The Applied Pi Calculus... with Proofs

Bruno Blanchet

INRIA Paris-Rocquencourt

joint work with Martín Abadi and Cédric Fournet

April 2015
The applied pi calculus

- Designed by Abadi and Fournet (*Mobile Values, New Names, and Secure Communication*, POPL’01).
- Extension of the **pi calculus** with **terms** instead of names for messages.
- Language for modeling security protocols:
 - Terms represent protocol messages.
 - Function symbols represent cryptographic primitives.
 - The properties of these primitives are modeled by equations.
 - The input language of ProVerif is a dialect of the applied pi calculus.
- The applied pi calculus and ProVerif are widely used.
 - Interesting to make them converge, with a solid theoretical foundation.
Our contribution

- Minor changes to the language
 - Closer to ProVerif
- Detailed proofs of all results
 - Minor fixes; some side-conditions were not explicit
 - 74 pages of proofs...
- Revised examples
 - New example on indifferentiability
Related work

- Avik Chaudhuri (private communication, 2007)
 - found a counter-example to “observational equivalence equals labelled bisimilarity”, due to a missing side-condition.

- Bengtson et al, LICS’09
 - mentioned a similar counter-example;
 - proposed a framework for defining various extensions of the pi calculus (psi-calculi), with machine-checked proofs.

- Jia Liu (http://lcs.ios.ac.cn/~jliu/papers/LiuJia0608.pdf)
 - made the missing side-condition explicit, and gave a proof of “observational equivalence equals labelled bisimilarity”;
 - closer to the original applied pi calculus paper;
 - extension to a stateful variant (POST’14, with Arapinis, Ritter, and Ryan).
Syntax: processes

\[L, M, N, T, U, V ::= \]
\[a, b, c, \ldots, k, \ldots, m, n, \ldots, s \]
\[x, y, z \]
\[f(M_1, \ldots, M_l) \]

\[P, Q, R ::= \]
\[0 \]
\[P | Q \]
\[!P \]
\[\nu n. P \]
\[if \ M = N \ then \ P \ else \ Q \]
\[u(x).P \]
\[\overline{u}(M).P \]
Syntax: processes

\[L, M, N, T, U, V ::= \]
\[a, b, c, \ldots, k, \ldots, m, n, \ldots, s \]
\[x, y, z \]
\[f(M_1, \ldots, M_l) \]

\[P, Q, R ::= \]
\[0 \]
\[P \mid Q \]
\[!P \]
\[\nu n.P \]
\[if \ M = N \ then \ P \ else \ Q \]
\[N(x).P \]
\[\overline{N}\langle M\rangle.P \]
Syntax: extended processes

\[A, B, C ::= \]
- \(P \) extended processes
- \(A | B \) plain process
- \(\nu n.A \) parallel composition
- \(\nu x.A \) name restriction
- \(\{^M/x\} \) variable restriction
- \(\{^M/x\} \) active substitution

- Active substitutions model the knowledge of the adversary.
- \(\{^M_1/x_1, \ldots, ^M_l/x_l\} \) for \(\{^M_1/x_1\} | \ldots | \{^M_l/x_l\} \).
- Substitutions are cycle-free.
- At most one substitution for each variable.
- Exactly one when the variable is restricted.
Sorts

Variables, names, and functions come with sorts:

- $u : \tau$ means that u has sort τ.
 - Examples of sorts: Integer, Key, Data, …
 - There are infinite numbers of variables and names of each sort.
- $f : \tau_1 \times \cdots \times \tau_l \to \tau$ means that f has arguments of sorts τ_1, \ldots, τ_l and a result of sort τ.
Sorts

Special sort Channel\(\langle \tau \rangle\) for channels.
Special sort **Channel** for channels.

- The unsorted applied pi is a particular case of the sorted applied pi, using the single sort Channel.

The sort system enforces that:

- Functional applications are well-sorted.
- M and N are of the same sort in the conditional expression.
- N has sort Channel in the input and output expressions.

 - The sort system can enforce that channels are names or variables: choose types of functions so that no function returns sort Channel.

- Active substitutions preserve sorts.
Semantics: equations

The signature Σ is equipped with an **equational theory**
 - closed under substitutions of terms for variables and names;
 - intuitively, defined from equations that do not contain names;
 - respects the sort system;
 - **non-trivial**, that is, there exist two different terms in each sort.

Example

\[
\begin{align*}
\text{fst}((x, y)) & = x \\
\text{snd}((x, y)) & = y \\
\text{dec}(\text{enc}(x, y), y) & = x \\
\text{check}(x, \text{sign}(x, \text{sk}(y)), \text{pk}(y)) & = \text{ok}
\end{align*}
\]

Equality modulo the equational theory: $\Sigma \vdash M = N$.
Processes are considered equal modulo renaming of bound names and variables.

- Needed to define $P\{M/x\}$.

A context is a (possibly extended) process with a hole. An evaluation context is a context whose hole is not under a replication, a conditional, an input, or an output.

$$E ::=$$

- evaluation context
 - hole
 - parallel composition
 - parallel composition
 - name restriction
 - variable restriction

Bruno Blanchet (INRIA)
Applied pi calculus
April 2015
Semantics: structural equivalence

Structural equivalence ≡

- equivalence relation
- closed by application of evaluation contexts

\[
\begin{align*}
\text{Par-0} & \quad A ≡ A \mid 0 \\
\text{Par-A} & \quad A \mid (B \mid C) ≡ (A \mid B) \mid C \\
\text{Par-C} & \quad A \mid B ≡ B \mid A \\
\text{Repl} & \quad !P ≡ P \mid !P \\
\text{New-0} & \quad \nu n.0 ≡ 0 \\
\text{New-C} & \quad \nu u.\nu v.A ≡ \nu v.\nu u.A \\
\text{New-Par} & \quad A \mid \nu u.B ≡ \nu u.(A \mid B) \\
\text{Alias} & \quad \nu x.\{^M/x\} ≡ 0 \\
\text{Subst} & \quad \{^M/x\} \mid A ≡ \{^M/x\} \mid A\{^M/x\} \\
\text{Rewrite} & \quad \{^M/x\} ≡ \{^N/x\} \quad \text{when } \Sigma ⊢ M = N
\end{align*}
\]
Semantics: internal reduction

Internal reduction →

- closed by structural equivalence
- closed by application of evaluation contexts

\[
\text{COMM} \quad \overline{N}\langle x \rangle . P | N(x).Q \rightarrow P | Q
\]

\[
\text{THEN} \quad if \ M = M \ then \ P \ else \ Q \rightarrow P
\]

\[
\text{ELSE} \quad if \ M = N \ then \ P \ else \ Q \rightarrow Q
\]

for any ground terms \(M \) and \(N \) such that \(\Sigma \not\vdash M = N \)

Using structural equivalence:

\[
\overline{N}\langle M \rangle . P | N(x).Q \equiv \nu x. (\{M/x\} | \overline{N}\langle x \rangle . P | N(x).Q)
\]

\[
\rightarrow \nu x. (\{M/x\} | P | Q) \quad \text{by COMM}
\]

\[
\equiv P | Q\{M/x\}
\]
Preliminary definitions

- $\text{dom}(A)$: domain, set of variables that A exports.
- $\text{fv}(A)$: free variables
- A is closed when its free variables are all defined by an active substitution, that is, $\text{dom}(A) = \text{fv}(A)$.
- $E[_]$ closes A when $E[A]$ is closed.
- $A \downarrow \alpha$ when $A \rightarrow^* \equiv E[\alpha \langle M \rangle. P]$ for some evaluation context $E[_]$ that does not bind α.
 - A can send a message on channel α.

Bruno Blanchet (INRIA)
Applied pi calculus
April 2015
Observational equivalence

Definition

An observational bisimulation is a symmetric relation \mathcal{R} between closed extended processes with the same domain such that $A \mathcal{R} B$ implies:

1. if $A \Downarrow a$, then $B \Downarrow a$;
2. if $A \rightarrow^* A'$ and A' is closed, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B';

Observational equivalence (\approx) is the largest such relation.

- Intuitively, $A \approx B$ when an adversary (evaluation context) cannot distinguish A from B.
- Hard to prove because of the universal quantification over all contexts.
 - Use a labeled bisimulation.
A frame \(\varphi \) is an extended process built up from 0 and active substitutions \(\{M/x\} \) by parallel composition and restriction.

The frame of \(A \), \(\varphi(A) \), is obtained replacing every plain process in \(A \) with 0.

Definition

Two terms \(M \) and \(N \) are equal in the frame \(\varphi \), written \((M = N)\varphi \), if and only if

- \(\text{fv}(M) \cup \text{fv}(N) \subseteq \text{dom}(\varphi) \),
- \(\varphi \equiv \nu \tilde{n}.\sigma, M\sigma = N\sigma, \text{ and } \{\tilde{n}\} \cap (\text{fn}(M) \cup \text{fn}(N)) = \emptyset \)

for some names \(\tilde{n} \) and substitution \(\sigma \).

Independent of the representative \(\nu \tilde{n}.\sigma \).
Static equivalence

Definition

Two closed frames φ and ψ are statically equivalent, written $\varphi \approx_s \psi$, when

1. $\text{dom}(\varphi) = \text{dom}(\psi)$ and
2. for all terms M and N, $(M = N)\varphi$ if and only if $(M = N)\psi$.

Two closed extended processes are statically equivalent, written $A \approx_s B$, when their frames are statically equivalent.

- Static equivalence $\varphi \approx_s \psi$ expresses that the frames cannot be distinguished by performing equality tests.
- $A \approx_s B$ expresses that the current knowledge of the adversary in the processes A and B does not allow it to distinguish A from B. The dynamic behavior of A and B is ignored.
The labelled semantics defines $A \xrightarrow{\alpha} A'$ where α is a label:

- $N(M)$: input of M on channel N;
- $\nu x. N\langle x \rangle$: output of x on channel N.
 x must not occur in N.

\[
\begin{align*}
 bv(N(M)) & \overset{\text{def}}{=} \emptyset \quad \text{and} \quad bv(\nu x. N\langle x \rangle) \overset{\text{def}}{=} \{x\}. \\
 fv(N(M)) & \overset{\text{def}}{=} fv(N) \cup fv(M) \quad \text{and} \quad fv(\nu x. N\langle x \rangle) \overset{\text{def}}{=} fv(N).
\end{align*}
\]

The conference paper has labels $\bar{a}\langle u \rangle$ and $\nu u. \bar{a}\langle u \rangle$ for outputs.

- We simplify the semantics by having a single output label.
- One always needs to create a fresh variable for the output message.
- A refined semantics allows $\nu \tilde{u}. N\langle M \rangle$ as label.
Labeled semantics

\[N(x).P \xrightarrow{N(M)} P\{M/x\} \]

\[\text{OUT-VAR} \quad x \notin \text{fv}(\bar{N}\langle M \rangle . P) \]

\[\bar{N}\langle M \rangle . P \xrightarrow{\nu x.\bar{N}\langle x \rangle} P \{M/x\} \]

\[\text{SCOPE} \quad A \xrightarrow{\alpha} A' \quad u \text{ does not occur in } \alpha \]

\[\nu u.A \xrightarrow{\alpha} \nu u.A' \]

\[\text{PAR} \quad A \xrightarrow{\alpha} A' \quad \text{bv}(\alpha) \cap \text{fv}(B) = \emptyset \]

\[A \parallel B \xrightarrow{\alpha} A' \parallel B \]

\[\text{STRUCT} \quad A \equiv B \]

\[B \xrightarrow{\alpha} B' \]

\[B' \equiv A' \]

\[A \xrightarrow{\alpha} A' \]
A labelled bisimulation is a symmetric relation \mathcal{R} on closed extended processes such that $A \mathcal{R} B$ implies:

1. $A \approx_s B$;
2. if $A \rightarrow A'$ and A' is closed, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B';
3. if $A \overset{\alpha}{\rightarrow} A'$, A' is closed, and $fv(\alpha) \subseteq dom(A)$, then $B \rightarrow^* \overset{\alpha}{\rightarrow} \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B'.

Labelled bisimilarity (\approx_1) is the largest such relation.

- Item 1 guarantees that the adversary cannot distinguish A from B using its current knowledge.
- Items 2 and 3 guarantee that this property is preserved by reduction.
Observational equivalence is labelled bisimilarity: $\approx = \approx_1$.
Bengtson et al’s counter example

\[A = \nu a. (\{^a/x\} \mid x(y). b\langle M\rangle.0) \quad B = \nu a. (\{^a/x\} \mid 0) \]

- \(A \) and \(B \) are not observationally equivalent
 - The context \(x\langle N\rangle \) distinguishes them.
- According to the POPL’01 paper:
 - \(A \) and \(B \) have the same frame and no transitions,
 - so they are labelled bisimilar.
- A possible fix is to require that exported variables must not be of channel type.
- In our semantics,
 - \(A \) has a labelled transition \(x(N) \),
 - so \(A \) and \(B \) are not labelled bisimilar.
Motivation

- Structural equivalence complicates the analysis of possible reductions in a process.
- In a process $A | B$,
 - substitutions in A may influence the possible reductions in B,
 - and conversely, substitutions in B may influence reductions in A.
Partial normal forms

Partial formal form of an extended process A:

$$\text{pnf}(A) = \nu \tilde{n}.(\{\tilde{M}/\tilde{x}\} \mid P)$$

with $(fv(P) \cup fv(\tilde{M})) \cap \{\tilde{x}\} = \emptyset$.

Formally defined by induction on A.

Lemma

$A \equiv \text{pnf}(A)$.
Structural equivalence \(\equiv\) on plain processes

- equivalence relation
- closed by application of evaluation contexts

\[
\begin{align*}
\text{Par-0'} & \quad P \parallel 0 \equiv P \\
\text{Par-A'} & \quad P \parallel (Q \parallel R) \equiv (P \parallel Q) \parallel R \\
\text{Par-C'} & \quad P \parallel Q \equiv Q \parallel P \\
\text{Repl'} & \quad !P \equiv P \parallel !P \\
\text{New-0'} & \quad \nu n.0 \equiv 0 \\
\text{New-C'} & \quad \nu n.\nu n'.P \equiv \nu n'.\nu n.P \\
\text{New-Par'} & \quad P \parallel \nu n.Q \equiv \nu n.(P \parallel Q) \quad \text{when } n \not\in fn(P) \\
\text{Rewrite'} & \quad P\{M/x\} \equiv P\{N/x\} \quad \text{when } \Sigma \vdash M = N
\end{align*}
\]
Structural equivalence on partial normal forms

Structural equivalence \(\overset{\circ}{\equiv} \) on extended processes in partial normal form

- equivalence relation

\[
P \overset{\circ}{\equiv} P' \quad (\text{fv}(P) \cup \text{fv}(P')) \cap \text{dom}(\sigma) = \emptyset
\]

\[
\nu \tilde{n}.(\sigma \mid P) \overset{\circ}{\equiv} \nu \tilde{n}.(\sigma \mid P')
\]

\(\tilde{n}' \) is a reordering of \(\tilde{n} \)

\[
\nu \tilde{n}.(\sigma \mid P) \overset{\circ}{\equiv} \nu \tilde{n}'.(\sigma \mid P)
\]

\(n' \notin \text{fn}(\sigma) \)

\[
\nu \tilde{n}.(\sigma \mid \nu n'.P) \overset{\circ}{\equiv} \nu \tilde{n}, n'.(\sigma \mid P)
\]

\[
\text{dom}(\sigma) = \text{dom}(\sigma') \quad \Sigma \vdash x\sigma = x\sigma' \text{ for all } x \in \text{dom}(\sigma)
\]

\[
(\text{fv}(x\sigma) \cup \text{fv}(x\sigma')) \cap \text{dom}(\sigma) = \emptyset \text{ for all } x \in \text{dom}(\sigma)
\]

\[
\nu \tilde{n}.(\sigma \mid P) \overset{\circ}{\equiv} \nu \tilde{n}.(\sigma' \mid P)
\]
Links between structural equivalences

Lemma

- If \(A \equiv B \), then \(\text{pnf}(A) \circ \equiv \text{pnf}(B) \).
- If \(P \hat{\cdot} Q \), then \(P \equiv Q \).
- If \(A \hat{\circ} B \), then \(A \equiv B \).

By induction on the derivations.
Internal reduction

Internal reduction \rightarrow_{\diamond} on plain processes

- closed by \equiv

- closed by application of evaluation contexts
 \[
 \text{COMM' } \quad \overline{N}(M).P \mid N(x).Q \rightarrow_{\diamond} P \mid Q\{M/x\}
 \]
 \[
 \text{THEN' } \quad \text{if } M = M \text{ then } P \text{ else } Q \rightarrow_{\diamond} P
 \]
 \[
 \text{ELSE' } \quad \text{if } M = N \text{ then } P \text{ else } Q \rightarrow_{\diamond} Q
 \]

 for any ground terms M and N

 such that $\Sigma \not\vdash M = N$

Internal reduction \rightarrow_{\circ} on extended processes in partial normal form

- closed by \equiv

- $P \rightarrow_{\circ} P'$

- $\nu\tilde{n}.(\sigma \mid P) \rightarrow_{\circ} \nu\tilde{n}.(\sigma \mid P')$
Link between internal reductions

Lemma

- If $A \rightarrow B$, then $\text{pnf}(A) \rightarrow \circ \text{pnf}(B)$.
- If $P \rightarrow \circ Q$, then $P \rightarrow Q$.
- If $A \rightarrow \circ B$, then $A \rightarrow B$.

By induction on the derivations.
Labelled reduction on plain processes

Labelled reduction $P \xrightarrow{\alpha} A$ on plain processes

In

$$N(x).P \xrightarrow{N(M)} P\{M/x\}$$

Out-**V**ar

$$\begin{align*}
N(M).P & \xrightarrow{\nu x.\overline{N}⟨x⟩} P\{M/x\} \\
x & \notin \text{fv}(\overline{N}⟨M⟩.P)
\end{align*}$$

Scope

$$\begin{align*}
P & \xrightarrow{\alpha} A \\
n & \text{does not occur in } \alpha
\end{align*}$$

Par

$$\begin{align*}
P & \xrightarrow{\alpha} A \\
\text{bv}(\alpha) \cap \text{fv}(Q) & = \emptyset
\end{align*}$$

Struct

$$\begin{align*}
P & \equiv Q \\
Q & \xrightarrow{\alpha} B \\
B & \equiv A
\end{align*}$$

Bruno Blanchet (INRIA)
Applied pi calculus
April 2015
Labelled reduction $A \overset{\alpha}{\to} B$, where

- A is an extended process in partial normal form and
- B is an extended process

$$A \equiv \nu \tilde{n}.(\sigma | P) \quad P \overset{\alpha'}{\to} B' \quad B \equiv \nu \tilde{n}.(\sigma | B')$$

$$fv(\sigma) \cap bv(\alpha') = \emptyset \quad \Sigma \vdash \alpha \sigma = \alpha'$$

the elements of \tilde{n} do not occur in α

$$A \overset{\alpha}{\to} B$$
Links between labelled reductions

Lemma (Characterization of labelled reductions)

\[P \overset{\alpha}{\rightarrow} \diamond A \text{ if and only if for some } \tilde{n}, P_1, P_2, A_1, N, M, P', x, \]

\[P \equiv \nu\tilde{n}.(P_1 \mid P_2), A \equiv \nu\tilde{n}.(A_1 \mid P_2), \{\tilde{n}\} \cap \text{fn}(\alpha) = \emptyset, \]

\[\text{bv}(\alpha) \cap \text{fv}(P_1 \mid P_2) = \emptyset, \text{ and one of the following two cases holds:} \]

1. \(\alpha = N(M), P_1 = N(x).P', \text{ and } A_1 = P'\{M/x\}; \) or

2. \(\alpha = \nu x.N\langle x \rangle, P_1 = N\langle M \rangle. P', \text{ and } A_1 = P'\mid\{M/x\}. \)

Lemma

- If \(A \overset{\alpha}{\rightarrow} B, \text{ then } \text{pnf}(A) \overset{\alpha}{\rightarrow} \diamond B. \)
- If \(P \overset{\alpha}{\rightarrow} \diamond A, \text{ then } P \overset{\alpha}{\rightarrow} A. \)
- If \(A \overset{\alpha}{\rightarrow} \diamond B, \text{ then } A \overset{\alpha}{\rightarrow} B. \)
Lemma

Suppose that P_0 is closed, α is $\nu x.\overline{N}'\langle x \rangle$ or $N'(M')$ for some ground term N', and $P_0 \xrightarrow{\alpha} A$. Then one of the following cases holds:

1. $P_0 = P \mid Q$ and either $P \xrightarrow{\alpha} A'$ and $A \equiv A' \mid Q$, or $Q \xrightarrow{\alpha} A'$ and $A \equiv P \mid A'$, for some P, Q, and A';

2. $P_0 = \nu n.P$, $P \xrightarrow{\alpha} A'$, and $A \equiv \nu n.A'$ for some P, A', and n that does not occur in α;

3. $P_0 = !P$, $P \xrightarrow{\alpha} A'$, and $A \equiv A' \mid !P$ for some P and A';

4. $P_0 = N(x).P$, $\alpha = N'(M')$, $\Sigma \vdash N \equiv N'$, and $A \equiv P\{M'/x\}$ for some N, x, P, N', and M';

5. $P_0 = \overline{N}\langle M \rangle.P$, $\alpha = \nu x.\overline{N}'\langle x \rangle$, $\Sigma \vdash N \equiv N'$, $x \notin \text{fv}(P_0)$, and $A \equiv P\{M'/x\}$ for some N, M, P, x, and N'.
Lemma

If

- $\nu\tilde{n}.(\sigma \mid P)$ is a closed extended process in partial normal form,
- $\nu\tilde{n}.(\sigma \mid P) \xrightarrow{\alpha} A$,
- $fv(\alpha) \subseteq dom(\sigma)$, and
- the elements of \tilde{n} do not occur in α,

then $P \xrightarrow{\alpha\sigma} A'$, $A \equiv \nu\tilde{n}.(\sigma \mid A')$, and $bv(\alpha) \cap dom(\sigma) = \emptyset$ for some A'.
Composition of labelled reductions

Lemma

If

• \(P \) and \(Q \) are closed processes, \(N \) is a ground term,
• \(P \xrightarrow{N(x)} A \), and
• \(Q \xrightarrow{\nu x.\overline{N(x)}} B \),

then \(P | Q \xrightarrow{\circ} R \) and \(R \equiv \nu x.(A \mid B) \) for some \(R \).
Suppose that P_0 is a closed process and $P_0 \rightarrow_R$. Then one of the following cases holds:

1. $P_0 = P \mid Q$ for some P and Q, and one of the following cases holds:
 1. $P \rightarrow_R P'$ and $R \equiv P' \mid Q$ for some closed process P',
 2. $P \xrightarrow{N(x)} A$, $Q \xrightarrow{\nu x.N(x)} B$, and $R \equiv \nu x.(A \mid B)$ for some A, B, x, and ground term N,

 and two symmetric cases obtained by swapping P and Q;

2. $P_0 = \nu n.P$, $P \rightarrow_R Q'$, and $R \equiv \nu n.Q'$ for some n and some closed processes P and Q';

3. $P_0 = !P$, $P \mid P \rightarrow_R Q'$, and $R \equiv Q' \mid !P$ for some closed processes P and Q'.

4. $P_0 = \text{if } M = N \text{ then } P \text{ else } Q$ and either $\Sigma \vdash M = N$ and $R \equiv P$, or $\Sigma \vdash M \neq N$ and $R \equiv Q$, for some M, N, P, and Q.

Decomposition of internal reductions: partial normal forms

Lemma

If

- $\nu \tilde{n}.\left(\sigma \mid P\right)$ is a closed extended process in partial normal form and
- $\nu \tilde{n}.\left(\sigma \mid P\right) \rightarrow_{} A$,

then $P \rightarrow_{} P'$ and $A \equiv \nu \tilde{n}.\left(\sigma \mid P'\right)$ for some closed process P'.

Bruno Blanchet (INRIA)
Applied pi calculus
April 2015 36 / 47
Proof technique

- Induction on the derivations.
- Strengthen the inductive invariant, to be able to apply the current lemma to a derivation built as a result of applying the inductive hypothesis.
Static equivalence

Lemma

Static equivalence is
- invariant by structural equivalence and reduction, and
- closed by application of closing evaluation contexts.

For the second point,
- show that we can restrict ourselves to contexts $E = \nu \tilde{u}.(_ | C)$ such that all subcontexts of E are closing.
- proceed by structural induction on E.
Context closure

Lemma

\(\approx_1 \) is closed by application of closing evaluation contexts.

- Restrict attention to contexts of the form \(\nu\tilde{u}.(_ | C) \).
- To every relation \(\mathcal{R} \) on closed extended processes, we associate \(\mathcal{R}' = \{(\nu\tilde{u}.(A | C), \nu\tilde{u}.(B | C)) | A \mathcal{R} B, \nu\tilde{u}.(_ | C) \text{ closing for } A \text{ and } B \}\).
- We prove that, if \(\mathcal{R} \) is a labelled bisimulation, then \(\mathcal{R}' \) is a labelled bisimulation up to \(\equiv \), hence \(\mathcal{R} \subseteq \mathcal{R}' \subseteq \approx_1 \).
- For \(\mathcal{R} = \approx_1 \), this property entails that \(\approx_1 \) is closed by application of evaluation contexts \(\nu\tilde{u}.(_ | C) \).
Context closure

- To every relation \mathcal{R} on closed extended processes, we associate $\mathcal{R}' = \{(\nu \tilde{u}.(A \mid C), \nu \tilde{u}.(B \mid C)) \mid A \mathcal{R} B, \nu \tilde{u}.(_ \mid C)$ closing for A and $B\}$.
- We prove that, if \mathcal{R} is a labelled bisimulation, then \mathcal{R}' is a labelled bisimulation up to \equiv.

Definition

A relation \mathcal{R} on closed extended processes is a labelled bisimulation up to \equiv if and only if \mathcal{R} is symmetric and $A \mathcal{R} B$ implies:

1. $A \approx_s B$;
2. if $A \rightarrow A'$ and A' is closed, then $B \rightarrow^* B'$ and $A' \equiv \mathcal{R} \equiv B'$ for some closed B';
3. if $A \overset{\alpha}{\rightarrow} A'$, A' is closed, and $fv(\alpha) \subseteq \text{dom}(A)$, then $B \rightarrow^* \overset{\alpha}{\rightarrow} \rightarrow^* B'$ and $A' \equiv \mathcal{R} \equiv B'$ for some closed B'.
Context closure

To every relation \mathcal{R} on closed extended processes, we associate $\mathcal{R}' = \{(\nu\tilde{u}.(A \mid C), \nu\tilde{u}.(B \mid C)) \mid A \mathcal{R} B, \nu\tilde{u}.(_ \mid C) \text{ closing for } A \text{ and } B\}$.

We prove that, if \mathcal{R} is a labelled bisimulation, then \mathcal{R}' is a labelled bisimulation up to \equiv.

Assume $S \mathcal{R}' T$, with $S = \nu\tilde{u}.(A \mid C)$, $T = \nu\tilde{u}.(B \mid C)$, and $A \mathcal{R} B$.

- $S \approx_s T$ follows from $A \approx_s B$ by a previous lemma.
- For reductions, consider the partial normal forms of A, B, C:
 \[
 \text{pnf}(A) = \nu\tilde{n}.(\sigma \mid P), \quad \text{pnf}(B) = \nu\tilde{n}'.(\sigma' \mid P'), \quad \text{pnf}(C) = \nu\tilde{n}''.(\sigma'' \mid P'').
 \]

A reduction on $S = \nu\tilde{u}.(A \mid C)$ implies a reduction on $P \mid P''\sigma$, so a reduction on P and/or $P''\sigma$ (by the decomposition lemmas).

A reduction on P implies a reduction A, so the same reduction on B since \mathcal{R} is a labelled bisimulation, so a reduction on P'.

A reduction on $P''\sigma$ implies a reduction on $P''\sigma'$ by static equivalence $A \approx_s B$.

Hence we obtain a reduction on $P' \mid P''\sigma'$, hence on $T = \nu\tilde{u}.(B \mid C)$.
Characterizing barbs

Lemma

Let A be a closed extended process.

$A \Downarrow a$ if and only if $A \rightarrow^* \nu x.a\langle x\rangle \Rightarrow A'$ for some fresh variable x and some A'.

$A \equiv E[a\langle M\rangle.P]$ for some evaluation context $E[_]$ that does not bind a if and only if

$A \nu x.a\langle x\rangle \Rightarrow A'$ for some fresh variable x and some A'.
Lemma

\[\approx_l \subseteq \approx. \]

\(\approx_l \) satisfies the three properties of observational bisimulations:

1. \(\approx_l \) preserves barbs, by characterization of barbs and Properties 2 and 3 of a labelled bisimulation.

2. Suppose that \(A \approx_l B, A \rightarrow^* A' \), and \(A' \) is closed. Close all intermediate processes in \(A \rightarrow^* A' \), then conclude that \(B \rightarrow^* B' \) and \(A' \approx_l B' \) for some \(B' \) by Property 2 of a labelled bisimulation.

3. \(\approx_l \) is closed by application of closing evaluation contexts, as shown previously.

Moreover, \(\approx_l \) is symmetric. Since \(\approx \) is the largest observational bisimulation, we obtain \(\approx_l \subseteq \approx \).
Observational equivalence implies static equivalence

Lemma

≈ ⊆ ≈ₜ.

If A and B are observationally equivalent, then $A \mid C$ and $B \mid C$ have the same barb $\Downarrow a$ for every $C = \text{if } M = N \text{ then } \overline{a}\langle s \rangle$, where a does not occur in A or B and $\text{fv}(M) \cup \text{fv}(N) \subseteq \text{dom}(A)$.

Assuming that A is closed, $\text{fv}(M) \cup \text{fv}(N) \subseteq \text{dom}(A)$, and a does not occur in A, we have

$(M = N)\varphi(A)$ if and only if $A \mid \text{if } M = N \text{ then } \overline{a}\langle s \rangle \Downarrow a$.

(Shown using partial normal forms.)
Let $T^p_{N(M)} \overset{\text{def}}{=} \overline{p}(p) \mid \overline{N}(M).p(x)$.

Lemma

Let A be a closed extended process. Let N and M be terms such that $\text{fv}(\overline{N}(M)) \subseteq \text{dom}(A)$ and p does not occur in A, M, and N.

- If $A \xrightarrow{N(M)} A'$ and p does not occur in A', then $A \mid T^p_{N(M)} \rightarrow A'$ and $A' \not\Downarrow p$.

- If $A \mid T^p_{N(M)} \rightarrow^* A'$ and $A' \not\Downarrow p$, then $A \rightarrow^* N(M) \rightarrow^* A'$.

Shown using partial normal forms.
Characterizing outputs

Let \(T_{\nu x.N\langle x\rangle}^{p,q} \overset{\text{def}}{=} p\langle p\rangle | N(x).p(y).q\langle x\rangle \).

Lemma

Let \(A \) be a closed extended process and \(N \) such that \(\text{fv}(N) \subseteq \text{dom}(A) \).

- If \(A \xrightarrow{\nu x.N\langle x\rangle} A' \) and \(p \) and \(q \) do not occur in \(A, A', \) and \(N \), then \(A | T_{\nu x.N\langle x\rangle}^{p,q} \rightarrow \nu x.(A' | q\langle x\rangle), \nu x.(A' | q\langle x\rangle) \not\Downarrow p, \) and \(x \notin \text{dom}(A) \).
- If \(A | T_{\nu x.N\langle x\rangle}^{p,q} \rightarrow^* A'' \), \(A'' \not\Downarrow p, x \notin \text{dom}(A), \) and \(p \) and \(q \) do not occur in \(A \) and \(N \), then \(A \rightarrow^* \nu x.N\langle x\rangle \rightarrow^* A' \) and \(A'' \equiv \nu x.(A' | q\langle x\rangle) \) for some \(A' \).

Shown using partial normal forms.
Lemma (Extrusion)

Let A and B two closed extended processes with a same domain that contains \tilde{x}. Let $E_{\tilde{x}}[-] \overset{\text{def}}{=} \nu \tilde{x}. (\prod_{x \in \tilde{x}} n_x(x) | -)$ using names n_x that do not occur in A or B. If $E_{\tilde{x}}[A] \approx E_{\tilde{x}}[B]$, then $A \approx B$.

If A is a closed extended process with $\{\tilde{x}\} \subseteq \text{dom}(A)$ and $E_{\tilde{x}}[A] \rightarrow C'$, then $A \rightarrow A'$ and $C' \equiv E_{\tilde{x}}[A']$ for some closed extended process A'.

(Proved using partial normal forms.)

Let $A R B$ if and only if $\{\tilde{x}\} \subseteq \text{dom}(A) = \text{dom}(B)$ and $E_{\tilde{x}}[A] \approx E_{\tilde{x}}[B]$, for some \tilde{x} and some names \tilde{n}_x that do not occur in A or B.

We show that R is an observational bisimulation.
Observational equivalence implies labelled bisimilarity

The relation \approx is symmetric. It satisfies the three properties of labelled bisimulations:

1. If $A \approx B$, then $A \approx_s B$, shown previously.
2. If $A \approx B$, $A \xrightarrow{\alpha} A'$, and A' is closed, then $B \xrightarrow{\ast} B'$ and $A' \approx B'$ for some B', by Property 2 of the definition of observational bisimulation.
3. If $A \approx B$, $A \overset{\alpha}{\xrightarrow{\ast}} A'$, A' is closed, and $\text{fv}(\alpha) \subseteq \text{dom}(A)$, then $B \overset{\ast}{\xrightarrow{\alpha}} B'$ and $A' \approx B'$ for some B'. To prove this property, we rely on characteristic parallel contexts T_α, shown in previous lemmas. In the output case, we obtain a pair $\nu x.(A' \mid \overline{q}\langle x \rangle) \approx \nu x.(B' \mid \overline{q}\langle x \rangle)$, and conclude by the extrusion lemma.

Hence \approx is a labelled bisimulation, and $\approx \subseteq \approx_\ell$, since \approx_ℓ is the largest labelled bisimulation.
Conclusion

- Importance of **detailed proofs**.
 - Could be interesting to formalize in a theorem prover, e.g. Coq.
- **Partial normal forms** are likely to be useful for proving many other results about the applied pi calculus.
- With the minor changes we made, one should be able to show that
 - The plain processes of the applied pi calculus are a subset of the ProVerif input language.
 - The semantics and the notions of observational equivalence match.
- Does anybody want to read the draft?