrecy, correspondences, equivalences

Efficient

Bruno Blanchet (CNRS) ProVerif March 2009 25 / 77

Our solution

Two ideas (extending [Weidenbach, CADE’99]):

a simple abstract representation of these protocols, by a set of Horn
clauses;

an efficient solving algorithm to find which facts can be derived from
these clauses.

Using this, we can prove secrecy properties of protocols,
or exhibit attacks showing why a message is not secret.

We handle in particular shared- and public-key cryptography, hash
functions, Diffie-Hellman key agreements.

Bruno Blanchet (CNRS) ProVerif March 2009 26 / 77

Protocol representation

Messages terms
M ::= x | f (M1, . . . ,Mn) | k[M1, . . . ,Mn]

pencrypt(c0, pk(skA)).

Properties facts
F ::= attacker(M).

Protocol, attacker Horn clauses
F1 ∧ . . . ∧ Fn → F

attacker(m) ∧ attacker(pk) → attacker(pencrypt(m, pk)).

Bruno Blanchet (CNRS) ProVerif March 2009 27 / 77

Example - Cryptographic primitives

Public-key encryption:

Encryption pencrypt(m, pk).
attacker(m) ∧ attacker(pk) → attacker(pencrypt(m, pk))

Public key generation pk(sk).
(builds a public key from a secret key)
attacker(sk) → attacker(pk(sk))

Decryption pdecrypt(pencrypt(m, pk(sk)), sk) → m.
attacker(pencrypt(m, pk(sk))) ∧ attacker(sk) → attacker(m)

Bruno Blanchet (CNRS) ProVerif March 2009 28 / 77

General treatment of primitives

Constructors f (M1, . . . ,Mn)
attacker(x1) ∧ . . . ∧ attacker(xn) → attacker(f (x1, . . . , xn))

Destructors g(M1, . . . ,Mn) → M

attacker(M1) ∧ . . . ∧ attacker(Mn) → attacker(M)

(There may be several reductions defining a function.)

Exercise

Give clauses for shared-key encryption and signatures

Bruno Blanchet (CNRS) ProVerif March 2009 29 / 77

Names

Normally, fresh names are created each time the protocol is run.
Here, we only distinguish two names when they are created after receiving
different messages.

Each name k becomes a function of the messages previously
received:

k[M1, . . . ,Mn].

(Skolemisation)

These functions can only be applied by the principal that creates the
name, not by the attacker.

Bruno Blanchet (CNRS) ProVerif March 2009 30 / 77

Denning-Sacco protocol

A → B : {{k}skA
}pkB

k fresh

A talks with any principal represented by its public key pk(x).
A sends to it the message {{k}skA

}pk(x).

attacker(pk(x)) → attacker(pencrypt(sign(k[pk(x)], skA[]), pk(x))).

B → A : {s}k

B has received a message {{y}skA
}pkB

.
B sends {s}y .

attacker(pencrypt(sign(y , skA[]), pk(skB []))) →
attacker(sencrypt(s, y)).

Bruno Blanchet (CNRS) ProVerif March 2009 31 / 77

General coding of a protocol

If a principal A has received the messages M1, . . . ,Mn and sends the
message M,

attacker(M1) ∧ . . . ∧ attacker(Mn) → attacker(M).

Exercise

Model the Needham-Shroeder public key protocol protocol:

Message 1. A → B {Na, A}pkB
Na fresh

Message 2. B → A {Na, Nb}pkA
Nb fresh

Message 3. A → B {Nb}pkB

Bruno Blanchet (CNRS) ProVerif March 2009 32 / 77

Approximations

The freshness of nonces is partially modeled.

The number of times a message appears is ignored,
only the fact that is has appeared is taken into account.

The state of the principals is not fully modeled.

These approximations are keys for an efficient verification.
Solve the state space explosion problem.
No limit on the number of runs of the protocols.
⇒ essential for the certification of protocols.

Bruno Blanchet (CNRS) ProVerif March 2009 33 / 77

Approximations: a more formal view

We can show formally by abstract interpretation that,
with respect to the multiset rewriting model,
the only approximation is that the number of repetitions of actions is
ignored [Blanchet, IPL, 2005].

Multiset rewriting ⇔ linear logic

After approximation: classical logic

The modeling of names by skolemisation does not introduce an
approximation in classical logic.

Typical situation in which the proof fails:
a protocol first needs to keep some data secret,
and later reveals it.

Bruno Blanchet (CNRS) ProVerif March 2009 34 / 77

Secrecy

Secrecy criterion

If attacker(M) cannot be derived from the clauses, then M is secret.

The term M cannot be built by an attacker.

The solving algorithm will determine whether a given fact can be derived
from the clauses.

Bruno Blanchet (CNRS) ProVerif March 2009 35 / 77

Overview

1. A variant of the spi-calculus
2. Intuitive presentation of the Horn clause representation
3. The solving algorithm
4. Experimental results
5. Formal translation from the spi-calculus.

Bruno Blanchet (CNRS) ProVerif March 2009 36 / 77

Which resolution algorithm

A standard Prolog system would not terminate:

attacker(sencrypt(x , y)) ∧ attacker(y) → attacker(x)

generates bigger and bigger facts by SLD-resolution.

We need a different resolution strategy.

Bruno Blanchet (CNRS) ProVerif March 2009 37 / 77

Saturation

Completion of the clause base, by resolution with free selection.

Selection function sel(F1 ∧ . . . ∧ Fn → F) ∈ {F1, . . . ,Fn, F}.

sel(F1 ∧ . . . ∧ Fn → F) =











F if ∀i ∈ {1, . . . , n}, Fi = attacker(x)

Fi different from attacker(x),

of maximal size, otherwise

Bruno Blanchet (CNRS) ProVerif March 2009 38 / 77

Saturation (2)

R = F1 ∧ . . . ∧ Fn → F R ′ = F ′
1 ∧ . . . ∧ F ′

n′ → F ′

σF1 ∧ . . . ∧ σFn ∧ σF ′
2 ∧ . . . ∧ σF ′

n′ → σF ′

where σ is the most general unifier of F and F ′
1,

where sel(R) = F , and sel(R ′) = F ′
1.

Starting from an initial set of clauses R0,
perform this resolution step until a fixed point is reached,
eliminating subsumed clauses: H → C subsumes H ′ → C ′ when there
exists σ such that σH ⊆ H ′ (multiset inclusion) and σC = C ′.

saturate(R0) is the set of obtained clauses R such that sel(R) is the
conclusion of R.

Bruno Blanchet (CNRS) ProVerif March 2009 39 / 77

Saturation (3)

Example of a step:

attacker(x) ∧ attacker(y) → attacker(pencrypt(x , y))
attacker(pencrypt(sign(z , skA[]), pk(skB []))) → attacker(sencrypt(s, z))

attacker(sign(z , skA[])) ∧ attacker(pk(skB [])) → attacker(sencrypt(s, z))

Theorem

The clauses obtained after saturation saturate(R0) prove the

same facts as the starting clauses R0.

Bruno Blanchet (CNRS) ProVerif March 2009 40 / 77

Proof (1): some notations

If R = H → C , R ′ = F0 ∧ H ′ → C ′, and σ is the most general unifier of C

and F0, then R ◦F0 R ′ = σH ∧ σH ′ → σC ′.

If R subsumes R ′, R ⊒ R ′.

R0: initial set of clauses.
R1: set of clauses when the fixpoint is reached.
R2 = saturate(R0) = {H → C ∈ R1 | sel(H → C) = C}

Bruno Blanchet (CNRS) ProVerif March 2009 41 / 77

Proof (2): derivation

Definition (Derivation)

Let F be a closed fact. Let R be a set of clauses. A derivation of F from
R is a finite tree defined as follows:

1 Its nodes (except the root) are labeled by clauses R ∈ R.

2 Its edges are labeled by closed facts. (Edges go from a node to each
of its sons.)

3 If the tree contains a node labeled by R with one incoming edge
labeled by F0 and n outgoing edges labeled by F1, . . . ,Fn, then
R ⊒ {F1, . . . ,Fn} → F0.

4 The root has one outgoing edge, labeled by F . The unique son of the
root is named the subroot.

Bruno Blanchet (CNRS) ProVerif March 2009 42 / 77

Proof (3): resolution step

Lemma (Resolution)

Consider a derivation containing a node η′, labeled R ′. Let F0 be a

hypothesis of R ′. Then there exists a son η of η′, labeled R, such that the

edge η′ → η is labeled by an instance of F0, R ◦F0 R ′ is defined, and one

obtains a derivation of the same fact by replacing the nodes η and η′ with

a node η′′ labeled R ′′ = R ◦F0 R ′.

η′′R ′′

η′

η

R ′

R

C ′
1

H1

H ′
1

C ′
1

H1 ∪ (H ′
1 − σF0)

σF0

Bruno Blanchet (CNRS) ProVerif March 2009 43 / 77

Proof (4): subsumption

Lemma (Subsumption)

If a node η of a derivation D is labeled by R, then one obtains a derivation

D ′ of the same fact as D by relabeling η with a clause R ′ such that

R ′ ⊒ R.

By transitivity of ⊒.

Bruno Blanchet (CNRS) ProVerif March 2009 44 / 77

Proof (5): saturation properties

Lemma (Saturation)

R1 satisfies the following properties:

1 For all R ∈ R0, there exists R ′ ∈ R1 such that R ′ ⊒ R;

2 Let R = H → C , R ′ = H ′ → C ′ ∈ R1. Assume that sel(R) = C,

sel(R ′) = F0, and R ◦F0 R ′ is defined. In this case, there exists

R ′′ ∈ R1, R ′′ ⊒ R ◦F0 R ′.

1 A clause is removed only when it is subsumed by another one.

2 The fixpoint is reached.

Bruno Blanchet (CNRS) ProVerif March 2009 45 / 77

Proof (6): If F is derivable from R0, then F is derivable
from saturate(R0).

Consider a derivation of F from R0.

For each R ∈ R0, there exists R ′ ∈ R1 such that R ′ ⊒ R (Lemma
saturation, Property 1).
We relabel each node labeled by R ∈ R0 \ R1 with R ′ ∈ R1 such that
R ′ ⊒ R (by Lemma subsumption).
Therefore, we obtain a derivation D of F from R1.

Next, we build a derivation of F from R2, by transforming D.

Bruno Blanchet (CNRS) ProVerif March 2009 46 / 77

Proof (7): If F is derivable from R0, then F is derivable
from saturate(R0) (continued).

If D contains a clause not in R2, we transform D as follows.
Let η′ be a lowest node of D labeled by a clause not in R2. All sons of η′

are labeled by elements of R2.
Let R ′ be the clause labeling η′. Since R ′ /∈ R2, sel(R ′) = F0 is a
hypothesis of R ′.
By Lemma resolution, there exists a son of η of η′ labeled by R, such that
R ◦F0 R ′ is defined. Since all sons of η′ are labeled by elements of R2,
R ∈ R2. Hence sel(R) is the conclusion of R. So, by Lemma saturation,
Property 2, there exists R ′′ ∈ R1 such that R ′′ ⊒ R ◦F0 R ′.
By Lemma resolution, we replace η and η′ with η′′ labeled by R ◦F0 R ′.
By Lemma subsumption, we replace R ◦F0 R ′ with R ′′.
The total number of nodes strictly decreases since η and η′ are replaced
with a single node η′′. Hence, this replacement process terminates.
Upon termination, we obtain a derivation of F from R2.

Bruno Blanchet (CNRS) ProVerif March 2009 47 / 77

Why it works

The facts attacker(x) unify with all facts attacker(M).

If we allow resolution on facts attacker(x), we will create many clauses.

The choice of the selection function implies that we avoid performing
resolution upon attacker(x).

⇒ This is key to obtaining termination in most cases.

Bruno Blanchet (CNRS) ProVerif March 2009 48 / 77

Derivation

solveR0(pred(p1, . . . , pn)) = {H → pred(p′
1, . . . , p

′
n) | H →

pred ′(p′
1, . . . , p

′
n) ∈ saturate(R1)}, where pred ′ is a new predicate and

R1 = R0 ∪ {pred(p1, . . . , pn) → pred ′(p1, . . . , pn)}.

σpred(p1, . . . , pn) is derivable from R0 if and only if
σpred ′(p1, . . . , pn) is derivable from R1 if and only if
σpred ′(p1, . . . , pn) is derivable from saturate(R1) (previous theorem) if
and only if
there exists a clause H → pred(p′

1, . . . , p
′
n) in solveR0(pred(p1, . . . , pn))

and a substitution σ′ such that σ′pred(p′
1, . . . , p

′
n) = σpred(p1, . . . , pn)

and σ′H is derivable from saturate(R1).

If solveR0(F) = ∅, then no instance of F is derivable from R0.

Technique similar to the ordered resolution with selection
[Weidenbach, CADE’99].

Bruno Blanchet (CNRS) ProVerif March 2009 49 / 77

Optimizations

Elimination of tautologies

Elimination of duplicate hypotheses

Elimination of hypotheses attacker(x) when x does not appear
elsewhere.

Tuples

Secrecy assumptions: use conjectures to prune the search space.

Bruno Blanchet (CNRS) ProVerif March 2009 50 / 77

Termination

The saturation algorithm does not always terminate,
but we have proved that it terminates for tagged protocols

That is, when each encryption, signature, ... is distinguished from others
by a constant tag ci

{ci , M1, ...,Mn}K

Large class of protocols

Easy to add tags

Good design practice

[Blanchet, Podelski, Fossacs’03]

Bruno Blanchet (CNRS) ProVerif March 2009 51 / 77

Enforcing termination for all cases

Termination can be enforced by additional approximations.

Example: approximate clauses with clauses in decidable class H1.
[Nielson, Nielson, Seidel, SAS’02; Goubault-Larrecq, JFLA’04]

H1 = clauses whose conclusion is P(f (x1, . . . , xn)), with distinct variables
x1, . . . , xn.

H → P(f (p1, . . . , pn)) p1, . . . , pn are not all variables

Q1(x1), . . . ,Qn(xn) → P(f (x1, . . . , xn)) H → Qi (pi)

H → P(f (x1, . . . , xi , . . . , xi , . . . , xn))

H, H{x/xi} → P(f (x1, . . . , xi , . . . , x , . . . , xn))

Bruno Blanchet (CNRS) ProVerif March 2009 52 / 77

Termination

Ordered resolution with factorization and splitting
[Comon, Cortier, 2003]
Terminates on clauses with at most one variable.
Protocols which blindly copy at most one term.

Decision procedure for a class of tagged protocols
without blind copies.
[Ramanujam, Suresh, 2003]

Bruno Blanchet (CNRS) ProVerif March 2009 53 / 77

Overview

1. A variant of the spi-calculus
2. Intuitive presentation of the Horn clause representation
3. The solving algorithm
4. Experimental results
5. Formal translation from the spi-calculus.

Bruno Blanchet (CNRS) ProVerif March 2009 54 / 77

Experimental results

Pentium III, 1 GHz.
Protocol Result ms

Needham-Schroeder public key Attack [Lowe] 10
Needham-Schroeder public key corrected Secure 7
Needham-Schroeder shared key Attack [Denning] 52
Needham-Schroeder shared key corrected Secure 109
Denning-Sacco Attack [AN] 6
Denning-Sacco corrected Secure 7
Otway-Rees Secure 10
Otway-Rees, variant of Paulson98 Attack [Paulson] 12
Yahalom Secure 10
Simpler Yahalom Secure 11
Main mode of Skeme Secure 23

Bruno Blanchet (CNRS) ProVerif March 2009 55 / 77

Overview

1. A variant of the spi-calculus
2. Intuitive presentation of the Horn clause representation
3. The solving algorithm
4. Experimental results
5. Formal translation from the spi-calculus.

Bruno Blanchet (CNRS) ProVerif March 2009 56 / 77

Translation pi + crypto → Horn clauses

We consider a protocol P0, executed in the presence of an
S-adversary.
A protocol is translated into a set of Horn clauses using
2 predicates:

mess(p, p′) the message p′ may be sent on the channel p

attacker(p) the adversary may have p

Bruno Blanchet (CNRS) ProVerif March 2009 57 / 77

Translation: attacker clauses

For each a ∈ S , attacker(a[]) (Init)

attacker(b[]) where b does not occur in P0 (Name gen)

For each constructor f of arity n,

attacker(x1) ∧ . . . ∧ attacker(xn) → attacker(f (x1, . . . , xn))
(Constr)

For each destructor g , for each reduction g(M1, . . . ,Mn) → M,

attacker(M1) ∧ . . . ∧ attacker(Mn) → attacker(M)
(Destr)

mess(x , y) ∧ attacker(x) → attacker(y) (Listen)

attacker(x) ∧ attacker(y) → mess(x , y) (Send)

Bruno Blanchet (CNRS) ProVerif March 2009 58 / 77

Translation: protocol clauses

ρ: environment (variables, names 7→ terms)
h: hypothesis (messages that must be received before reaching the current
process)

[[0]]ρh = ∅,

[[P | Q]]ρh = [[P]]ρh ∪ [[Q]]ρh,

[[!P]]ρh = [[P]]ρh

[[(νa)P]]ρh = [[P]](ρ[a 7→ a[p1, . . . , pn]])h
when h = mess(c1, p1) ∧ . . . ∧ mess(cn, pn).

Bruno Blanchet (CNRS) ProVerif March 2009 59 / 77

Translation: protocol clauses (continued)

[[M(x).P]]ρh = [[P]](ρ[x 7→ x ′])(h ∧ mess(ρ(M), x ′))
x ′ new variable

[[M〈N〉.P]]ρh = [[P]]ρh ∪ {h → mess(ρ(M), ρ(N))}

[[if M = N then P else Q]]ρh = [[P]](σρ)(σh) ∪ [[Q]]ρh

where σ is the most general unifier of ρ(M) and ρ(N).

[[let x = g(M1, . . . ,Mn) in P else Q]]ρh =
∪{[[P]]((σρ)[x 7→ σ′p′])(σh) | g(p′

1, . . . , p
′
n) → p′ is a rewrite rule of g

and (σ, σ′) is a most general pair of substitutions such that
σρ(M1) = σ′p′

1, . . . , σρ(Mn) = σ′p′
n} ∪ [[Q]]ρh.

Bruno Blanchet (CNRS) ProVerif March 2009 60 / 77

Example: Denning-Sacco protocol

Message 1. A → B : {{k}skA
}pkB

k fresh

Message 2. B → A : {s}k

(νskA)(νskB)let pkA = pk(skA) in let pkB = pk(skB) in

c〈pkA〉c〈pkB〉.

(A) ! c(x pkB).(νk)c〈pencrypt(sign(k , skA), x pkB)〉.

c(x).let s = sdecrypt(x , k) in 0

(B) | ! c(y).let y ′ = pdecrypt(y , skB) in

let k = checksign(y ′, pkA) in c〈sencrypt(s, k)〉

Bruno Blanchet (CNRS) ProVerif March 2009 61 / 77

Example: protocol clauses

[[P0]]{c 7→ c[]}∅

[[let . . .]]{c 7→ c[], skA 7→ skA[], skB 7→ skB []}∅

[[c〈pkA〉 . . .]]ρ0∅

ρ0 = {c 7→ c[], skA 7→ skA[], skB 7→ skB [],

pkA 7→ pk(skA[]), pkB 7→ pk(skB [])}

[[!PA | !PB]]ρ0∅

∪ {mess(c[], pk(skA[])), comes from c〈pkA〉

mess(c[], pk(skB []))} comes from c〈pkB〉

[[PA]]ρ0∅ ∪ [[PB]]ρ0∅ ∪ {attacker(pk(skA[])), attacker(pk(skB []))}

Note: attacker(M) is equivalent to mess(c[], M) when c ∈ S ,
by (Listen) and (Send).

Bruno Blanchet (CNRS) ProVerif March 2009 62 / 77

Example: protocol clauses (A)

[[PA]]ρ0∅

[[(νk) . . .]] ρ0[x pkB 7→ xpkB
] mess(c[], xpkB

)

[[c〈pencrypt(. . .)〉 . . .]] ρ0[x pkB 7→ xpkB
, k 7→ k[xpkB

]] mess(c[], xpkB
)

[[c(x) . . .]] ρ0[x pkB 7→ xpkB
, k 7→ k[xpkB

]] mess(c[], xpkB
)

∪ {mess(c[], xpkB
) → mess(c[], pencrypt(sign(k[xpkB

], skA[]), xpkB
))}

{mess(c[], xpkB
) → mess(c[], pencrypt(sign(k[xpkB

], skA[]), xpkB
))}

Bruno Blanchet (CNRS) ProVerif March 2009 63 / 77

Example: protocol clauses (B)

[[PB]]ρ0∅

[[let y ′ . . .]] ρ0[y 7→ y] mess(c[], y)

[[let k . . .]] ρ0[y 7→ pencrypt(y ′, pk(skB [])), y ′ 7→ y ′]

mess(c[], pencrypt(y ′, pk(skB [])))

[[c〈. . .〉]] ρ0[y 7→ pencrypt(sign(k , skA[]), pk(skB [])), y ′ 7→ sign(k , skA[]),

k 7→ k] mess(c[], pencrypt(sign(k , skA[]), pk(skB [])))

{mess(c[], pencrypt(sign(k , skA[]), pk(skB []))) → mess(c[], sencrypt(s, k))}

Bruno Blanchet (CNRS) ProVerif March 2009 64 / 77

Proof of secrecy

Closed process: P0

Initial knowledge of the adversary: S finite set of names
Clauses for the protocol and the adversary: RP0,S .

Theorem

If attacker(s) cannot be derived from RP0,S ,

then P0 preserves the secrecy of s from S.

Theorem

If solveRP0,S
(attacker(s)) = ∅,

then P0 preserves the secrecy of s from S.

Bruno Blanchet (CNRS) ProVerif March 2009 65 / 77

Example

For the Denning-Sacco protocol, attacker(s) is derivable from the clauses.

The derivation corresponds to the description of the known attack.

For the corrected version, attacker(s) is not derivable from the clauses:
s is secret.

Bruno Blanchet (CNRS) ProVerif March 2009 66 / 77

Comparison with typing [Abadi, Blanchet, POPL’02 and
JACM’05]

We have defined a generic type system for the explained variant of the
spi-calculus.

Theorem

A secrecy property can be proved by the Horn clause verifier

⇔
it can be proved by any instance of the type system.

A tight relation between two superficially different frameworks.

Bruno Blanchet (CNRS) ProVerif March 2009 67 / 77

Extension to equational theories: Diffie-Hellman

Goal: Establish a shared key between two participants

Message 1. A → B : gn0 n0 fresh

Message 2. B → A : gn1 n1 fresh

A computes k = (gn1)n0 , B computes k = (gn0)n1 .
The exponentiation is such that these quantities are equal.

(gn1)n0 = (gn0)n1

The exponentiation is computed in Z
∗
p, where p is a prime and g generator

of Z
∗
p.

Bruno Blanchet (CNRS) ProVerif March 2009 68 / 77

Extension to equational theories: Diffie-Hellman example

Simplified version of the secure shell protocol (SSH):

Message 1. C → S : KExDHInit, gn0 n0 fresh

Message 2. S → C : KExDHReply , pkS , gn1 , {h}skS
n1 fresh

where K = (gn1)n0 = (gn0)n1

and h = H((pkS , gn0 , gn1 , K)).
K and h are shared secrets between C (client) and S (server).
They are used to compute encryption keys.

Bruno Blanchet (CNRS) ProVerif March 2009 69 / 77

Extension to equational theories: other examples

XOR: associative, commutative, xor(x , x) = 0, xor(x , 0) = x

Primitives whose success is not observable
(for decryption for instance)

sdecrypt(sencrypt(x , y), y) = x

sencrypt(sdecrypt(x , y), y) = x

Subtle interactions between primitives
Example: XOR and crc

crc(xor(x , y)) = xor(crc(x), crc(y))

Bruno Blanchet (CNRS) ProVerif March 2009 70 / 77

Extension to equational theories

We have built algorithms that translate the equations into a set of rewrite
rules, which generates enough terms (equal modulo the equational theory).
[Blanchet, Abadi, Fournet, JLAP’08]

We have shown that, for each trace with equations, there is a
corresponding trace with rewrite rules, and conversely.

Efficient because it avoids unification modulo.
(Standard syntactic resolution can still be used.)

Still fairly limited, since it leads to non-termination for many equational
theories.
(For example, cannot handle theories that contain associativity.)

Bruno Blanchet (CNRS) ProVerif March 2009 71 / 77

Extension to equational theories: Diffie-Hellman

Equation:
(g^x)^y = (g^y)^x

is translated into the rewrite rules:

g → g x^y → x^y (g^x)^y → (g^y)^x

Terms may have several normal forms: applying ^ to g^x and y yields two
normal forms of (g^x)^y : (g^x)^y and (g^y)^x .

Bruno Blanchet (CNRS) ProVerif March 2009 72 / 77

Extension to equational theories: encryption

Equations:

sdecrypt(sencrypt(x , y), y) = x

sencrypt(sdecrypt(x , y), y) = x

are translated into the rewrite rules:

sdecrypt(x , y) → sdecrypt(x , y) sencrypt(x , y) → sencrypt(x , y)

sdecrypt(sencrypt(x , y), y) → x sencrypt(sdecrypt(x , y), y) → x

Each term has a single normal form, irreducible by
sdecrypt(sencrypt(x , y), y) → x and sencrypt(sdecrypt(x , y), y) → x .

Bruno Blanchet (CNRS) ProVerif March 2009 73 / 77

Extension to equational theories

Unification modulo the equational theory could be used,
for example to handle associativity and commutativity.

Better model of Diffie-Hellman (modelling the multiplicative group
plus the exponentiation).
[Meadows, Narendran, WITS’02]
[Goubault-Larrecq, Roger, Verma, JLAP’04]

XOR
[Comon, Shmatikov, LICS’03]
[Chevalier, Küsters, Rusinowitch, Turuani, LICS’03]
(Bounded number of sessions)

Bruno Blanchet (CNRS) ProVerif March 2009 74 / 77

Conclusion: Some other results

Automatic proof of correspondence assertions (authentication)
[Blanchet, JCS, to appear]

Automatic proof of strong secrecy [Blanchet, Oakland’04] and other
observational equivalences [Blanchet, Abadi, Fournet, LICS’05 and
JLAP’08]

Reconstruction of attacks from derivations
[Allamigeon, Blanchet, CSFW’05]

Case studies: Certified email protocol [Abadi, Blanchet, SAS’03],
JFK [Abadi, Blanchet, Fournet, ESOP’04], Plutus [Blanchet,
Chaudhuri, S&P’08]

Software and papers at www.proverif.ens.fr

Bruno Blanchet (CNRS) ProVerif March 2009 75 / 77

Conclusion: Advantages of this technique

A particularly efficient verifier

Can handle complex protocols (JFK, . . .)

Unbounded number of runs of the protocol
Unbounded message size

⇒ Can be used for certification of protocols

Can prove various properties: secrecy, correspondences, observational
equivalence

Can handle a wide range of cryptographic primitives, specified by
rewrite rules or by equations.

Bruno Blanchet (CNRS) ProVerif March 2009 76 / 77

Conclusion: Limitations

The proofs are done in the Dolev-Yao model. We would like
automatic proof of protocols in a computational setting.
There is a recent tool for that: CryptoVerif.

The proofs are done on a model of the protocol. We would like
automatic proof of implementations of protocols
(Already some work, for example [Goubault-Larrecq, Parennes,
VMCAI’05], [Bhargavan, Fournet, Gordon, Tse, CSFW’06])

Bruno Blanchet (CNRS) ProVerif March 2009 77 / 77

