	Assumptions	On Shoup's lemma	The proof		Conclusion		
	Automatic. c	omputational	proof of E	KE usin	g		
CryptoVerif (Work in progress)							
		(vvork in prog	ressj				
_							

Bruno Blanchet blanchet@di.ens.fr

Joint work with David Pointcheval

CNRS, École Normale Supérieure, INRIA, Paris

May 2010

Introduction	Assumptions	On Shoup's lemma	The proof	Conclusion
Motivatio	on			

• EKE (Encrypted Key Exchange):

- A password-based key exchange protocol.
- A non-trivial protocol.
- It took some time before getting a proper computational proof of this protocol.

• Our goal:

- Mechanize, and automate as far as possible, its proof using the automatic computational protocol verifier CryptoVerif.
- This is an opportunity for several interesting extensions of CryptoVerif.

This work is still in progress.

Introduction	Assumptions	On Shoup's lemma	The proof	Conclusion
EKE				

We consider the variant of EKE of [Bresson, Chevassut, Pointcheval, CCS'03].

Client U		Server S
S	hared <i>p</i> ı	N
$x \stackrel{R}{\leftarrow} [1, q-1]$		
$X \leftarrow g^x$	$\xrightarrow{U,X}$	$y \stackrel{R}{\leftarrow} [1, q-1]$
		$Y \leftarrow g^y$
$Y \leftarrow \mathcal{D}_{pw}(Y^*)$	$\underbrace{S,Y^*}$	$Y^* \leftarrow \mathcal{E}_{pw}(Y)$
$K_U \leftarrow Y^{\times}$		
$Auth \leftarrow \mathcal{H}_1(U S X Y K_U)$		
$sk_U \leftarrow \mathcal{H}_0(U S X Y K_U)$	\xrightarrow{Auth}	$K_s \leftarrow X^y$
		if $Auth = \mathcal{H}_1(U S X Y K_S)$ then
		$sk_{S} \leftarrow \mathcal{H}_{0}(U S X Y K_{S})$

Introduction	Assumptions	On Shoup's lemma	The proof	Conclusion
EKE				

- The proof relies on the Computational Diffie-Hellman assumption and on the Ideal Cipher Model.
 - $\bullet \ \Rightarrow$ Model these assumptions in CryptoVerif.
- The proof uses Shoup's lemma:
 - Insert an event and later prove that the probability of this event is negligible.
 - $\bullet \Rightarrow$ Implement this reasoning technique in CryptoVerif.
- The probability of success of an attack must be precisely evaluated as a function of the size of the password space.
 - $\bullet \ \Rightarrow$ Optimize the computation of probabilities in CryptoVerif.

	Assumptions	On Shoup's lemma	The proof	Conclusion
Computa	ational Diffi	e-Hellman ass	umption	

Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a , g^b , for random $a, b \in \mathbb{Z}_q$. Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a , g^b , for random $a, b \in \mathbb{Z}_q$.

In CryptoVerif, this can be written

$$!^{i \leq N}$$
 new $a : Z$; new $b : Z$; $(OA() := exp(g, a), OB() := exp(g, b),$
 $!^{i' \leq N'} OCDH(z : G) := z = exp(g, mult(a, b)))$
 \approx
 $!^{i \leq N}$ new $a : Z$; new $b : Z$; $(OA() := exp(g, a), OB() := exp(g, b),$
 $!^{i' \leq N'} OCDH(z : G) := false)$

. . . .

Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a , g^b , for random $a, b \in \mathbb{Z}_q$.

In CryptoVerif, this can be written

$$l^{i \leq N} \text{ new } a : Z; \text{ new } b : Z; (OA() := exp(g, a), OB() := exp(g, b),$$
$$l^{i' \leq N'} OCDH(z : G) := z = exp(g, mult(a, b))) \approx$$
$$l^{i \leq N} \text{ new } a : Z; \text{ new } b : Z; (OA() := exp(g, a), OB() := exp(g, b),$$
$$l^{i' \leq N'} OCDH(z : G) := false)$$

Application: semantic security of hashed El Gamal in the random oracle model (A. Chaudhuri).

This model is not sufficient for EKE and other practical protocols.

- It assumes that *a* and *b* are chosen under the same replication.
- In practice, one participant chooses *a*, another chooses *b*, so these choices are made under different replications.

IntroductionAssumptionsOn Shoup's lemmaThe proofTo doConclusionComputational Diffie-Hellman assumption in CryptoVerif
$$|^{ia \leq Na}$$
 new $a: Z; (OA() := exp(g, a), Oa()[3] := a,$ $|^{ia CDH \leq na CDH} OCDHa(m: G, j \leq Nb)[required] := m = exp(g, mult(b[j], d))$ $|^{ia CDH \leq na CDH} OCDHa(m: G, j \leq Nb)[required] := m = exp(g, mult(b[j], d))$ $|^{ib \leq Nb}$ new $b: Z; (OB() := exp(g, b), Ob()[3] := b,$ $|^{ib CDH \leq nb CDH} OCDHb(m: G, j \leq Na) := m = exp(g, mult(a[j], b)))$ $^{~}$ (#OCDHa+#OCDHb)×max(1,e²#Oa)×max(1,e²#Ob)×
 $pCDH(time+(na+nb+#OCDHa+#OCDHb)×time(exp))$ $|^{ia \leq Na}$ new $a: Z; (OA() := exp'(g, a), Oa() := let ka = mark in a,$ $|^{ia CDH \leq na CDH} OCDHa(m: G, j \leq Nb) :=$ find $u \leq nb$ suchthat defined($kb[u], b[u]$) $\land b[j] = b[u]$ then
 $m = exp(g, mult(b[j], a)$)else if defined(ka) then $m = exp'(g, mult(b[j], a))$ else false), $|^{ib \leq Nb}$ new $b: Z; (OB() := exp'(g, b), Ob() := let kb = mark in b,$ $|^{ib \leq Nb}$ new $b: Z; (OB() := exp'(g, b), Ob() := let kb = mark in b,$ $|^{ib \leq Nb}$ new $b: Z; (OB() := exp'(g, b), Ob() := let kb = mark in b,$ $|^{ib \leq Nb}$ new $b: Z; (OB() := exp'(g, b), Ob() := let kb = mark in b,$ $|^{ib \leq Nb}$ new $b: Z; (OB() := exp'(g, b), Ob() := let kb = mark in b,$ $|^{ib \leq Nb}$ new $b: Z; (OB() := exp'(g, b), Ob() := let kb = mark in b,$ $|^{ib \leq Nb}$ new $b: Z; (OB(bm C) = bm C) = (symmetric of OCDHa)$

	Assumptions	On Shoup's lemma	The proof	Conclusion
Other de	eclarations for	or Diffie-Helln	nan (2)	

$$!^{i \le N} \mathbf{new} \ X : G; OX() := X$$

$$\approx_0 [\text{manual}] \ !^{i \le N} \mathbf{new} \ x : Z; OX() := exp(g, x)$$

This equivalence is very general, apply it only manually.

$$\mathbb{P}^{i \leq N}$$
new $X : G; (OX() := X, \mathbb{P}^{i' \leq N'}OXm(m : Z)[required] := exp(X, m))$
 \approx_0

$$!^{i \leq N}$$
new $x : Z$; ($OX() := exp(g, x), !^{i' \leq N'}OXm(m : Z) := exp(g, mult(x, m))$

This equivalence is a particular case applied only when X is inside exp, and good for automatic proofs.

$$!^{i \leq N}$$
new $x : Z; OX() := exp(g, x)$
 $\approx_0 !^{i \leq N}$ new $X : G; OX() := X$

And the same for exp'.

Bruno Blanchet (CNRS, ENS, INRIA)

The implementation of the support for CDH required two extensions of CryptoVerif:

- An array index *j* occurs as argument of a function.
- The equality test m = exp(g, mult(b, a)) typically occurs inside the condition of a **find**.
 - This **find** comes from the transformation of a hash function in the Random Oracle Model.

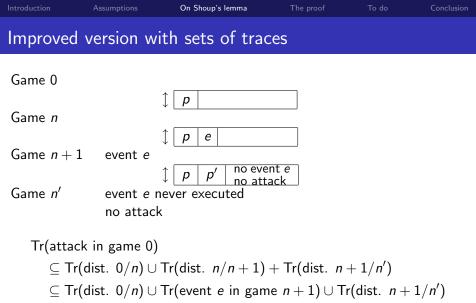
After transformation, we obtain a find inside the condition of a find.

We added support for these constructs in CryptoVerif.

	Assumptions	On Shoup's lemma	The proof	Conclusion
The Idea	l Cipher M	odel		

- For all keys, encryption and decryption are two inverse random permutations, independent of the key.
 - Some similarity with SPRP ciphers but, for the ideal cipher model, the key need not be random and secret.
- In CryptoVerif, we replace encryption and decryption with lookups in the previous computations of encryption/decryption:
 - If we find a matching previous encryption/decryption, we return the previous result.
 - Otherwise, we return a fresh random number.
 - We eliminate collisions between these random numbers to obtain permutations.
- No extension of CryptoVerif is needed to represent the Ideal Cipher Model.

	Assumptions	On Shoup's lemma	The proof		Conclusion
Shoup's I	emma				
Game 0 Game <i>n</i> Game <i>n</i> + 3 Game <i>n</i> '		 ↓ probability p ↓ Pr[event e in gate ↓ probability p' never executed 	ame <i>n</i> + 1]		
≤ Pı ≤ Pı ≤ Pı	r[dist. 0/ <i>n</i>] +] Pr[dist. $n/n + 1$] Pr[event e in gam Pr[dist. $n + 1/n'$]	the $n+1] + P$ + Pr[dist. n	r[dist. <i>n</i> + 1	, <u> </u>



 $\subseteq \mathsf{Tr}(\mathsf{dist.} \ 0/n) \cup \mathsf{Tr}(\mathsf{dist.} \ n+1/n') \cup \mathsf{Tr}(\mathsf{dist.} \ n+1/n')$

So $Pr[attack in game 0] \le p + p'$.

	Assumptions	On Shoup's lemma	The proof	Conclusion
Impact or	n EKE			

• The proof of [Bresson et al, CCS'03] uses the standard Shoup lemma. Probability of an attack:

$$3 imes rac{q_s}{N} + rac{q_s}{N} imes \operatorname{Succ}_G^{\operatorname{cdh}}(t') + \operatorname{collision} \operatorname{terms}$$

- q_s interactions with the parties
- q_h hash queries
- dictionary size N

• With the previous remark and the same proof, we obtain instead:

$$rac{q_s}{N} + q_h imes ext{Succ}_G^{ ext{cdh}}(t') + ext{collision terms}$$

• The adversary can test one password per interaction with the parties.

This remark is general: it is not specific to EKE or to CryptoVerif, and can be used in any proof by sequences of games.

Bruno Blanchet (CNRS, ENS, INRIA)

EKE in CryptoVerif

CryptoVerif takes as input:

- The assumptions on security primitives: CDH, Ideal Cipher Model, Random Oracle Model.
 - These assumptions are formalized in a library of primitives. The user does not have to redefine them.
- The initial game that represents the protocol EKE:
 - Code for the client
 - Code for the server
 - Code for sessions in which the adversary listens but does not modify messages (passive eavesdroppings)
 - Encryption, decryption, and hash oracles
- The security properties to prove:
 - Secrecy of the keys sk_U and sk_S
 - Authentication of the client to the server
- Manual proof indications (see next slide)

- The proof uses two events corresponding to the two cases in which the adversary can guess the password:
 - The adversary impersonates the server by encrypting a Y of its choice under the right password *pw*, and sending it to the client.
 - The adversary impersonates the client by sending a correct authenticator *Auth* that it built to the server.
- The manual proof indications consist in manually inserting these two events.

After that, one runs the automatic proof strategy of CryptoVerif.

- All manual commands are checked by CryptoVerif, so that an incorrect proof cannot be produced.
- CryptoVerif cannot guess where events should be inserted.

One argument is still missing to complete the proof:

- The goal is to obtain a final game in which the password is not used at all.
- The encryptions/decryptions under the password *pw* are transformed into lookups that compare *pw* to keys used in other encryption/decryption queries.
- The result of some of these encryptions/decryptions becomes useless after some transformations.
 However, CryptoVerif is currently unable to remove the corresponding lookups that compare with pw.

	Assumptions	On Shoup's lemma	The proof	To do	Conclusion
A possible	e solution				

- Move the choice of the (random) result of encryption/decryption to the point at which it is used.
 - This point is typically another encryption/decryption query in which we compared with a previous query.
- After simplification, we end up with **finds** that have several branches that execute the same code up to variable names.
- Merge these branches, thus removing the test of the **find**, which included the comparison with *pw*.
 - This merging is delicate because the code differs by the variable names, and there exist **find**s on these variables.
 - The branches of these **find**s must also be merged simultaneously.

This solution is still to verify and implement.

	Assumptions	On Shoup's lemma	The proof	To do	Conclusion
Final step)				

Assuming the previous step is implemented:

- We obtain a game in which the only uses of *pw* are:
 - Comparison between $dec(Y^*, pw)$ and an encryption query c = enc(p, k) of the adversary: $c = Y^* \land k = pw$, in the client.
 - Comparison between Y = dec(Y*, pw) (obtained from Y* = enc(Y, pw)) and a decryption query p = dec(c, k) of the adversary: p = Y ∧ k = pw, in the server.
- We eliminate collisions between the password *pw* and other keys.
- The difference of probability can be evaluated in two ways:
 - $(q_E + q_D)/N$
 - The password is compared with keys k from
 - q_E encryption queries and q_D decryption queries.
 - Dictionary size N.
 - $(N_U + N_S)/N$

	Assumptions	On Shoup's lemma	The proof	To do	Conclusion
Final step	1				

Assuming the previous step is implemented:

- We obtain a game in which the only uses of *pw* are:
 - Comparison between $dec(Y^*, pw)$ and an encryption query
 - c = enc(p, k) of the adversary: $c = Y^* \wedge k = pw$, in the client.
 - Comparison between Y = dec(Y*, pw) (obtained from Y* = enc(Y, pw)) and a decryption query p = dec(c, k) of the adversary: p = Y ∧ k = pw, in the server.
- We eliminate collisions between the password *pw* and other keys.
- The difference of probability can be evaluated in two ways:
 - $(q_E + q_D)/N$
 - $(N_U + N_S)/N$
 - In the client, for each Y*, there is at most one encryption query with c = Y* so the password is compared with one key for each session of the client.

Image: Image:

- Similar situation for the server.
- N_U sessions of the client.
- N_S sessions of the server.
- Dictionary size N.

	Assumptions	On Shoup's lemma	The proof	To do	Conclusion
Final step					

Assuming the previous step is implemented:

• We obtain a game in which the only uses of *pw* are:

- Comparison between $dec(Y^*, pw)$ and an encryption query c = enc(p, k) of the adversary: $c = Y^* \land k = pw$, in the client.
- Comparison between Y = dec(Y*, pw) (obtained from Y* = enc(Y, pw)) and a decryption query p = dec(c, k) of the adversary: p = Y ∧ k = pw, in the server.
- We eliminate collisions between the password *pw* and other keys.
- The difference of probability can be evaluated in two ways:
 - $(q_E + q_D)/N$
 - $(N_U + N_S)/N$

The second bound is the best: the adversary can make many encryption/decryption queries without interacting with the protocol.

- We extended CryptoVerif so that it can find the second bound.
- We give it the information that the encryption/decryption queries are non-interactive, so that it prefers the second bound.

	Assumptions	On Shoup's lemma	The proof	Conclusion
Conclusi	on			

The case study of EKE is interesting for itself, but it is even more interesting by the extensions it required in CryptoVerif:

- Treatment of the Computational Diffie-Hellman assumption.
- New manual game transformations, in particular for inserting events.
- Optimization of the computation of probabilities for Shoup's lemma.
- Other optimizations of the computation of probabilities in CryptoVerif.

These extensions are of general interest.