
SECOMP
 Efficient Formally Secure Compilers

to a Tagged Architecture

CŇǘŇƭƛƴ IǊƛǚŎǳ

Inria Paris

1
https://secure-compilation.github.io/

(visiting researcher at Microsoft until end of November)

(member of Everest expedition)

https://secure-compilation.github.io/
https://secure-compilation.github.io/
https://secure-compilation.github.io/

SECOMP
 Efficient Formally Secure Compilers

to a Tagged Architecture

CŇǘŇƭƛƴ IǊƛǚŎǳ

Inria Paris

1

ƛǘΩǎ ŀƭƭ ǊŜƭŀǘƛǾŜ J

https://secure-compilation.github.io/

(visiting researcher at Microsoft until end of November)

(member of Everest expedition)

https://secure-compilation.github.io/
https://secure-compilation.github.io/
https://secure-compilation.github.io/

Computers are insecure

Ådevastating low-level vulnerabilities

2

Computers are insecure

Ådevastating low-level vulnerabilities

Åprogramming languages, compilers,

and hardware architectures

ïdesigned in an era of scarce hardware resources

ïtoo often trade off security for efficiency

2

Computers are insecure

Ådevastating low-level vulnerabilities

Åprogramming languages, compilers,

and hardware architectures

ïdesigned in an era of scarce hardware resources

ïtoo often trade off security for efficiency

Åthe world has changed (2016 vs 1972*)

ïsecurity matters, hardware resources abundant

ïtime to revisit some tradeoffs

2

ϝ άΦΦΦǘƘŜ ƴǳƳōŜǊ ƻŦ ¦bL· ƛƴǎǘŀƭƭŀǘƛƻƴǎ Ƙŀǎ ƎǊƻǿƴ ǘƻ млΣ ǿƛǘƘ ƳƻǊŜ ŜȄǇŜŎǘŜŘΦΦΦέ
-- Dennis Ritchie and Ken Thompson, June 1972

Hardware architectures

Å¢ƻŘŀȅΩǎ ǇǊƻŎŜǎǎƻǊǎ ŀǊŜ ƳƛƴŘƭŜǎǎ ōǳǊŜŀǳŎǊŀǘǎ

ïάǿǊƛǘŜ Ǉŀǎǘ ǘƘŜ ŜƴŘ ƻŦ ǘƘƛǎ ōǳŦŦŜǊέ ... yes boss!

ïάƧǳƳǇ ǘƻ ǘƘƛǎ ǳƴǘǊǳǎǘŜŘ ƛƴǘŜƎŜǊέ ... right boss!

ïάǊŜǘǳǊƴ ƛƴǘƻ ǘƘŜ ƳƛŘŘƭŜ ƻŦ ǘƘƛǎ ƛƴǎǘǊǳŎǘƛƻƴέ ... sure boss!

3

Hardware architectures

Å¢ƻŘŀȅΩǎ ǇǊƻŎŜǎǎƻǊǎ ŀǊŜ ƳƛƴŘƭŜǎǎ ōǳǊŜŀǳŎǊŀǘǎ

ïάǿǊƛǘŜ Ǉŀǎǘ ǘƘŜ ŜƴŘ ƻŦ ǘƘƛǎ ōǳŦŦŜǊέ ... yes boss!

ïάƧǳƳǇ ǘƻ ǘƘƛǎ ǳƴǘǊǳǎǘŜŘ ƛƴǘŜƎŜǊέ ... right boss!

ïάǊŜǘǳǊƴ ƛƴǘƻ ǘƘŜ ƳƛŘŘƭŜ ƻŦ ǘƘƛǎ ƛƴǎǘǊǳŎǘƛƻƴέ ... sure boss!

ÅSoftware bears most of the burden for security

3

Hardware architectures

Å¢ƻŘŀȅΩǎ ǇǊƻŎŜǎǎƻǊǎ ŀǊŜ ƳƛƴŘƭŜǎǎ ōǳǊŜŀǳŎǊŀǘǎ

ïάǿǊƛǘŜ Ǉŀǎǘ ǘƘŜ ŜƴŘ ƻŦ ǘƘƛǎ ōǳŦŦŜǊέ ... yes boss!

ïάƧǳƳǇ ǘƻ ǘƘƛǎ ǳƴǘǊǳǎǘŜŘ ƛƴǘŜƎŜǊέ ... right boss!

ïάǊŜǘǳǊƴ ƛƴǘƻ ǘƘŜ ƳƛŘŘƭŜ ƻŦ ǘƘƛǎ ƛƴǎǘǊǳŎǘƛƻƴέ ... sure boss!

ÅSoftware bears most of the burden for security

ÅManufacturers have started looking for solutions
ï2015: Intel Memory Protection Extensions (MPX)

 and Intel Software Guard Extensions (SGX)

ï2016: Oracle Silicon Secured Memory (SSM)

3

Hardware architectures

Å¢ƻŘŀȅΩǎ ǇǊƻŎŜǎǎƻǊǎ ŀǊŜ ƳƛƴŘƭŜǎǎ ōǳǊŜŀǳŎǊŀǘǎ

ïάǿǊƛǘŜ Ǉŀǎǘ ǘƘŜ ŜƴŘ ƻŦ ǘƘƛǎ ōǳŦŦŜǊέ ... yes boss!

ïάƧǳƳǇ ǘƻ ǘƘƛǎ ǳƴǘǊǳǎǘŜŘ ƛƴǘŜƎŜǊέ ... right boss!

ïάǊŜǘǳǊƴ ƛƴǘƻ ǘƘŜ ƳƛŘŘƭŜ ƻŦ ǘƘƛǎ ƛƴǎǘǊǳŎǘƛƻƴέ ... sure boss!

ÅSoftware bears most of the burden for security

ÅManufacturers have started looking for solutions
ï2015: Intel Memory Protection Extensions (MPX)

 and Intel Software Guard Extensions (SGX)

ï2016: Oracle Silicon Secured Memory (SSM)

3

ά{ǇŜƴŘƛƴƎ ǎƛƭƛŎƻƴ ǘƻ
ƛƳǇǊƻǾŜ ǎŜŎǳǊƛǘȅέ

Unsafe low-level languages

ÅC (1972) and C++ undefined behavior
ïincluding buffer overflows, checks too expensive

ïcompilers optimize aggressively assuming
undefined behavior will simply not happen

4

Unsafe low-level languages

ÅC (1972) and C++ undefined behavior
ïincluding buffer overflows, checks too expensive

ïcompilers optimize aggressively assuming
undefined behavior will simply not happen

ÅProgrammers bear the burden for security
ïjust write secure code ... all of it

4

Unsafe low-level languages

ÅC (1972) and C++ undefined behavior
ïincluding buffer overflows, checks too expensive

ïcompilers optimize aggressively assuming
undefined behavior will simply not happen

ÅProgrammers bear the burden for security
ïjust write secure code ... all of it

4

Unsafe low-level languages

ÅC (1972) and C++ undefined behavior
ïincluding buffer overflows, checks too expensive

ïcompilers optimize aggressively assuming
undefined behavior will simply not happen

ÅProgrammers bear the burden for security
ïjust write secure code ... all of it

4

vulnerable since May 2008

DNS queries

Safer high-level languages?

Åmemory safe (at a cost)

5

F#

Safer high-level languages?

Åmemory safe (at a cost)

Åuseful abstractions for writing secure code:

ïGC, type abstraction, modules, immutability, ...

5

F#

Safer high-level languages?

Åmemory safe (at a cost)

Åuseful abstractions for writing secure code:

ïGC, type abstraction, modules, immutability, ...

Ånot immune to low-level attacks

ïlarge runtime systems, in C++ for efficiency

ïunsafe interoperability with low-level code

Ålibraries often have large parts written in C/C++

Åenforcing abstractions all the way down too expensive

5

F#

6

7

Teasing out 2 different problems

Å1. inherently insecure low-level languages

ïmemory unsafe: any buffer overflow can be catastrophic

 allowing remote attackers to gain complete

control

8

Teasing out 2 different problems

Å1. inherently insecure low-level languages

ïmemory unsafe: any buffer overflow can be catastrophic

 allowing remote attackers to gain complete control

Å2. unsafe interoperability with lower-level code

ïeven code written in safer high-level languages

has to interoperate with insecure low-level libraries

ïunsafe interoperability: all high-level safety guarantees lost

8

Key enabler: Micro-Policies

9

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

9

pc

r0

r1

mem[0]

άǎǘƻǊŜ Ǌл Ǌмέ

mem[2]

mem[3]

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

άǎǘƻǊŜ Ǌл Ǌмέ tm1

mem[2] tm2

mem[3] tm3

tpc

tr0

tr1

tm1

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

άǎǘƻǊŜ Ǌл Ǌмέ tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

tpcΩ ǘƳоΩ

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

άǎǘƻǊŜ Ǌл Ǌмέ tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpcΩ ǘƳоΩ

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

άǎǘƻǊŜ Ǌл Ǌмέ tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpcΩ

ǘƳоΩ

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpcΩ ǘƳоΩ

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

άǎǘƻǊŜ Ǌл Ǌмέ tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpcΩ

ǘƳоΩ

store

ǎƻŦǘǿŀǊŜ ƳƻƴƛǘƻǊΩǎ ŘŜŎƛǎƛƻƴ ƛǎ ƘŀǊŘǿŀǊŜ ŎŀŎƘŜŘ

software-defined, hardware-accelerated, tag-based monitoring

=

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

άǎǘƻǊŜ Ǌл Ǌмέ tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3 ґ

tm3

=

Ålow level + fine grained: unbounded per-word
metadata, checked & propagated on each
instruction

10

Micro-policies are cool!

Ålow level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

Åflexible: tags and monitor defined by software

Åefficient: software decisions hardware cached

Åexpressive: complex policies for secure compilation

Åsecure and simple enough to verify security in Coq

Åreal: FPGA implementation on top of RISC-V

10

Micro-policies are cool!

Ålow level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

Åflexible: tags and monitor defined by software

Åefficient: software decisions hardware cached

Åexpressive: complex policies for secure compilation

Åsecure and simple enough to verify security in Coq

Åreal: FPGA implementation on top of RISC-V

10

Micro-policies are cool!

Åinformation flow control (IFC)

Expressiveness

11

 ώtht[Ωмпϐ

Åinformation flow control (IFC)

Åmonitor self-protection

Åprotected compartments

Ådynamic sealing

Åheap memory safety

Åcode-data separation

Åcontrol-flow integrity (CFI)

Åtaint tracking

Å...

Expressiveness

11

 ώtht[Ωмпϐ

Åinformation flow control (IFC)

Åmonitor self-protection

Åprotected compartments

Ådynamic sealing

Åheap memory safety

Åcode-data separation

Åcontrol-flow integrity (CFI)

Åtaint tracking

Å...

Expressiveness

11

 ώtht[Ωмпϐ

Way beyond MPX,
SGX, SSM, etc

Åinformation flow control (IFC)

Åmonitor self-protection

Åprotected compartments

Ådynamic sealing

Åheap memory safety

Åcode-data separation

Åcontrol-flow integrity (CFI)

Åtaint tracking

Å...

Expressiveness

11

Verified
(in Coq)

ώhŀƪƭŀƴŘΩмрϐ

 ώtht[Ωмпϐ

Way beyond MPX,
SGX, SSM, etc

Åinformation flow control (IFC)

Åmonitor self-protection

Åprotected compartments

Ådynamic sealing

Åheap memory safety

Åcode-data separation

Åcontrol-flow integrity (CFI)

Åtaint tracking

Expressiveness

Verified
(in Coq)

Evaluated
(<10% runtime overhead)

ώhŀƪƭŀƴŘΩмрϐ

 ώtht[Ωмпϐ

ώ!{t[h{Ωмрϐ

Way beyond MPX,
SGX, SSM, etc

Å Formal methods & architecture & systems

Å Current team:

ï Inria Paris: /ŇǘŇƭƛƴ IǊƛǚŎǳ, Marco Stronati
(until recently Yannis Juglaret, Boris Eng)

ïUPenn: André DeHon, Benjamin Pierce,
Arthur Azevedo de Amorim, Nick Roessler

ïPortland State: Andrew Tolmach

ïMIT: Howie Shrobe,
Stelios Sidiroglou-Douskos

ï Industry: Draper Labs, Bluespec Inc

Micro-Policies team

12

Å Formal methods & architecture & systems

Å Current team:

ï Inria Paris: /ŇǘŇƭƛƴ IǊƛǚŎǳ, Marco Stronati
(until recently Yannis Juglaret, Boris Eng)

ïUPenn: André DeHon, Benjamin Pierce,
Arthur Azevedo de Amorim, Nick Roessler

ïPortland State: Andrew Tolmach

ïMIT: Howie Shrobe,
Stelios Sidiroglou-Douskos

ï Industry: Draper Labs, Bluespec Inc

Å Spinoff of past project:
DARPA CRASH/SAFE (2011-2014)

Micro-Policies team

12

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

13

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

13

1. Provide secure semantics for low-level languages

ïC with protected components and memory safety

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

13

1. Provide secure semantics for low-level languages

ïC with protected components and memory safety

2. Enforce secure interoperability with lower-level code

ïASM, C, and F* [= OCaml/F# + verification]

Formally verify: full abstraction

14

holy grail of secure compilation, enforcing abstractions all the way down

Formally verify: full abstraction

14

source

target

compiler

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

Formally verify: full abstraction

14

 low-level
 attacker

source

target

compiler

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

component

component

not
enough

e.g. arbitrary
machine code

Formally verify: full abstraction

14

 high-level
 attacker

 low-level
 attacker

source

target

compiler

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

component

not
enough

e.g. arbitrary
machine code

Formally verify: full abstraction

14

 high-level
 attacker

 low-level
 attacker

source

target

compiler

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

component

not
enough

no extra power protected e.g. arbitrary
machine code

Formally verify: full abstraction

14

 high-level
 attacker

source

Benefit: sound security reasoning in the source language
 forget about compiler chain (linker, loader, runtime system)
 forget that libraries are written in a lower-level language

secure

secure

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

not
enough *folklore

Formally verify: full abstraction

14

 high-level
 attacker

source

Benefit: sound security reasoning in the source language
 forget about compiler chain (linker, loader, runtime system)
 forget that libraries are written in a lower-level language

secure

secure

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

not
enough *folklore

not efficiently achievable today

Fully abstract compilation, definition

15

 low-level
 attacker

1st high-level
component

1st compiled
component

low-level
attacker .

compiler

Fully abstract compilation, definition

15

 low-level
 attacker

1st high-level
component

1st compiled
component

 low-level
 attacker

2nd high-level
component

2nd compiled
component

low-level
attacker .

compiler compiler

Fully abstract compilation, definition

15

 high-level
 attacker

 low-level
 attacker

1st high-level
component

1st compiled
component

 high-level
 attacker

 low-level
 attacker

2nd high-level
component

2nd compiled
component

high-level
attacker

low-level
attacker

ᵼ

.

.

compiler compiler

Fully abstract compilation, definition

15

 high-level
 attacker

 low-level
 attacker

1st high-level
component

1st compiled
component

 high-level
 attacker

 low-level
 attacker

2nd high-level
component

2nd compiled
component

high-level
attacker

low-level
attacker

ᵼ

.

.

compiler compiler

SECOMP: achieving full abstraction at scale

16

miTLS*
F* language

(OCaml/F# + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

16

miTLS*

KremSec

F* language
(OCaml/F# + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

16

miTLS*

KremSec

memory safe
C component

F* language
(OCaml/F# + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

16

miTLS*

KremSec

memory safe
C component

F* language
(OCaml/F# + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

16

miTLS*

CompSec+

KremSec

memory safe
C component

F* language
(OCaml/F# + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

16

miTLS*

CompSec+

KremSec

memory safe
C component

legacy C
component

CompSec

ASM
component

F* language
(OCaml/F# + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

16

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(OCaml/F# + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

16

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(OCaml/F# + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

16

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(OCaml/F# + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

16

miTLS*

CompSec+

KremSec

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(OCaml/F# + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

protecting higher-level abstractions

stronger connection to Everest expedition

Protecting component boundaries

ÅAdd mutually distrustful components to C

ïinteracting only via strictly enforced interfaces

17

Protecting component boundaries

ÅAdd mutually distrustful components to C

ïinteracting only via strictly enforced interfaces

ÅCompSec compiler chain (based on CompCert)

ïpropagate interface information to produced binary

17

Protecting component boundaries

ÅAdd mutually distrustful components to C

ïinteracting only via strictly enforced interfaces

ÅCompSec compiler chain (based on CompCert)

ïpropagate interface information to produced binary

ÅMicro-policy simultaneously enforcing

ïcomponent separation

ïtype-safe procedure call and return discipline

17

Protecting component boundaries

ÅAdd mutually distrustful components to C

ïinteracting only via strictly enforced interfaces

ÅCompSec compiler chain (based on CompCert)

ïpropagate interface information to produced binary

ÅMicro-policy simultaneously enforcing

ïcomponent separation

ïtype-safe procedure call and return discipline

ÅInteresting attacker model

ïextending full abs. to mutual distrust + unsafe source
17

Protecting component boundaries

ÅAdd mutually distrustful components to C

ïinteracting only via strictly enforced interfaces

ÅCompSec compiler chain (based on CompCert)

ïpropagate interface information to produced binary

ÅMicro-policy simultaneously enforcing

ïcomponent separation

ïtype-safe procedure call and return discipline

ÅInteresting attacker model

ïextending full abs. to mutual distrust + unsafe source
17 Recent work, joint with Yannis Juglaret et al

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

pc

memory

C1

C2

... r
@n

registers

Store ra Ҧ ẘrm

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

pc

memory

C1

C2

... r
@n

registers

Store ra Ҧ ẘrm

stack level
current color

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

pc

memory

C1

C2

... r
@n

registers

Store ra Ҧ ẘrm

cross-component call
only allowed at EntryPoint

stack level
current color

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

ra

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra Ҧ ẘrm

pc ...
@(n+1)

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

ra

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra Ҧ ẘrm

pc ...
@(n+1)

linear return capability

changed color

increment

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

memory

C1

C2

pc ra rm
@(n+1)

@Ret n

registers

Store ra Ҧ ẘrm

linear return capability

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

memory

C1

C2

pc ra rm
@(n+1)

@Ret n

registers

Store ra Ҧ ẘrm

linear return capability

loads and stores to the same
component always allowed

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra Ҧ ẘrm

linear return capability @Ret n

pc ra rm
@(n+1)

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra Ҧ ẘrm

linear return capability @Ret n

pc ra rm
@(n+1)

invariant:
at most one
return capability
per call stack level

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra Ҧ ẘrm

linear return capability @Ret n

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ẘrm Ҧ ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra Ҧ ẘrm

linear return capability @Ret n

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

cross-component
return only allowed
via return capability

Secure compartmentalizing compilation (SCC)

19

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5 Ҩ Ҩ Ҩ Ҩ Ҩ
 ᴝ ᴝ ᴝ

cᶅompromise scenarios.

Secure compartmentalizing compilation (SCC)

19

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5 Ҩ Ҩ Ҩ Ҩ Ҩ

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5 Ҩ Ҩ Ҩ Ҩ Ҩ ḕ L

 ᴝ ᴝ ᴝ ᴝ ᴝ ᴝ

cᶅompromise scenarios.

Secure compartmentalizing compilation (SCC)

19

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5 Ҩ Ҩ Ҩ Ҩ Ҩ

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5 Ҩ Ҩ Ҩ Ҩ Ҩ

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

 ᶅlow-level attack from compromised C2Ҩ, C4ҨΣ /5Ҩ

 ɱhigh-level attack from some fully defined A2, A4, A5

ḕ L

ḕ H

 ᴝ ᴝ ᴝ ᴝ ᴝ ᴝ

cᶅompromise scenarios.

Secure compartmentalizing compilation (SCC)

19

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5 Ҩ Ҩ Ҩ Ҩ Ҩ

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5 Ҩ Ҩ Ҩ Ҩ Ҩ

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

 ᶅlow-level attack from compromised C2Ҩ, C4ҨΣ /5Ҩ

 ɱhigh-level attack from some fully defined A2, A4, A5

ḕ L

ḕ H

 ᴝ ᴝ ᴝ ᴝ ᴝ ᴝ

cᶅompromise scenarios.

follows from άǎǘǊǳŎǘǳǊŜŘ full abstraction
 ŦƻǊ ǳƴǎŀŦŜ ƭŀƴƎǳŀƎŜǎέ Ҍ άǎŜǇŀǊŀǘŜ ŎƻƳǇƛƭŀǘƛƻƴέ

[Beyond Good and Evil, Juglaret, HritcuΣ Ŝǘ ŀƭΣ /{CΩмсϐ

Protecting higher-level abstractions

20

ÅML abstractions we want to enforce with micro-policies

ïtypes, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

Protecting higher-level abstractions

20

ÅML abstractions we want to enforce with micro-policies

ïtypes, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

ÅF*: enforcing full specifications using micro-policies

ïsome can be turned into contracts, checked dynamically

ïfully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

Protecting higher-level abstractions

20

ÅML abstractions we want to enforce with micro-policies

ïtypes, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

ÅF*: enforcing full specifications using micro-policies

ïsome can be turned into contracts, checked dynamically

ïfully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

ÅLimits of purely-dynamic enforcement

ïfunctional purity, termination, relational reasoning

Protecting higher-level abstractions

20

ÅML abstractions we want to enforce with micro-policies

ïtypes, value immutability, opaqueness of closures,
parametricity (dynamic sealing), GC vs malloc/free, ...

ÅF*: enforcing full specifications using micro-policies

ïsome can be turned into contracts, checked dynamically

ïfully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

ÅLimits of purely-dynamic enforcement

ïfunctional purity, termination, relational reasoning

ïpush these limits further and combine with static analysis

SECOMP focused on dynamic enforcement
but combining with static analysis can ...

Åimprove efficiency
ïremoving spurious checks

ïe.g. turn off pointer checking for a statically memory
safe component that never sends or receives pointers

21

SECOMP focused on dynamic enforcement
but combining with static analysis can ...

Åimprove efficiency
ïremoving spurious checks

ïe.g. turn off pointer checking for a statically memory
safe component that never sends or receives pointers

Åimprove transparency
ïallowing more safe behaviors

ïe.g. statically detect which copy of linear return
capability the code will use to return

ïin this case unsound static analysis is fine

21

SECOMP in a nutshell

ÅWe need more secure languages, compilers, hardware

 22

SECOMP in a nutshell

ÅWe need more secure languages, compilers, hardware

Å Key enabler: micro-policies (software-hardware protection)

ÅGrand challenge: the first efficient formally secure compilers

 for realistic programming languages (C and F*)

22

SECOMP in a nutshell

Å We need more secure languages, compilers, hardware

Å Key enabler: micro-policies (software-hardware protection)

Å Grand challenge: the first efficient formally secure compilers

 for realistic programming languages (C and F*)

Å Answering challenging fundamental questions

ï attacker models, proof techniques

ï secure composition, micro-policies for C

22

SECOMP in a nutshell

Å We need more secure languages, compilers, hardware

Å Key enabler: micro-policies (software-hardware protection)

Å Grand challenge: the first efficient formally secure compilers

 for realistic programming languages (C and F*)

Å Answering challenging fundamental questions

ï attacker models, proof techniques

ï secure composition, micro-policies for C

Å Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

22

SECOMP in a nutshell

Å We need more secure languages, compilers, hardware

Å Key enabler: micro-policies (software-hardware protection)

Å Grand challenge: the first efficient formally secure compilers

 for realistic programming languages (C and F*)

Å Answering challenging fundamental questions

ï attacker models, proof techniques

ï secure composition, micro-policies for C

Å Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

Å Measuring & lowering the cost of secure compilation

22

SECOMP in a nutshell

ÅWe need more secure languages, compilers, hardware

Å Key enabler: micro-policies (software-hardware protection)

ÅGrand challenge: the first efficient formally secure compilers

 for realistic programming languages (C and F*)

Å Answering challenging fundamental questions

ïattacker models, proof techniques

ïsecure composition, micro-policies for C

Å Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

ÅMeasuring & lowering the cost of secure compilation

ÅMost of this is vaporware at this point but ...

ïbuilding a community, looking for collaborators, and hiring
22

23

Collaborators & Community
Å Traditional collaborators from Micro-Policies project

ïUPenn, MIT, Portland State, Draper Labs

23

Collaborators & Community
Å Traditional collaborators from Micro-Policies project

ïUPenn, MIT, Portland State, Draper Labs

Å Several other researchers working on secure compilation

ïDeepak Garg (MPI-SWS), Frank Piessens (KU Leuven),

Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR)

23

Collaborators & Community
Å Traditional collaborators from Micro-Policies project

ïUPenn, MIT, Portland State, Draper Labs

Å Several other researchers working on secure compilation

ïDeepak Garg (MPI-SWS), Frank Piessens (KU Leuven),

Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR)

Å Secure compilation meetings (very informal)

ï1st at Inria Paris in August 2016

ï2nd in Paris on 15 January 2017 before POPL at UPMC

ïWork in progress proposal for Dagstuhl seminar in 2018

ïbuild larger research community, identify open problems,

bring together communities (hardware, systems, security,

 languages, verification, ...)

BACKUP SLIDES

24

ÅLooking for excellent interns, PhD students,
PostDocs, starting researchers, and engineers

ÅWe can also support outstanding
candidates in the Inria permanent researcher
competition

25

