
A Reference Implementation of ADF (Agent Developing Framework):
Semantic Web-based Agent Communication

Cătălin Hriţcu
“A. I. Cuza University of Iaşi
Faculty of Computer Science
Berthelot, 16 – Iaşi, Romania
Catalin.Hritcu@gmail.com

Sabin C. Buraga
“A. I. Cuza University of Iaşi
Faculty of Computer Science
Berthelot, 16 – Iaşi, Romania

busaco@infoiasi.ro

Abstract

The purpose of this paper is to present the main charac-
teristics of ADF, an open source agent developing platform
with a focus on agent collaboration. The basic architecture
of the platform is investigated, and a reference implemen-
tation – based on Java 2 Enterprise Edition – is presented.
Two short case studies (a reverse auction system and meet-
ing scheduding multi-agent system), that use current seman-
tic Web technologies (such as RDF and OWL), illustrate the
main features of the framework.

1. Introduction

Collaborative software agents provide developers with a
way of structuring an application around autonomous en-
tities, that communicate in order to achieve their internal
goals. They offer a new and convenient design metaphor
for the development of complex software systems, that ope-
rate in open and dynamic environments.

Agent frameworks provide a foundation for develop-
ing complex systems using the agent paradigm. Instead of
executing low-level tasks like building naming, location
or directory services, inventing communication protocols,
mobility mechanisms or cryptographic algorithms, agent
developers can concentrate on their particular problems
and on the logic of the agent-oriented applications solving
them. There have been many attempts to build multi-agent
frameworks, in both the research and business communi-
ties. Some of them were quite successful and are still ac-
tively maintained – e.g., Cougaar [21], DIET Agents [23],
JADE [28], Voyager [38] or ZEUS [42] –, while other did
not stand the test of time, but nevertheless had an important
contribution to the agents field – for example, Aglets [19],
Ajanta [20], D’Agents [22], FIPA-OS [24], or Omega [1].

Our paper presents the Agent Developing Framework
(ADF) [11], an open source agent platform, with a stated

emphasis on collaboration. What distinguishes ADF from
many other agent frameworks is, also, the pragmatic engi-
neering approach, starting by the focus on technology and
component reuse rather than reinvention, and emphasis on
real-world scenarios and on working code.

There are many difficult problems to be solved when
building multi-agent systems [14], and we have chosen to
concentrate most of our work on a very basic one: the com-
munication problem. What makes the communication prob-
lem tangible, is that many pieces of the puzzle seem to be
present somewhere, in one form or another, and only need
to be put in place.

For two agents to communicate, there is the need for a
common transport protocol, a common communication lan-
guage and a common understanding of the terms in use (for
example, a common ontology).

Current Web technologies already offer a solution for
transporting messages over any physical transport proto-
col by the means of SOAP (Simple Object Access Pro-
tocol) [35] – previous research work is presented in [2]
and [5]. RDF (Resource Description Framework) [15] is a
flexible knowlege representation language and – together
with Web Ontology Language (OWL) [8] – it is quite close
to solving the ontology problem, at least in the case of task-
and domain-specific ontologies. An agent communication
language (ACL) is already standardized by FIPA [37] and
can be flexibly encoded, according to the particular needs
of the application. Since all these technologies are XML-
based (or XML-capable), the Extensible Markup Language
(XML) [4] family is the ligand that makes all the parts fit
together in the ADF communication. However, we will see
that ADF is much more flexible in the case of communica-
tion. Older, but still valuable technologies, can work hand
in hand with the state of the art ones.

This paper is structured into five sections. In the next sec-
tion, we introduce the main goals of ADF and we present
its overall architecture and the technologies that allowed us
to achieve them. Section 3 is dedicated to agent commu-

nication and discusses the transport protocols, message en-
codings, content languages and interaction protocols used
within ADF. Section 4 describes two simple semantic Web-
based agent systems built with ADF: a reverse auction sys-
tem and a meeting scheduling system. The final section
briefly summarizes the discussed issues and presents seve-
ral directions of future improvement for the ADF frame-
work.

2. Agent Developing Framework

The ADF project was started more than one year ago,
with the design of an abstract architecture for the frame-
work [13]. The next logical step was to build a concrete
reference implementation of that abstract design. However,
as progress was made on this implementation, the architec-
ture was redefined in order to make it more flexible, scal-
able and easily extensible. Actually, ADF [11] can be freely
obtained as open source code, under the terms of the GNU
LGPL.

The following sections will describe the most important
goals, the general architecture, and the current implementa-
tion of the ADF system.

2.1. Goals

The purpose of ADF is to build an interoperable, flexi-
ble, scalable and extensible framework that will allow real-
world multi-agent systems to be developed with less effort.
The goals of ADF were originally presented in [13] and then
they were successively refined:

Interoperability We intend ADF agents to be able to eas-
ily communicate and interact with entities in other sys-
tems (even with those that were not foreseen during
the original development), whether they are agents
themselves, or more traditional applications. In our
view, using open standards is the only possible way to
achieve true interoperability in a large-scale, thus he-
terogeneous, distributed environment.

Flexibility and Extensibility We aim to make it easy for
developers to add new features, or reimplement exist-
ing ones using different technologies, without impact-
ing the operation of the system as a whole. When de-
signing ADF, evolution was regarded as something
positive and inevitable, that was planed for in ad-
vance. Programming to standard interfaces and not to
implementations, separating policy from mechanism,
orthogonality and loose coupling between interacting
modules were several of the mechanisms we used
to ensure the flexibility and extensibility of the ADF
framework.

Scalability The number of ADF agents the multi-agent
system can accommodate, while maintaining an ac-
ceptable performance, should not be limited by cen-
tralization, whether we refer to centralized data, ser-
vices or algorithms. Additionally, agents that are very
far from one another, should still are able to interact ef-
ficiently by using asynchronous communication.

Platform independence We decided to make ADF inde-
pendent of the particular hardware configuration, ope-
rating system or application server and to model all the
dependencies to third-party components through stan-
dard interfaces. Therefore, we save a great amount of
developing time, while having excellent portability for
the framework.

Easy to use No matter how complex the internals of ADF
system are, this complexity is hidden form the users
behind a simple and intuitive API. Programmers are
able to build simple agents easily, even if they do
not have much knowledge about the characteristics of
framework, and then they are able to evolve their skills
gradually, as they use new and more advanced features.
Our programming model is similar to that adopted by
JADE [28], which we find simple, yet powerful.

Pragmatism While the theoretical foundations of ADF are
surely important, even more important for us is the
practical applicability of the theoretical methods in the
actual implementation. Because we want our frame-
work to be really useful, we always try to ensure every-
thing works well by writing tests. And although simple
test cases are a good start, the actual implementation
of “real-world” scenarios is even better. Another as-
pect, we find very important, is reusing mature existing
technologies and synthesizing existing research, which
is more effective and more honorable than reinvent-
ing the “wheel”, or worse, “a flat tire”. Only when the
existing “wheels” were missing or broken, did we in-
vent new ones, making the platform become greater
than the sum of its parts. This pragmatic approach is
similar to that of the Zeus Agent Toolkit [42].

2.2. Architecture Overview

ADF is built as a Service-Oriented Architecture
(SOA) [9, 12], which assures loose coupling between
the interacting software agents. Agents consume the ser-
vices provided by other agents, in order to be able to pro-
vide their own specialized services. This allows every agent
to specialize only in several tasks it does very well, while
delegating the other tasks to other expert agents, thus lead-
ing to the separation of concerns. A flexible mechanism
permits a provider to register its services, and a poten-
tial consumer to discover the providers that offer the

Figure 1. An Overview of the ADF Platform

services it needs. Both registration and discovery hap-
pen dynamically, at runtime.

Loose coupling is obtained in a SOA by defining a small
set of simple generic interfaces that are universally avail-
able to the participating software agents. The interaction
between agents is done by exchanging descriptive mes-
sages through the standard interfaces. The messages are
constrained by an extensible schema, thus allowing new
versions of services to be introduced without breaking exist-
ing ones [9]. This approach reduces artificial dependencies
and is different from that of object oriented programming,
which suggests that data and its processing should be bound
together.

Since large-scale distributed environments are inherently
heterogeneous, there are few generic interfaces universally
available. ADF uses the simple framework provided by
SOAP [35] in order to transport descriptive ACL messages
over any physical transport protocol, and particularly over
the ubiquitous HyperText Transfer Protocol (HTTP). SOAP
protocol allows for very rich conversational patterns, where
the semantics are at the level of the sending and receiving
agents.

The ADF architecture is also compatible with the FIPA
abstract reference model [37], which ensures interoperabil-
ity with other FIPA compliant agent platforms such as
JADE [28] and FIPA-OS [24]. This reference model man-
dates the basic services provided by the agent platform it-
self, such as creating, registering and deleting agents, fa-
cilities to locate agents and services, and services for inter-
agent message-oriented communication.

2.3. Actual Implementation

ADF is implemented as a Java 2 Platform, Enterprise
Edition (J2EE) application [27], and makes extensive use of
many proved technologies, services and standard APIs pro-
vided by the J2EE environment. ADF was implemented and
tested using JBoss 4 [30].

The ADF application is a collection of enterprise
components (Enterprise JavaBeans – such as Manage-
mentBean, ContainerBean, LocalTransportBean, etc. –
and Java Servlets) that work together in order to pro-
vide the high level features that make up a multi-agent

Figure 2. ADF Agent Management System

platform. Figure 1 provides an overview of the most impor-
tant components of the ADF system.

The agent management system is the central compo-
nent of the every FIPA-compliant agent platform, that keeps
track of the agents in the associated platform and provides
services for agent creation and termination. Parameters can
be provided when an agent is created, and the results of its
work can be easily obtained once the agent is finished. The
agent management system also offers a white pages service,
that allows an agent to be looked up by name in order to ob-
tain a reference to its container or a list of communication
endpoints.

The agent management system is implemented is ADF
as a stateless session bean (see Figure 2). This allows multi-
ple concurrent requests to be services by several equivalent
instances of this bean, a mechanism that ensures vertical
scalability, and is intensively used in ADF. The agent man-
agement system is used not only internally by most other
components of the platform, but also by application clients
(e.g., Java Servlets) in order to perform administrative tasks
on behalf of a user, so servicing multiple requests simulta-
neously was a stringent necessity. And although the mana-
gement bean itself is stateless, it uses the Java Naming and
Directory Interface (JNDI) to store and retrieve vital infor-
mation about the agents registered with the platform or the
different transport protocols that are simultaneously used by
the platform.

The agent container is responsible for holding an agent
and providing it controlled access to the basic services of
the framework. The agent container is the only entity in the
whole system to hold a reference to the agent it contains
and it uses it to manage its life-cycle. This way, the agent’s
methods can only be called by the agent itself and its con-
tainer, thus guaranteeing the agent autonomy. The agent is
not just a mere object, because it is has complete control
over its own life-cycle. The only exception to this general
rule is when the agent management system decides to im-
mediately terminate the agent. This may happen because the
agent has not respected an important policy (e.g., the secu-
rity policy) or when the owner of the agent has explicitly
asked for its termination (for example, when the agent is no
longer responding to messages). Please note, however, that
this is just an exception, and the general rule is that the agent

Figure 3. The ADF Agent Container

executes autonomously for as long as it takes for it to com-
plete its tasks.

The agent container functions as a façade, that hides
all the functionality of the framework from the agent, and
offers a simple interface to the agent. This interface is
generic and has no dependencies on other libraries or on
the J2EE API, so that agents are not only simple to write,
but the whole agent framework could be reimplemented us-
ing any other technologies without affecting the already im-
plemented agent systems in any way. The agent container
functions in fact as a façade the other way around too, thus
it hides the agent from the other entities in the multi-agent
system, in order to assure its autonomy.

The agent container is implemented as a stateful ses-
sion bean, that holds the only reference to the agent and
references to many other, very important objects (see Figu-
re 3): the agent’s identifier, state, arguments, results, mes-
sage queue, task scheduler, and logger.

As previously stated, the agent container has a crucial
role in managing the life-cycle of the agent (Figure 4), and
one aspect of that is task scheduling. Dividing the work an
agent has to complete into small tasks allows the agent code
to run non-preemptively into a single thread and, at the same
time, be responsive to asynchronous events, such as receiv-
ing a message or a notification of an expired timer. The
task scheduling model in ADF is similar to that adopted by
JADE [28].

The agent container also provides access for the agent
to asynchronous messaging, by holding a message queue,
where the agent can receive messages and also forwarding
the messages sent by the agent to the corresponding trans-
ports. This mechanism is further examined in the next sec-
tion.

Finally, one very important component of ADF is “the
runner”, a message-driven bean that is used internally by
the framework, in order to allow agents to run concurrently.
The bean is a simplification of the Service Activator EJB
design pattern [3] and allows the invocation of EJB com-
ponents in an asynchronous manner. And because the con-
tainer is stateful and it cannot handle multiple concurrent in-
vocations, it is never invoked directly but only through syn-
chronization proxies created by the management bean.

Figure 4. Lifecycle of an ADF Agent

3. Agent Communication

3.1. Overview

In most cases, agents have to collaborate with each other,
in order to perform the tasks for which they are responsible.
One important characteristic of software agents is that they
communicate by means of an application-level communica-
tion protocol, which is referred to as an agent communica-
tion language (ACL), such as FIPA ACL or the Knowledge
Query and Manipulation Language (KQML) [33].

ACLs rely on the speech act theory [18]. Agents perform
speech acts, based on the relevance of their expected out-
come (rational effect) in relation to their own goals. How-
ever, agents cannot assume that the rational effect will in-
evitably result from just sending a message, because it de-
pends on other agents, which are themselves autonomous.

In an ACL, a strict separation is made between the con-
tents of the message and its purpose, also known as the
performative or the communicative act. The set of possi-
ble performatives is limited and their meaning is specified
by the agent communication language and known by all the
agents using the it. The content of the message is chosen
by the participants to a conversation, and the use of task- or
domain-oriented ontologies is very common in order to as-
sure a common understanding of the symbols employed.

Agent communication in ADF is message-oriented and
follows the standard model mandated by FIPA. ADF agents
communicate by asynchronously exchanging messages by
the means of a message transport service. When a mes-
sage is sent, it is first encoded using a representation ap-
propriate for the transport. A major concern when design-
ing ADF was the orthogonality between four different as-
pects: the physical transport protocol, the ACL message en-
coding, the message contents, and the interaction protocol.
This not only assures much flexibility for the moment, but
also provides a maximum degree of extensibility.

3.2. Transport Protocols

Messages are physically transported from one agent plat-
form to the other by using a transport protocol. The actual
ADF implementation currently provides two transport tech-
niques: one relying on HTTP, and the other using the Java
Message Service (JMS) [16, 29] API.

HTTP is especially appealing, because it uses port 80
that is usually open, even in enterprises with a tight security
policy, in order to allow Web browsing and, more recently,
Web services. HTTP is not limited in any way to HTML,
XML or SOAP, so we have actually abstracted from the
encoding of the message itself, and built a generic HTTP
transport. This component comprises a Java Servlet that
receives messages and a stateless session bean that sends
them.

JMS is a standard API that provides access to sys-
tems offering persistent asynchronous communication, tra-
ditionally named message oriented middleware (MOM).
With persistent communication the transmitted messages
are stored by the communication system as long as it takes,
in order to deliver them to the receiver. Neither the sender,
nor the receiver have to be up and running for message
transmission to occur. Persistence also increases the relia-
bility of the communication and enforces loose-coupling,
by eliminating the timing dependencies between the com-
municating parties. The major disadvantage of JMS is that
it is hard to use outside an administrative domain, be-
cause the underlying protocols are generally proprietary.
The JMS transport in ADF uses this standard interface
without knowledge of the implementation details of JMS
provider, and relies on a message-driven bean that asyn-
chronously receives messages and dispatches them to the
corresponding agent containers.

Despite the many differences between them, in ADF
all transports implement a common interface that hides
their inner workings from the agents and their con-
tainers. It is the task of the agent management sys-
tem to choose the right protocol for a given destination,
by mapping URL prefixes to the corresponding trans-
port. This means that a message sent to a destination
with the address http://adf.sf.net/agents
will be transported over HTTP, while one sent to
jnp://adf.sf.net/ADFQueue will be trans-
ported over JMS. This flexible scheme can be extended to
any other transport protocol. However, if the current plat-
form is adf.sf.net, then a much simpler local trans-
port will be used. In fact, when a message is intended for
more than one agent, it might occur that different trans-
ports are used for different receivers.

Both HTTP and JMS offer “best-effort” services, so
there are no strong guarantees that once a message is sent it
will actually make its way to the destination. Even when

communication is persistent (the case of JMS) and the
chance that a message will be lost is usually small, it is
still present. Reliable communication provides quality-of-
service guarantees, under one of the following three delive-
ry semantics: at-least-once, at-most-once and exactly-once.
One additional reliability provision is in-order delivery. If
the communication system is not capable of delivering a
message under the given constraints, it will notify the sender
of the failure.

Reliable asynchronous messaging is a key building block
for any service-oriented architecture and there were some
initiatives in making it a standard. HTTPR was an early at-
tempt by IBM to provide a protocol on top of HTTP
for the reliable transport of messages [26]. The two cur-
rent divergent directions for reliable messaging are
WS-Reliable Messaging [41] and WS-Reliability [40].
Presently, ADF does not support any of them, and – to au-
thors’ knowledge – neither does any other agent framework,
so this could be an interesting subject for future explo-
ration.

3.3. Message Encodings

The agent communication language used by ADF agents
is fixed to FIPA ACL in order to achieve interoperability.
The structure of a FIPA ACL messages is however exten-
sible, and it allows custom properties to be added. Inside
ADF agent platforms, the messages are represented as in-
stances of a Java class (ACLMessage). However, when mes-
sages need to be exchanged between different agent plat-
forms, they have to be encoded before they are actually send
to the destination and then decoded when they are received.

FIPA has defined three standard encodings for ACL mes-
sages: String, XML, and bit efficient encoding. ADF al-
ready fully supports the first two, and additionally provides
a SOAP encoding by using the SOAP with Attachments API
for Java (SAAJ) [36]. A message codec factory can be used
to instantiate the appropriate codec for a given Multipur-
pose Internet Mail Extensions (MIME) type. This facility
is used together with the Content-Type HTTP header,
or with a custom defined property in JMS, in order to as-
sure that transports and encodings are entirely decoupled.
Every transport has a list of encodings it can provide, and
an encoding to be used by default. Later, when the message
reaches its destination the value of the Content-Type
header is used to instantiate the right decoder for the mes-
sage.

3.4. Message Contents

The content language of the messages is chosen by the
agents that communicate, and it is very common to use
ontologies in order to assure the semantics of the sym-

bols used are the consistent. The languages commonly used
to represent the knowledge exchanged by the agents are
FIPA SL [37], Knowledge Interchange Format (KIF) [32]
and, more interesting, Resource Description Framework
(RDF) [15].

ADF allows any of these languages to be used for the
contents or messages, but currently no special support is
provided for any of them. As a further work, we aim to
offer support for RDF and OWL by using the Jena seman-
tic Web framework [31]. The use of the Jena’s rule-based
inference engine would also open the path to building intel-
ligent agents capable of inference, in order to provide sup-
port for the semantic Web’s superior layers [7, 39].

3.5. Interaction Protocol

ACL messages can be sequenced into more complex
standard interaction protocols corresponding to common
interaction patterns. Protocols range from simple request-
reply ones, to complex interactions between multiple peers
such as negotiations or auctions. For example, the Contract
Net interaction protocol [17] allows simultaneous one-to-
many negotiations between an initiator and several partici-
pants (see Figure 5), and it is used in both case studies from
the next session.

ADF provides support for interaction protocols by defin-
ing predefined tasks for all the different roles an agent might
play in a certain protocol. An agent uses a protocol by sub-
classing such a predefined task and redefining some of the
callback methods, and then adding the task to its task list.
Whenever an important event occurs the corresponding call-
back method is run, and the agent can process the informa-
tion contained in the received messages and take decisions
on the following steps of the protocol. Because ADF allows
multiple tasks to be run in turns, an agent can perform mul-
tiple interaction protocols, independently, at the same time.

4. Case Studies

This section presents two example of agent systems built
using ADF. Although they are not very complex, they still
illustrate well enough the many capabilities of the frame-
work, especially in the context of semantic Web-based e-
business applications.

The source code of the presented agents is available as
part of the ADF distribution [11].

4.1. Reversed Auction

The first ADF-based agent system models a reversed
auction system. The developed application is comprised of
agents buying products and agents offering products for
sale. The seller agents register their service with the local

Figure 5. The Contract Net protocol [17]

service repository and then wait for requests to arrive. Every
buyer agent receives the name of the product to buy as a pa-
rameter from its owner. It then locates all the seller agents,
and sends them a call for proposal containing the name of
the product it wants to buy.

The communication occurs by using the Contract Net in-
teraction protocol, with the buyer playing the initiator role
– Figure 5. Some of the sellers will respond with actual pro-
posals to offer the product for a certain price (the propose
act), other sellers may refuse to make a proposal, while oth-
ers will not respond at all. Once all responses are received,
or a deadline passes, the initiator evaluates the received pro-
posals and selects the one offering the best price. The ac-
cepted seller receives an accept-proposal message and the
other agents that made proposals receive a reject proposal
message. Finally, the seller that won the auction removes
the corresponding product from stock, and then informs the
buyer the transaction was successful. However, when mul-
tiple negotiations happen at the same time, it is possible for
several buyers to try to buy the same product, in which case
only one receives the inform message, while all the others
are sent a message indicating failure, and they will have to
start a new negotiation in order to achieve their goal.

When a buyer agent completes its goal, that is it buys the
product for its owner, it passes into the finished state. The
owner can then request the results of its work, in this case
the name of the agent that sold the product and the price the
agent payed for it. All the data exchanged during the ne-
gotiation is encoded as plain strings, which is acceptable
for such a small auction system, but inappropriate for larger

systems or when more complex content such as payment in-
formation would have to be used for the messages. We will
see this problem fixed in the next example.

4.2. Meeting Scheduling

The second scenario involves agents collaborating in or-
der to schedule a meeting on behalf of their owners. Each
agent has access to relevant information about its owner’s
identity, schedule and the relationships between the owner
and other people. The schedule is represented in RDF using
an OWL ontologyof time [10], while the relationships be-
tween persons are represented using an extension – for de-
tails, consult [34] – of the Friend Of A Friend (FOAF) vo-
cabulary [25]. The Jena [31] framework is used for process-
ing RDF content and OWL ontologies.

When an agent is started, it receives a parameter repre-
senting an RDF description of the task to solve, in this case
the details of the meeting it has to arrange. This descrip-
tion is composed of a set of participants, a duration, a time
span, and the purpose of the meeting. The agent first finds
all the time intervals that would suit its owner by inspecting
her schedule, and then it contacts the agents of the given
participants by issuing a call for proposal, and becoming
the initiator of a Contract Net protocol. Each of the par-
ticipants comes with proposals chosen from the list pro-
vided by the initiator, and in conformance with the schedu-
le of its owner. When all the participants have responded,
or a deadline passes, the initiator will chose the interval
that was proposed by the most participants, and issues an
accept-proposal communicative act, informing them of the
choice. The remaining agents will receive a reject-proposal,
and their owners will most likely not make it to the meeting.

5. Conclusion and Further Work

This paper has presented the development of a J2EE-
based reference implementation of the Agent Developing
Framework (ADF) and has investigated the methodolo-
gy and technologies that made this possible. The results
achieved so far on small agent systems – two of them pre-
sented in section 4 – demonstrate the soundness of our ap-
proach, and hopefully they will be easily generalizable on
more complex systems.

Although the framework can already be used to build
multi-agent systems, it is still in a fairly early stage of de-
velopment, and many directions of improvement are still
possible. For the near future, there is the need for a global
naming service and a global service registry, build-in sup-
port for content expressed as RDF, for OWL ontologies and
for inference using a rule-based inference engine, and even
more transport protocols, message encodings and interac-
tion protocols.

Easy-to-use tools – for installation and facilitating tasks
like administration and debugging and, also, for visually de-
signing agent systems – could make the ADF framework
more attractive and accessible even to inexperienced deve-
lopers.

On the long run, other directions of interest, such as
agent mobility and security, will be the subject of our re-
search.

Another important aspect is to study of the possibility of
using ADF system within ITW [6], a semantic Web-based
platform for multimedia resource discovery.

References

[1] Alboaie, S., Buraga, S., Alboaie, L., “An XML-based
Object-Oriented Infrastructure for Developing Software
Agents”, Scientific Annals of the “A. I. Cuza” University
of Iaşi, Computer Science Series, tome XII, 2002

[2] Alboaie, S., Buraga, S., Alboaie, L., “An XML-based Seri-
alization of Information Exchanged by Software Agents”,
International Informatica Journal, 28 (1), 2004

[3] Alur, D. et al., Core J2EE Patterns: Best Practices and De-
sign Strategies (Second Edition), Prentice Hall PTR, 2003

[4] Bray, T. (ed.), Extensible Markup Language (XML) – ver-
sion 1.0 (Third Edition), W3C Recommendation, Boston,
2004: http://www.w3.org/TR/REC-xml

[5] Buraga, S., Alboaie, S., Alboaie, L., “An XML/RDF-based
Proposal to Exchange Information within a Multi-Agent
System”, in Grigoraş, D., Nicolau, A. (eds.), Concurrent
Information Processing and Computing, NATO Science
Series, IOS Press, 2005

[6] Buraga, S., Găbureanu, P., “A Distributed Platform based
on Web Services for Multimedia Resource Discovery”, in
Proceedings of the Second International Symposium on
Parallel and Distributed Computing – ISPDC’03, IEEE
Computer Society Press, 2003

[7] Daconta, M., Obrst, L., Smith, K., The Semantic Web,
Wiley, 2003

[8] Dean, M., Schereiber, G. (eds.), OWL Web Ontology Lan-
guage Reference, W3C Recommendation, Boston, 2004:
http://www.w3.org/TR/owl-ref/

[9] He, H., “What is Service-Oriented Architecture?”,
XML.com, 2003: http://webservices.xml.com/
pub/a/ws/2003/09/30/soa.html

[10] Hobbs, J., Pan, F., “An Ontology of Time for the Seman-
tic Web”, ACM Transactions on Asian Language Process-
ing (TALIP): Special issue on Temporal Information Pro-
cessing, 3 (1), 2004

[11] Hriţcu, C., ADF: Agent Developing Framework, 2005:
http://adf.sourceforge.net/

[12] Krafzig, D. et al., Enterprise SOA: Service-Oriented Archi-
tecture Best Practices, Prentice Hall PTR, 2004

[13] Nichifor, O., Buraga, S., “ADF – Abstract Framework for
Developing Mobile Agents”, in Petcu, D. et al. (eds.),
Proceedings of the 6th Internation Symposion on Sym-
bolic and Numeric Algorithms for Scientific Computing –
SYNASC’04, Mirton, 2004

[14] Nwana, H., Ndumu, D., “A Perspective on Software Agents
Research”, The Knowledge Engineering Review, 16 (3),
1999

[15] Manola, F., Miller, E. (eds.), RDF (Resource Descrip-
tion Framework) Primer, W3C Recommendation, Boston,
2004: http://www.w3.org/TR/rdf-primer/

[16] Monson-Haefel, R., Chappell, D., Java Message Service,
O’Reilly, 2001

[17] Smith, R., “The Contract Net Protocol: High-Level Com-
munications and Control in a Distributed Problem Solver”,
IEEE Transactions on Computers, 29 (12), 1980

[18] Winograd, T., Flores, F., Understanding Computers and
Cognition – A New Foundation for Design, Addison Wes-
ley, 1987

[19] * * *, Aglets: http://aglets.sourceforge.net/
[20] * * *, Ajanta: Mobile Agents Research Project:

http://www.cs.umn.edu/Ajanta/

[21] * * *, Cougaar – Cognitive Agent Architecture:
http://cougaar.org/

[22] * * *, D’Agents:
http://agent.cs.dartmouth.edu/

[23] * * *, DIET Agents:
http://diet-agents.sourceforge.net/

[24] * * *, FIPA-OS (Foundation for Intelligent Physical Agents
– Open Source) Agent Toolkit:
http://fipa-os.sourceforge.net/

[25] * * *, FOAF (Friend Of A Friend) Vocabulary Specifica-
tion: http://xmlns.com/foaf/0.1/

[26] * * *, HTTP Reliable (HTTPR) Specification:
http://www.ibm.com/developerworks/
library/ws-httprspec

[27] * * *, J2EE (Java 2 Platform, Enterprise Edition):
http://java.sun.com/j2ee/

[28] * * *, JADE – Java Agent DEvelopment Framework:
http://jade.tilab.com/

[29] * * *, JMS (Java Message Service):
http://java.sun.com/products/jms/

[30] * * *, JBoss Application Server:
http://www.jboss.org/

[31] * * *, Jena – A Semantic Web Framework for Java:
http://jena.sourceforge.net/

[32] * * *, KIF (Knowledge Interchange Format):
http://logic.stanford.edu/kif/kif.html

[33] * * *, KQML (Knowledge Query and Manipulation Lan-
guage): http://www.cs.umbc.edu/kqml/

[34] * * *, Relationship: A Vocabulary for Describing Relation-
ships between People:
http://vocab.org/relationship/

[35] * * *, Simple Object Access Protocol (SOAP) 1.2:
http://www.w3.org/TR/soap12/

[36] * * *, SOAP with Attachements API for Java (SAAJ):
http://java.sun.com/xml/saaj/

[37] * * *, The Foundation for Intelligent Physical Agents
(FIPA): http://www.fipa.org/

[38] * * *, Voyager Java Development Platform:
http://www.recursionsw.com/voyager.htm

[39] * * *, World-Wide Web Consortium (W3C):
http://www.w3.org/

[40] * * *, WS-Reliability – OASIS Web Services Reliable Mes-
saging TC:
http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsrm

[41] * * *, WS-ReliableMessaging – Web Services Reliable Mes-
saging:
http://www-128.ibm.com/developerworks/
library/specification/ws-rm/

[42] * * *, Zeus Agent Toolkit:
http://sourceforge.net/
projects/zeusagent/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

