Automatic, computational proof of EKE using

CryptoVerif
(Work in progress)

Bruno Blanchet
blanchet@di.ens.fr

Joint work with David Pointcheval

CNRS, Ecole Normale Supérieure, INRIA, Paris

May 2010

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 1/20

Introduction

Motivation

e EKE (Encrypted Key Exchange):

e A password-based key exchange protocol.
e A non-trivial protocol.

o It took some time before getting a proper computational proof of this
protocol.

@ Our goal:

o Mechanize, and automate as far as possible, its proof using the
automatic computational protocol verifier CryptoVerif.
e This is an opportunity for several interesting extensions of CryptoVerif.

This work is still in progress.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 2 /20

Introduction

EKE

We consider the variant of EKE of [Bresson, Chevassut, Pointcheval,
CCS'03].

Client U Server S
shared pw
x & 1q-1]
Xe—g< 25 y B q-q
Y — g
S,y*
Y e DY) S v (V)
Ky« Y~

Auth — H1(U[[S||X||Y||Ku)
sky — Ho(U||S|IX||Y||Ky) 220 Ky — x¥

if Auth = H1(U||S||X]||Y]||Ks) then
sks — Ho(U[|S|IX[[Y][Ks)

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 3 /20

Introduction

EKE

@ The proof relies on the Computational Diffie-Hellman assumption and
on the Ideal Cipher Model.
e = Model these assumptions in CryptoVerif.
@ The proof uses Shoup's lemma:
e Insert an event and later prove that the probability of this event is
negligible.
e = Implement this reasoning technique in CryptoVerif.
@ The probability of success of an attack must be precisely evaluated as
a function of the size of the password space.
e = Optimize the computation of probabilities in CryptoVerif.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 4 /20

Assumptions

Computational Diffie-Hellman assumption

Consider a multiplicative cyclic group G of order g, with generator g.
A probabilistic polynomial-time adversary has a negligible probability of
computing g from g, g2, g°, for random a, b € ZLg.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 5 /20

Assumptions

Computational Diffie-Hellman assumption in CryptoVerif

Consider a multiplicative cyclic group G of order g, with generator g.
A probabilistic polynomial-time adversary has a negligible probability of
computing g from g, g2, g°, for random a, b € ZLg.

In CryptoVerif, this can be written

1'=N new a: Z;new b : Z;(OA() := exp(g, a), OB() := exp(g; b),
!i’SN'OCDH(Z : G) =z = exp(g, mU/t(aa b)))

=N new a: Z;new b : Z;(OA() := exp(g, a), OB() := exp(g; b),
!i’SN'OCDH(z . G) := false)

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 5 /20

Assumptions

Computational Diffie-Hellman assumption in CryptoVerif

Consider a multiplicative cyclic group G of order g, with generator g.
A probabilistic polynomial-time adversary has a negligible probability of
computing g from g, g2, g°, for random a, b € ZLg.

In CryptoVerif, this can be written

1'=N new a: Z;new b : Z;(OA() := exp(g, a), OB() := exp(g; b),
!i’SN'OCDH(Z : G) =z = exp(g, mU/t(aa b)))

=N new a: Z;new b : Z;(OA() := exp(g, a), OB() := exp(g; b),
!i’SN'OCDH(z . G) := false)

Application: semantic security of hashed El Gamal in the random oracle
model (A. Chaudhuri).

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 5/ 20

Assumptions

Computational Diffie-Hellman assumption in CryptoVerif

This model is not sufficient for EKE and other practical protocols.
@ It assumes that a and b are chosen under the same replication.

@ In practice, one participant chooses a, another chooses b,
so these choices are made under different replications.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 6 /20

Assumptions

Computational Diffie-Hellman assumption in CryptoVerif

118=Na new a: Z; (OA() := exp(g, a), 0a() := a,
iaCDH=naCDH O CDHa(m : G,j < Nb) := m = exp(g, mult(b[j], a))),

1b<Nb new b : Z; (0B() := exp(g, b), Ob() := b,
1ibCDH<nbCDH O CDHp(m : G, j < Na) := m = exp(g, mult(a[j], b)))

112<Na new a: Z; (OA() := exp(g, a), Oa() := let ka = mark in a,
iaCDH=naCDH O CDHa(m : G,j < Nb) :=
find u < nb suchthat defined(kb[u], b[u]) A b[j] = b[u] then
m = exp(g, mult(b[j], a))
else if defined(ka) then m = exp(g, mult(b[j], a)) else false),
1b<Nb new b : Z; (0B() := exp(g, b), Ob() := let kb = mark in b,

1ibCDH<nbCDH O CDHp(m : G, j < Na) := (symmetric of OCDHa))

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 7 /20

Assumptions

Computational Diffie-Hellman assumption in CryptoVerif

11=Na new a: Z; (OA() := exp(g, a), 0a()[3] := a,

iaCDH=naCDH O CDHa(m : G, j < Nb)[required] := m = exp(g, mult(b[j],
Ib<Nb new b : Z; (0OB() := exp(g, b), Ob()[3] := b,

|bCDH<nbCDH OCDHb(m : G, j < Na) := m = exp(g, mult(a[j], b)))

~ (# OCDHa-+# OCDHb) x max(1,e2# Oa) x max(1,e2# Ob) x
pCDH(time+(na+nb+# OCDHa++# OCDHb) x time(exp))

118N new a: Z; (0OA() := exp/(g, a), Oa() := let ka = mark in a,
iaCDH=naCDH O CDHa(m : G,j < Nb) :=
find v < nb suchthat defined(kb[u], b[u]) A b[j] = b[u] then
m = exp(g, mult(b[j], a))
else if defined(ka) then m = exp/(g, mult(b[j], a)) else false),
1b<Nb new b : Z; (OB() := exp/(g, b), Ob() := let kb = mark in b,
|ibCDH<nbCDH O CDHp(m : G, j < Na) := (symmetric of OCDHa))

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 7 /20

Assumptions

Other declarations for Diffie-Hellman (1)

g:G generator of G
exp(G,Z) : G exponentiation
mult(Z,Z) : Z commutative product in Zg

exp(exp(z, a), b) = exp(z, mult(a, b)) (z7)b = 2%
(g7)? = g?" and (g)? = g"?, equal by commutativity of mult
(exp(g, x) = exp(g.y)) = (x =)

(exp'(g,x) = exp'(g,y)) = (x = y)
Injectivity
new x1:Z:;new x2: Z;new x3: Z;new x4 : Z;
mult(x1,x2) = mult(x3, x4)

~1/1z|
(x1 =x3Ax2=x4)V (x1 =x4Ax2=x3)

Collision between products

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 8 /20

Assumptions

Other declarations for Diffie-Hellman (2)

1'<Nnew X : G; OX() := X
~o [manual] "SNnew x : Z; 0X() := exp(g, x)
This equivalence is very general, apply it only manually.
1SNnew X : G; (0X() := X, V"N OXm(m : Z)[required] := exp(X, m))
~0
1'<Nnew x : Z; (0X() := exp(g, x), !i/SNIOXm(m : Z) = exp(g, mult(x, m))

This equivalence is a particular case applied only when X is inside exp,
and good for automatic proofs.

l'Nnew x : Z; 0X() := exp(g, x)
~o '“Nnew X : G; OX() :== X

And the same for exp’.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 9 /20

Assumptions

Extensions for CDH

The implementation of the support for CDH required two extensions of
CryptoVerif:

@ An array index j occurs as argument of a function.

@ The equality test m = exp(g, mult(b, a)) typically occurs inside the
condition of a find.

o This find comes from the transformation of a hash function in the
Random Oracle Model.

After transformation, we obtain a find inside the condition of a find.

We added support for these constructs in CryptoVerif.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 10 / 20

Assumptions

The ldeal Cipher Model

@ For all keys, encryption and decryption are two inverse random
permutations, independent of the key.
e Some similarity with SPRP ciphers but, for the ideal cipher model, the
key need not be random and secret.
@ In CryptoVerif, we replace encryption and decryption with lookups in
the previous computations of encryption/decryption:
o If we find a matching previous encryption/decryption, we return the
previous result.
e Otherwise, we return a fresh random number.
o We eliminate collisions between these random numbers to obtain
permutations.

@ No extension of CryptoVerif is needed to represent the Ideal Cipher
Model.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 1 /20

On Shoup’s lemma

Shoup's lemma

Game 0

| probability p
Game n

] Pr[event e in game n+ 1]
Game n+1 evente

| probability p’
Game n’ event e never executed

no attack

Pr[attack in game 0]
< Pr[dist. 0/n] + Pr[dist. n/n+ 1]+ Pr[dist. n+1/n]
< Pr[dist. 0/n] + Pr[event e in game n+ 1] + Pr[dist. n+ 1/n]
< Pr[dist. 0/n] + Pr[dist. n+1/n'] + Pr[dist. n+1/n']
<p+2p

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 12 /20

On Shoup’s lemma

Improved version with sets of traces

Game 0

1] |
1[ple] |

Gamen+1 evente

I p p/ no event e

Game n’ event e never executed
no attack

Game n

Tr(attack in game 0)
C Tr(dist. 0/n) U Tr(dist. n/n+ 1)+ Tr(dist. n+1/n")
C Tr(dist. 0/n) U Tr(event e in game n+ 1) U Tr(dist. n+ 1/n)
C Tr(dist. 0/n) U Tr(dist. n+1/n")U Tr(dist. n+ 1/n’)
So Pr[attack in game 0] < p+ p'.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 13 /20

On Shoup’s lemma

Impact on EKE

@ The proof of [Bresson et al, CCS'03] uses the standard Shoup lemma.
Probability of an attack:

cdh(

3 x % + 8qp x SuccE"(t') + collision terms

@ s interactions with the parties
@ gp hash queries
o dictionary size N

@ With the previous remark and the same proof, we obtain instead:

7\7 + gn x Succ@"(¢') + collision terms

@ The adversary can test one password per interaction with the parties.

This remark is general: it is not specific to EKE or to CryptoVerif, and can
be used in any proof by sequences of games.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 14 /20

The proof

CryptoVerif input

CryptoVerif takes as input:
@ The assumptions on security primitives: CDH, Ideal Cipher Model,
Random Oracle Model.
e These assumptions are formalized in a library of primitives. The user
does not have to redefine them.
@ The initial game that represents the protocol EKE:

Code for the client

o Code for the server

Code for sessions in which the adversary listens but does not modify
messages (passive eavesdroppings)

Encryption, decryption, and hash oracles

@ The security properties to prove:

e Secrecy of the keys sky and sks
o Authentication of the client to the server

e Manual proof indications (see next slide)

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 15 / 20

The proof

Manual proof indications

@ The proof uses two events corresponding to the two cases in which
the adversary can guess the password:

e The adversary impersonates the server by encrypting a Y of its choice
under the right password pw, and sending it to the client.
e The adversary impersonates the client by sending a correct
authenticator Auth that it built to the server.
@ The manual proof indications consist in manually inserting these two
events.
After that, one runs the automatic proof strategy of CryptoVerif.

@ All manual commands are checked by CryptoVerif, so that an
incorrect proof cannot be produced.

@ CryptoVerif cannot guess where events should be inserted.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 16 / 20

Missing step

One argument is still missing to complete the proof:

@ The goal is to obtain a final game in which the password is not used
at all.

@ The encryptions/decryptions under the password pw are transformed
into lookups that compare pw to keys used in other
encryption/decryption queries.

@ The result of some of these encryptions/decryptions becomes useless
after some transformations.
However, CryptoVerif is currently unable to remove the corresponding
lookups that compare with pw.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 17 /20

A possible solution

@ Move the choice of the (random) result of encryption/decryption to
the point at which it is used.

e This point is typically another encryption/decryption query in which we
compared with a previous query.

o After simplification, we end up with finds that have several branches
that execute the same code up to variable names.

@ Merge these branches, thus removing the test of the find, which
included the comparison with pw.

e This merging is delicate because the code differs by the variable names,
and there exist finds on these variables.

e The branches of these finds must also be merged simultaneously.

This solution is still to verify and implement.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 18 / 20

Final step

Assuming the previous step is implemented:
@ We obtain a game in which the only uses of pw are:
o Comparison between dec(Y*, pw) and an encryption query
¢ = enc(p, k) of the adversary: ¢ = Y* A k = pw, in the client.
o Comparison between Y = dec(Y™*, pw) (obtained from
Y* = enc(Y,pw)) and a decryption query p = dec(c, k) of the
adversary: p =Y A k = pw, in the server.

@ We eliminate collisions between the password pw and other keys.
@ The difference of probability can be evaluated in two ways:
o (ge +ap)/N

@ The password is compared with keys k from
ge encryption queries and gp decryption queries.
o Dictionary size N.

° (NU + Ns)/N

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 19 /20

Final step

Assuming the previous step is implemented:
@ We obtain a game in which the only uses of pw are:
e Comparison between dec(Y™, pw) and an encryption query
¢ = enc(p, k) of the adversary: ¢ = Y* A k = pw, in the client.
o Comparison between Y = dec(Y*, pw) (obtained from
Y* = enc(Y, pw)) and a decryption query p = dec(c, k) of the
adversary: p =Y A k = pw, in the server.

@ We eliminate collisions between the password pw and other keys.
@ The difference of probability can be evaluated in two ways:

o (ge +qp)/N
o (Ny+ Ng)/N

In the client, for each Y™, there is at most one encryption query with
¢ = Y™ so the password is compared with one key for each session of
the client.

Similar situation for the server.

Ny sessions of the client.

Ns sessions of the server.

Dictionary size N.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 19 /20

Final step

Assuming the previous step is implemented:
@ We obtain a game in which the only uses of pw are:
o Comparison between dec(Y™, pw) and an encryption query
¢ = enc(p, k) of the adversary: ¢ = Y* A k = pw, in the client.
o Comparison between Y = dec(Y*, pw) (obtained from
Y* = enc(Y, pw)) and a decryption query p = dec(c, k) of the
adversary: p =Y A k = pw, in the server.
@ We eliminate collisions between the password pw and other keys.
@ The difference of probability can be evaluated in two ways:
o (ge +ap)/N
° (NU + Ng)/N
The second bound is the best: the adversary can make many
encryption /decryption queries without interacting with the protocol.
o We extended CryptoVerif so that it can find the second bound.
o We give it the information that the encryption/decryption queries are
non-interactive, so that it prefers the second bound.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 19 /20

Conclusion

Conclusion

The case study of EKE is interesting for itself, but it is even more
interesting by the extensions it required in CryptoVerif:

@ Treatment of the Computational Diffie-Hellman assumption.
@ New manual game transformations, in particular for inserting events.
@ Optimization of the computation of probabilities for Shoup’s lemma.

@ Other optimizations of the computation of probabilities in
CryptoVerif.

These extensions are of general interest.

Bruno Blanchet (CNRS, ENS, INRIA) EKE in CryptoVerif May 2010 20 / 20

	Introduction
	Assumptions
	On Shoup's lemma
	The proof
	To do
	Conclusion

