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A devastating lowlevel vulnerabi
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| designed in an era of scarce hardware resources

| too often trade off security for efficiency

A the world has changed2016 vs 1972%)
I security matters, hardware resources abundant

T time to revisit some tradeoffs

F AOPOPDPIKS ydzYoSNI 2F !'bL- Ayaildlrttrairzy
-- Dennis Ritchie and Ken Thompson, June 1972
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A Software bears most of the burden for security

A Manufacturers have started looking for solutions

I 2015: Intel Memory Protection Extensions (MPX)
and Intel Software Guard Extensions (SGX)

I 2016: Oracle Silicon Secured Memory (SSM)
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A Software bears most of the burden for security

A Manufacturers have started looking for solutions

I 2015: Intel Memory Protection Extensions (MPX
and Intel Software Guard Extensions (SGX) [FEREEERETNES
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I 2016: Oracle Silicon Secured Memory (SSM)
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Unsafe lowlevel languages

A C (1972) and C+defined behavior

I Including buffer overflows, checks too expensive

I compilers optimize aggressively assuming  rrocravviING
. . . . LANGUAGE
undefined behavior will simply not happen

A Programmers bear the burden for security

I just write secure code ... all of it

[PATCH] CVE-2015-7547 --- glibc
getaddrinfo() stack-based buffer overflow

LIFE SUCKS.

e From: "Carlos O'Donell" <carlos at redhat dot com>

¢ To: GNU C Library <libc-alpha at sourceware dot org>

e Date: Tue, 16 Feb 2016 09:09:52 -0500

e Subject: [PATCH] CVE-2015-7547 --- glibc getaddrinfo() stack-based buffer overflow
e Authentication-results: sourceware.org; auth=none

* References: <56C32C20 dot 1070006 at redhat dot com>

The glibc project thanks the Google Security Team and Red Hat for
reporting the security impact of this issue, and Robert Holiday of Ciena
for reporting the related bug 18665.
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A C (1972) and C+defined behavior

I Including buffer overflows, checks too expensive
I compilers optimize aggressively assuming  rrocravviING

undefined behavior will simply not happen

LANGUAGE

A Programmers bear the burden for security
I just write secure code ... all of it

LIFE SUCKS.
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[PATCH] CVE-2015-7547 ---|glibc

getaddrinfo()|stack-based buffer overflow

DNS g UerieSell" <carlos at redhat dot com>

— “milip :

{pare: Tue. 16 Feb 2016| VUINerable since May 200213

e Subject: [PATCH| CVE == = r overflow

e Authentication-results: sourceware.org; auth=none
* References: <56C32C20 dot 1070006 at redhat dot com>

The glibc project thanks the Google Security Team and Red Hat for
reporting the security impact of this issue, and Robert Holiday of Ciena
for reporting the related bug 18665.
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Safer higHevel languages?

¢« «adlOCaml < 3
‘:.__":)
A memory safe(at a cost)  Java @ Haskel
A useful abstractiondor writing secure code:
I GC, type abstraction, modules, immutabillity, ...

A not immune to lowlevel attacks
I large runtime systems, in C++ for efficiency

I unsafe interoperabllity with lowlevel code
Alibraries often have large parts written in C/C++
Aenforcing abstractions all the way down too expensive
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Al

A 2.

Teasing out 2 different problems

iInherently insecure lowevel languages

memory unsafe any bufferoverflow can be catast IC
allowing remote attackers to gain complete control

unsafe interoperability with lowedevel code

even code written irsafer highlevel languages
has to interoperate withnsecure lowlevel libraries

unsafe interoperability:all highlevel safety guarantees lost
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Key enabler: MicrePolicies ”

software-defined, hardwareaccelerated, tadpased monitoring

plc tpcQ mem[0] tmO
ro trO —{dald2NH tml pé
rl trl mem[2] tm2

>l mem|[3] Yo 0]

tpc ‘ tr0 “ tri = tm3 “ tml

store \>\A f//-
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Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monitoring

pc tpc mem[0] tmO
ro trO —{dald2NH tml pé
rl trl mem[2] tm2
> mem[3] tm3
tpc “ tr0 “ trl = tm3 “ tm1

store

\>\A

cc——

policy violation stopped!
(e.g. out of bounds write
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A low level + fine grainedunbounded pemword
metadata, checked & propagated on each instruction

A flexible: tags and monitor defined by software[]

A efficient: software decisions hardware cachedspec

A@ ressive complex policies for secure compilatipn

secureandsimpleenough to verify security in Coqw;}

A real: FPGA implementation on top of RI8C
DRAPER bluespec
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. Way beyond MPX,
EXpressivenessy =ftiit

A monitor selprotection Verified®.
: A protected compartments (in Coq) r) 5
' Ghi 1E y

: A dynamic sealing

A heap memory safety
A code-data separation 5
A CONtrOLFLOW.INtEGHY. (CED oo

A taint tracking
A ..
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. Way beyond MPX,
EXpressivenessy =ftiit

A monitor selfprotection Verified®
. A protected compartments (in Coq) &~
‘Adynamicsealing @ntlth

. : A heap memory safety
.1 A codedata separation

: A _control-flow. integrity. (CEI ..o
. A taint tracking Evaluated :
: (<10% runtime overhead)

O {t] hé{’ebél\np
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SteliosSidiroglouDouskos

I Industry DraperLabs,Bluespednc DRAPER
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A Formal methods& architecture& systems
A Currentteam:

i InriaParis/ N Nf A,Wart¢oStFonatd dz
(until recentlyYannisJudaret, BorisEng

I UPennAndré DeHonBenjamin Pierce
Arthur Azevedo de AmorinNickRoessler

T Portland StateAndrew Tolmach

I MIT:Howie Shrobe
SteliosSidiroglouDouskos

I Industry DraperLabs,Bluespednc DRAPER
A Spinoff of past project
DARPA CRASH/SAFE (2a014)
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SECOMP grand challenge

Use micrepolicies to buildhe first efficient formally
securecompilersfor realistic programming languageg

1. Provide secure semantics for leievel languages

I C with protected components and memory safety

2. Enforce secure interoperability with lowelevel code
I ASM, C, and F* [= OCaml/F# + verification]
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Formally verify:full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--------------------------------------------------------------
*

program behavior source high-level secure
' componenﬁ attacker
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correctness] enough full *folklore
(e_g_CompCem abStraCtlon
program behavior secure

Benefit sound security reasoning in the source language
forget about compiler chaiflinker, loader, runtime system)
forget that libraries are written in a lowdevel language
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i interacting only viastrictly enforced interfaces % a

A CompSec compiler chairased on CompCert)
| propagate interface information to produced binary

A Micro-policy simultaneously enforcing
I component separation

I type-safe procedure call and return discipline

A Interesting attacker model
I extending full abs. to mutual distrust + unsafe source
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@)tecting component boundaries

Add mutually distrustful components to C
I Interacting only viastrictly enforced interfaces

A CompSec compiler Cha(th)ased on CompCert)

A

---------------------------------------------------------------------------
' \
/

I component separatlon

{
I type-safe procedure call and return discipline

. A Interesting attacker model

}Q-‘L_exlendjng_twl_a_bsl_to_mutual_dlslrust + unsafe source

Recent work, joint with Yannis Juglaret et al 17
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[

memory

Jalr

registers

linear return capability

...@EntryPoint

Storer, Mwr,,

Loadwr, br,

@Ret n

crosscomponent
return only allowed
via return capability

Jumpr,

@(n+1)

iInvariant:

at most one

return capability
per call stack level
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Secure compartmentalizing compilation (SCC

Compromlse scenarios.
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A ML abstractions we want to enforce with micepolicies

I types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), @&mallodfree, ...

A F*: enforcing full specifications using micymolicies
ﬁ I some can be turned intoontracts,checked dynamically

I fully abstract compilation of F* to Miivial for ML interfaces
(because F* allows and tracks effects, as opposed to Coq)

A Limits of purelydynamic enforcement
i functional purity, termination, relational reasonin & . 4

RN

I push these limits further and combine with static analys
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SECOMP focused on dynamic enforcemet
but combining with static analysis can ...
A improve efficiency

3
I removing spurious checks

I e.qg. turn off pointer checking for a statically memory
safe component that never sends or receives pointers
A improve transparency
I allowing more safe behaviors

I e.g. statically detect which copy of linear return
capability the code will use to return

I In this case unsound static analysis is fine
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SECOMP In a nutshell

A We need moresecure languages, compilers, hardware
A Key enablermicro-policies(softwarehardware protection)

A Grand challengethe first efficient formally secure compilers
for realistic programming languagd€ and F*)

A Answering challenging fundamental questions *

I attacker models, proof techniques

I secure composition, micrpolicies for C

A Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

& Measuring & lowering the cost of secure compilation

F Most of this isvaporwareat this point but ...

T bhildina a commiinityy lookina for collaharatore and hirina
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Collaborators & Community

A Traditional collaborators from MicrePolicies project
I UPenn MIT, Portland State, Draper Labs

A Several other researchers working @ecure compilation

I Deepak Garg (MFBWS), Frank Piessens (KU Leuven),
Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR)

A Secure compilation meetings (very informal)
I 1Stat Inria Paris in August 2016
i 2ndin Paris on 15 January 2017 before POPL at UPMC
I Work in progress proposal for Dagstuhl seminar in 2018

I build larger research community, identify open problems,
bring together communitieghardware, systems, security,
languages, verification, ...)



BACKUP SLIDES



A Looking for excellerihterns, PhD students
PostDocsstarting researchersandengineers

A We can also support outstanding
candidates in thénria permanent researcher
competition
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