SECOMP

Efficient Formally Secure Compilers
to a Tagged Architecture

CNONEf AY | NRAUO«
Inria Paris

(visiting researcher at Microsoft until end of November)
(member of Everest expedition)

https://secure-compilation.qgithub.io/

https://secure-compilation.github.io/
https://secure-compilation.github.io/
https://secure-compilation.github.io/

BEJE SECOMP
Efficient Formally Secure Compilers
to a Tagged Architecture

CNONEf AY | NRAUO«
Inria Paris

(visiting researcher at Microsoft until end of November)
(member of Everest expedition)

https://secure-compilation.qgithub.io/

https://secure-compilation.github.io/
https://secure-compilation.github.io/
https://secure-compilation.github.io/

Computers are insecure

A devastating lowlevel vulnerabilities W

Computers are insecure

A devastating lowlevel vulnerabi

A programming languages, com
and hardware architectures

ities

W

nilers

| designed in an era of scarce hardware resources

| too often trade off security for efficiency

Computers are insecure

A devastating lowlevel vulnerabi

A programming languages, com
and hardware architectures

ities

nilers,

| designed in an era of scarce hardware resources

| too often trade off security for efficiency

A the world has changed2016 vs 1972%)
I security matters, hardware resources abundant

T time to revisit some tradeoffs

F AOPOPDPIKS ydzYoSNI 2F !'bL- Ayaildlrttrairzy
-- Dennis Ritchie and Ken Thompson, June 1972

Hardwarearchitectures { '}

Act2RI &@Qa LINROSaazNBE | Nb
T GONRARGS LI A0 GKS SYR 2Fesbdst &
i aadzyld 02 GKA& dzy 0 NHza G.Sight bbsg!(l S :
i GNBUOdzNY Ayid2 GKS YARRIisBebdss (il

Hardwarearchitectures { '}

Act2RI &@Qa LINROSaazNBE | Nb
T GONRARGS LI A0 GKS SYR 2Fesbdst &
i aadzyld 02 GKA& dzy 0 NHza G.Sight bbsg!(l S :
i GNBUOdzNY Ayid2 GKS YARRIisBebdss (il

A Software bears most of the burden for security

Hardwarearchitectures { '}

Act2RI &@Qa LINROSaazNBE | Nb
T GONRARGS LI A0 GKS SYR 2Fesbdst &
i aadzyld 02 GKA& dzy 0 NHza G.Sight bbsg!(l S :
i GNBUOdzNY Ayid2 GKS YARRIisBebdss (il

A Software bears most of the burden for security

A Manufacturers have started looking for solutions

I 2015: Intel Memory Protection Extensions (MPX)
and Intel Software Guard Extensions (SGX)

I 2016: Oracle Silicon Secured Memory (SSM)

Hardwarearchitectures ﬁ

Act2RI &@Qa LINROSaazNBE | Nb
T GONRARGS LI A0 GKS SYR 2Fesbdst &
i aadzyld 02 GKA& dzy 0 NHza G.Sight bbsg!(l S :
i GNBUOdzNY Ayid2 GKS YARRIisBebdss (il

A Software bears most of the burden for security

A Manufacturers have started looking for solutions

I 2015: Intel Memory Protection Extensions (MPX
and Intel Software Guard Extensions (SGX) [FEREEERETNES

3 AYLINR OGS
I 2016: Oracle Silicon Secured Memory (SSM)

Unsafe lowlevel languages

A C (1972) and C+defined behavior

I Including buffer overflows, checks too expensive

I compilers optimize aggressively assuming rrocravviING
. . . . LANGUAGE
undefined behavior will simply not happen

Unsafe lowlevel languages

A C (1972) and C+defined behavior

I Including buffer overflows, checks too expensive

I compilers optimize aggressively assuming rrocravviING
. . . . LANGUAGE
undefined behavior will simply not happen

A Programmers bear the burden for security
I just write secure code ... all of it

LIFE SUCKS.
P {:: ':‘
et
o Wy
)‘qt); 0y
- I,.f‘-:\ —_— %

Unsafe lowlevel languages

A C (1972) and C+defined behavior

I Including buffer overflows, checks too expensive

I compilers optimize aggressively assuming rrocravviING
. . . . LANGUAGE
undefined behavior will simply not happen

A Programmers bear the burden for security

I just write secure code ... all of it

[PATCH] CVE-2015-7547 --- glibc
getaddrinfo() stack-based buffer overflow

LIFE SUCKS.

e From: "Carlos O'Donell" <carlos at redhat dot com>

¢ To: GNU C Library <libc-alpha at sourceware dot org>

e Date: Tue, 16 Feb 2016 09:09:52 -0500

e Subject: [PATCH] CVE-2015-7547 --- glibc getaddrinfo() stack-based buffer overflow
e Authentication-results: sourceware.org; auth=none

* References: <56C32C20 dot 1070006 at redhat dot com>

The glibc project thanks the Google Security Team and Red Hat for
reporting the security impact of this issue, and Robert Holiday of Ciena
for reporting the related bug 18665.

Unsafe lowlevel languages

A C (1972) and C+defined behavior

I Including buffer overflows, checks too expensive
I compilers optimize aggressively assuming rrocravviING

undefined behavior will simply not happen

LANGUAGE

A Programmers bear the burden for security
I just write secure code ... all of it

LIFE SUCKS.

5

[PATCH] CVE-2015-7547 ---|glibc

getaddrinfo()|stack-based buffer overflow

DNS g UerieSell" <carlos at redhat dot com>

— “milip :

{pare: Tue. 16 Feb 2016| VUINerable since May 200213

e Subject: [PATCH| CVE == = r overflow

e Authentication-results: sourceware.org; auth=none
* References: <56C32C20 dot 1070006 at redhat dot com>

The glibc project thanks the Google Security Team and Red Hat for
reporting the security impact of this issue, and Robert Holiday of Ciena
for reporting the related bug 18665.

Safer higHevel languages?

¢ «alOCaml < ¥
=
A memory safe(at a cost) Java @ Haskell

Safer higHevel languages?
¢« «adlOCaml < 3

—

A memory safe(at a cost) Java @ Haskel

A useful abstractiondor writing secure code:
I GC, type abstraction, modules, immutabillity, ...

Safer higHevel languages?

¢« «adlOCaml < 3
‘:.__":)
A memory safe(at a cost) Java @ Haskel
A useful abstractiondor writing secure code:
I GC, type abstraction, modules, immutabillity, ...

A not immune to lowlevel attacks
I large runtime systems, in C++ for efficiency

I unsafe interoperabllity with lowlevel code
Alibraries often have large parts written in C/C++
Aenforcing abstractions all the way down too expensive

5

Teasing out 2 different problems

A 1. inherently insecure lowevel language

I memory unsafe any bufferoverflow can be catastrophic
allowing remote attackers to gain complete
control

Al

A 2.

Teasing out 2 different problems

iInherently insecure lowevel languages

memory unsafe any bufferoverflow can be catast IC
allowing remote attackers to gain complete control

unsafe interoperability with lowedevel code

even code written irsafer highlevel languages
has to interoperate withnsecure lowlevel libraries

unsafe interoperability:all highlevel safety guarantees lost

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monitoring

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monitoring

plc mem[0]
ro —{daU2NB NI NME
rl mem[2]

> mem[3]

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monitoring

plc tpc mem[0] tmO
ro trO —{dald2Ny tml pé
rl trl mem[2] tm2

> mem[3] tm3

Key enabler: MicrePolicies

f&

N
Fﬂ

software-defined, hardwareaccelerated, tadpased monitoring

IOIC tpc mem[0] tmO
ro trO —{da 02Ny tml pé
rl trl mem[2] tm2
mem[3] tm3
tpc “ tr0 “ trl “ tm3 “ tml

store

>

cc——

Key enabler: MicrePolicies

[

NS
%ﬂ)

software-defined, hardwareaccelerated, tadpased monitoring

|
pc tpc mem[0] tmO
ro trO —{dald2NH tml pé
rl trl mem[2] tm2
> mem[3] tm3
tpc “ tr0 “ tri = tm3 “ tml

store

>

allow

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monitoring

plc tpcQ mem[0] tmO
ro trO —{dald2NH tml pé
rl trl mem[2] tm2

>l mem|[3] Yo 0]

tpc “ tr0 “ tri = tm3 “ tml

store%\ /auow/_{-
m—) tpcQ “ uYoQIZ

i"f* j

Key enabler: MicrePolicies ”

software-defined, hardwareaccelerated, tadpased monitoring

plc tpcQ mem[0] tmO
ro trO —{dald2NH tml pé
rl trl mem[2] tm2

>l mem|[3] Yo 0]

tpc ‘ tr0 “ tri = tm3 “ tml

store \>\A f//-

w tpcQ “ uYoQIZ

4

a2F06FNB Y2YAU2NXa RSOA

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monitoring

pc tpc mem[0] tmO
ro trO —{dald2NH tml pé
rl trl mem[2] tm2
> mem[3] tm3
tpc “ tr0 “ trl = tm3 “ tm1

store

\>\A

cc——

policy violation stopped!
(e.g. out of bounds write

9

A low level + fine grainedunbounded pemwvord
metadata, checked & propagated on each
Instruction

10

A low level + fine grainedunbounded pemword
metadata, checked & propagated on each instruction

A flexible: tags and monitor defined by software[]

A efficient: software decisions hardware cachedspec

A expressive com
A secureandsimp
A real: FPGA imp

nlex policies for secure compilation

eenough to verify security in Coq‘l:)

ementation on top of RI8C

DRAPER bluespec

10

A low level + fine grainedunbounded pemword
metadata, checked & propagated on each instruction

A flexible: tags and monitor defined by software[]

A efficient: software decisions hardware cachedspec

A@ ressive complex policies for secure compilatipn

secureandsimpleenough to verify security in Coqw;}

A real: FPGA implementation on top of RI8C
DRAPER bluespec

10

Expressiveness

A information flow control (IFC)ot ht [Qmn 6

Expressiveness

A information flow control (IFC) @t ht [Qumn 8
A monitor selfprotection

A protected compartments
A dynamic sealing

A heap memory safety

A codedata separation

A control-flow integrity (CFI)

A taint tracking
A ..

. Way beyond MPX,
EXpressivenessy =ftiit

A information flow control (IFC) @t ht [Qmn 8
A monitor selfprotection

A protected compartments
A dynamic sealing

A heap memory safety

A codedata separation

A control-flow integrity (CFI)

A taint tracking
A ..

11

. Way beyond MPX,
EXpressivenessy =ftiit

A monitor selprotection Verified®.
: A protected compartments (in Coq) r) 5
' Ghi 1E y

: A dynamic sealing

A heap memory safety
A code-data separation 5
A CONtrOLFLOW.INtEGHY. (CED oo

A taint tracking
A ..

11

. Way beyond MPX,
EXpressivenessy =ftiit

A monitor selfprotection Verified®
. A protected compartments (in Coq) &~
‘Adynamicsealing @ntlth

. : A heap memory safety
.1 A codedata separation

: A _control-flow. integrity. (CEI ..o
. A taint tracking Evaluated :
: (<10% runtime overhead)

O {t] hé{’ebél\np

Micro-Policies team

A Formal methods& architecture& systems
A Currentteam:

i InriaParis/ NU Nf A,ylartoStfonatd dz
(until recentlyYannisJudaret, BorisEng

I UPennAndré DeHonBenjamin Pierce
Arthur Azevedo de AmorinNickRoessler

T Portland StateAndrew Tolmach

I MIT:Howie Shrobe
SteliosSidiroglouDouskos

I Industry DraperLabs,Bluespednc DRAPER

12

Micro-Policies team

A Formal methods& architecture& systems
A Currentteam:

i InriaParis/ N Nf A,Wart¢oStFonatd dz
(until recentlyYannisJudaret, BorisEng

I UPennAndré DeHonBenjamin Pierce
Arthur Azevedo de AmorinNickRoessler

T Portland StateAndrew Tolmach

I MIT:Howie Shrobe
SteliosSidiroglouDouskos

I Industry DraperLabs,Bluespednc DRAPER
A Spinoff of past project
DARPA CRASH/SAFE (2a014)

SECOMP grand challenge

Use micrepolicies to buildhe first efficient formally
securecompilersfor realistic programming languageg

13

SECOMP grand challenge

Use micrepolicies to buildhe first efficient formally
securecompilersfor realistic programming languageg

1. Provide secure semantics for lolevel languages

I C with protected components and memory safety

13

SECOMP grand challenge

Use micrepolicies to buildhe first efficient formally
securecompilersfor realistic programming languageg

1. Provide secure semantics for leievel languages

I C with protected components and memory safety

2. Enforce secure interoperability with lowelevel code
I ASM, C, and F* [= OCaml/F# + verification]

13

Formally verify:full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

14

Formally verify:full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

program behavior [source J

compiler
correctnes Compiler
(e.g.CompCenx

target
program behavior

14

Formally verify:full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

program behavior source
component

compiler j not

correctnes enough Compiler
(e.g.CompCenx

4)

_ target low-level
program behavior componen attacker

N\

e.g. arbitrary
~ machine code

14

Formally verify:full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
*

N .
program behavior source high-level
: componenﬁ attacker

U
g

compiler § not errrnrrernens e ———
correctnesg enough compjler AN full

(e.g.CompCeilx . abstraction
-] p
[target %9 low-level
program behavior componen attacker
e.g. arbitrary
- ~ machine code

14

Formally verify:full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
*

N .
program behavior source high-level
: componenﬁ attacker

U
g

Compiler not R F L

correctnessj enough - A full |
(e.g.CompCeix compiler abstraction

~

-

_ target low-level
program behavior componen attacker

__ Dbrotected no extra power) €-9- arbitrary
machine code

14

Formally verify:full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
*

program behavior source high-level secure
' componenf attacker
Comp”er not e eerreetae et es et et ne et s ne e s s e e enannennast .
correctness] enough full *folklore
(e_g_CompCem abStI‘aCtlon
program behavior secure

Benefit sound security reasoning in the source language
forget about compiler chaiflinker, loader, runtime system)
forget that libraries are written in a lowdevel language

14

not efficiently achievable toda

Formally verify:full abstraction

holy grail of secure compilation, enforcing abstractions all the way down

--
*

program behavior source high-level secure
' componenﬁ attacker
compiler | not et eesereetas e et et s e et assaneetasanenean s e nnanns®® .
correctness] enough full *folklore
(e_g_CompCem abStraCtlon
program behavior secure

Benefit sound security reasoning in the source language
forget about compiler chaiflinker, loader, runtime system)
forget that libraries are written in a lowdevel language

14

Fully abstract compilation, definitior

1sthigh-level
component

compiler

(" N

low-level 15t compiled low-level
attacker component attacker

\- Y,

15

Fully abstract compilation, definitior

1st high-level 2nd high-level
component component
compiler compiler
4 N\ 4 N\
low-level 1t compiled low-level 2nd compiled low-level
attacker component attacker component attacker

- J - J

15

Fully abstract compilation, definitior

4 N\ N\

high-level 1t high-level high-level 2nd high-level high-level

attacker, | component attacker component attacker
g J J

compiler compiler
e

4 N\ N\

low-level 1t compiled low-level 2nd compiled low-level

attacker component attacker component attacker

- J J

15

Fully abstract compilation, definitior

4 N\ N\

high-level 1t high-level high-level 2nd high-level high-level

attacker, | component attacker component attacker
\- A/ Y,

compiler E compiler
. e

4 " N\ N\

low-level 1t compiled low-level 2nd compiled low-level

attacker component attacker component attacker

- J J

15

SECOMP: achieving full abstraction at scale

F* language

(OCamfF# + verification) [mitts |

C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

F* language _
(OCamfF# + verification) [mitts |
KremSei
C language
+ memory safety []

+ components

SECOMP: achieving full abstraction at scale

F* language _
e TL
(OCamfF# + verification) [miLs]
KremSei
C language
f
rmemory safety | 7 Copmpenan)

+ components

SECOMP: achieving full abstraction at scale

F* language .)
oL TLS
(OCamfF# + verification) [m)
KremSei
C Ianguage [H memory safe]
+ memory safety C component

+ components

SECOMP: achieving full abstraction at scale

F* language _ 1
e TL
(OCamfF# + verification) [mirLs
KremSei
C language
f
rmemory safety | 70 Coompenen)
+ components
CompSe
ASM language [H

(RIS&/ + micrepolicies)

16

SECOMP: achieving full abstraction at scale

*
F* language [miTLs |
(OCamfF# + verification))
KremSei
C Ianguage [H memory safe legacy C]
+ memory safety C component] [component

+ components
CompSe CompSe

ASM language ASM
(RIS©/ + micrepolicies) [H H]
\%‘rl ll” :

component

16

SECOMP: achieving full abstraction at scale

*
F* language [miTLs |
(OCamfF# + verification))
KremSei
C Ianguage [H memory safe legacy C]
+ memory safety C component] [component
+ components
CompSet CompSe¢

ASM language (= s =)
(RISE/ + micrepolicies)

v
i ASM
component

protecting component boundaries

16

SECOMP: achieving full abstraction at scale

*
F* language [miTLs |
(OCamfF# + verification))
KremSei
C Ianguage [H memory safe legacy C)
+ memory safety C component] [component

+ components
CompSet CompSe¢

v
i ASM
component

protecting component boundaries

ASM language (= s =)
(RISE/ + micrepolicies)

16

SECOMP: achieving full abstraction at scale

F* language [p———
(OCamfF# + verification))
Krem8e1
5% ~
C Ianguage / [H memory safe legacy C) Y
+ memory safety C component] [component]
+ components
CompSet CompSe¢

ASM language
(RISE/ + micrepolicies)

(6 e e

N -

--

16

SECOMP: achieving full abstraction at scale

I,, . . . \\
; %\@tectmg highetlevel abstractions i
1 1
F* language i [—_— i
(OCamfF# + verification); J !
1
i KremSe i
i i
N 3
C Ianguage i [H memory safe legacy C) A
+ memory safety C component] [component /
4
+ components TN (S IS A ol
CompSet CompSe

ASM language
(RISE/ + micrepolicies)

S

v
i ASM
component

3+ 3

o T
- ——————— -

--

16

I/D-B»tecting component boundaries

e

S

Add mutually distrustful components to C
I Interacting only viastrictly enforced interfaces

17

@)tecting component boundaries

o

A

Add mutually distrustful components to C
I Interacting only viastrictly enforced interfaces

A CompSec compiler chairased on CompCert)
| propagate interface information to produced binary

N

17

I/DD)tecting component boundaries

Add mutually distrustful components to C gl
i interacting only viastrictly enforced interfaces % A

A CompSec compiler chairased on CompCert)
| propagate interface information to produced binary

A Micro-policy simultaneously enforcing
I component separation

I type-safe procedure call and return discipline

17

I/DD)tecting component boundaries

Add mutually distrustful components to C
i interacting only viastrictly enforced interfaces % a

A CompSec compiler chairased on CompCert)
| propagate interface information to produced binary

A Micro-policy simultaneously enforcing
I component separation

I type-safe procedure call and return discipline

A Interesting attacker model
I extending full abs. to mutual distrust + unsafe source

17

@)tecting component boundaries

Add mutually distrustful components to C
I Interacting only viastrictly enforced interfaces

A CompSec compiler Cha(th)ased on CompCert)

A

' \
/

I component separatlon

{
I type-safe procedure call and return discipline

. A Interesting attacker model

}Q-‘L_exlendjng_twl_a_bsl_to_mutual_dlslrust + unsafe source

Recent work, joint with Yannis Juglaret et al 17

s

e

Compartmentalization micrpolicy

memory registers

Jalr O | ne | .. r

[

...@EntryPoint [

Storer, MW,

Loadvr,, 'br,

Jumpr,

—

[Towards a Fully Abstract Compiler Using MidpPolicies, Juglaret et al, TR 2015]*®

Compartmentalization micrpolicy

memory registers

@n

stack leve

Jalr pc r

current color

[

...@EntryPoint [

Storer, MW,

Loadvr,, 'br,

Jumpr,

—

[Towards a Fully Abstract Compiler Using MidpPolicies, Juglaret et al, TR 2015]*®

Compartmentalization micrpolicy

memory registers

. @n C
stack leve P
current color

Jalr

crosscomponent call
only allowed atEntryPoint

[

..|@EntryPoint [«
Storer, MW,

Loadvr,, 'br,

Jumpr,

—

[Towards a Fully Abstract Compiler Using MidpPolicies, Juglaret et al, TR 2015]*®

Compartmentalization micrpolicy

memory registers

Jalr

@Ret n

[

..@EntryPoint [« &M he |

Storer, MW,

Loadvr,, 'br,

Jumpr,

—

[Towards a Fully Abstract Compiler Using MidpPolicies, Juglaret et al, TR 2015]*®

Compartmentalization micrpolicy

memory registers

Jalr
G y

linear return capability
@Ret n
changed color

..@EntryPoint [« &0 he |

Increment
Storer, 'bwr,

[

Loadvr,, 'br,

Jumpr,

—

[Towards a Fully Abstract Compiler Using MidpPolicies, Juglaret et al, TR 2015]*®

Compartmentalization micrpolicy

memory registers
Jalr
_ linear return capability
o B}
@Ret n
...@EntryPoint
0 @(n+1)

Storer, 'bwr,, [¢ pc r, [
=2 -

Loadwr, ['br,

Jumpr,
€

[Towards a Fully Abstract Compiler Using MidpPolicies, Juglaret et al, TR 2015]*®

Compartmentalization micrpolicy

[

memory registers
Jalr
linear return capability
< @Ret n
...@EntryPoint
0 @(n+1)
Storer, 'bwr,, [¢ pc r, [
Loadwr, ['br,
Jumpr,

loads and stores to the same

component always allowed

Compartmentalization micrpolicy

[

@Ret n

memory registers
Jalr
linear return capability
@Retn
...@EntryPoint
Storer, 'bwr,
n+1
e [T
Loadwr, 'br,

Jumpr,

Compartmentalization micrpolicy

[

@Ret n

memory registers
Jalr
linear return capability
@Retn
...@EntryPoint
Storer, 'bwr,
n+1
e [T
Loadwr, 'br,

Jumpr,

iInvariant:

at most one

return capability
per call stack level

Compartmentalization micrpolicy

[

memory

Jalr

...@EntryPoint

Storer, Mwr,,

registers

linear return capability

@Ret n

Loadwr, br,

Jumpr,

_@@n+1)

PC | Ta

iInvariant:

at most one

return capability
per call stack level

Compartmentalization micrpolicy

[

memory

Jalr

registers

linear return capability

...@EntryPoint

Storer, Mwr,,

Loadwr, br,

@Ret n

crosscomponent
return only allowed
via return capability

Jumpr,

@(n+1)

iInvariant:

at most one

return capability
per call stack level

Secure compartmentalizing compilation (SCC

I compromise scenarios.

Secure compartmentalizing compilation (SCC

I compromise scenarios.

Secure compartmentalizing compilation (SCC

Compromlse scenarios.

ARAAAALAAAAA

u ‘s u u
] n . u u u
. 3 . A4 3 . % 3
bt o bt o " <
0’. o o 0’. o o 0’. o o
Tannt Tannt Tannt

f I low-level attack from compromised,@, GQ > @/
m high-level attack from some fully defined, A, A

AA:A0H0A00
C4CQ : G} e'— 1 Gl @ C4CQ .

Secure compartmentalizing compilation (SCC

Compromlse scenarios.

eH Az @ LA A

l low-level attack from compromised,@, GQ = @/
m high-level attack from some fully defined, A, A

ARAAA
o o o
C4('9- '-“ e |— =C2CQ C4CQ ':‘

follows fromd a 1 NHAullabstidetion A
F2N) dzyal FS | y3dzZ 3Sacé

[Beyond Good and Eviluglaret Hritcuz Su | f &/ {

%)tecting highedevel abstractions &

A ML abstractions we want to enforce with micepolicies

I types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), @&mallodfree, ...

20

X@)tecting highedevel abstractions_ 4§
e

A ML abstractions we want to enforce with micepolicies

I types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), @&mallodfree, ...

A F*: enforcing full specifications using micymlicies
ﬁ I some can be turned intoontracts,checked dynamically

I fully abstract compilation of F* to Miivial for ML interfaces
(because F* allows and tracks effects, as opposed to Coq)

20

%)tecting highedevel abstractions_ 4
P o
A ML abstractions we want to enforce with micepolicies

I types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), @&mallodfree, ...

A F*: enforcing full specifications using micymlicies
ﬁ I some can be turned intoontracts,checked dynamically

I fully abstract compilation of F* to Miivial for ML interfaces
(because F* allows and tracks effects, as opposed to COoq)

9

A Limits of purelydynamic enforcement w%

i functional purity, termination, relational reasoning .

20

%)tecting highedevel abstractions_ 4§
e

A ML abstractions we want to enforce with micepolicies

I types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), @&mallodfree, ...

A F*: enforcing full specifications using micymolicies
ﬁ I some can be turned intoontracts,checked dynamically

I fully abstract compilation of F* to Miivial for ML interfaces
(because F* allows and tracks effects, as opposed to Coq)

A Limits of purelydynamic enforcement
i functional purity, termination, relational reasonin & . 4

RN

I push these limits further and combine with static analys

20

SECOMP focused on dynamic enforcemet
but combining with static analysis can ...

J

A improve efficiency

I removing spurious checks

I e.g. turn off pointer checking for a statically memory
safe component that never sends or receives pointers

21

SECOMP focused on dynamic enforcemet
but combining with static analysis can ...
A improve efficiency

3
I removing spurious checks

I e.qg. turn off pointer checking for a statically memory
safe component that never sends or receives pointers
A improve transparency
I allowing more safe behaviors

I e.g. statically detect which copy of linear return
capability the code will use to return

I In this case unsound static analysis is fine

21

SECOMP In a nutshell

A We need moresecure languages, compilers, hardware

22

SECOMP In a nutshell

A We need moresecure languages, compilers, hardware
A Key enablermicro-policies(softwarehardware protection)

A Grand challengethe first efficient formally secure compilers
for realistic programming languagd€ and F*)

22

SECOMP In a nutshell

A We need moresecure languages, compilers, hardware
A Key enablermicro-policies(softwarehardware protection)

A Grand challengethe first efficient formally secure compilers
for realistic programming languagg€ and F*)

A Answering challenging fundamental questions

I attacker models, proof techniques

I secure composition, micepolicies for C

22

o I

SECOMP In a nutshell

We need moresecure languages, compilers, hardware
Key enablermicro-policies(softwarehardware protection)

Grand challengethe first efficient formally secure compilers
for realistic programming languagg€ and F*)

Answering challenging fundamental questions

I attacker models, proof techniques

I secure composition, micepolicies for C
Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

22

o I

SECOMP In a nutshell

We need moresecure languages, compilers, hardware
Key enablermicro-policies(softwarehardware protection)

Grand challengethe first efficient formally secure compilers
for realistic programming languagg€ and F*)

Answering challenging fundamental questions

I attacker models, proof techniques

I secure composition, micepolicies for C
Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

Measuring & lowering the cost of secure compilation '

22

SECOMP In a nutshell

A We need moresecure languages, compilers, hardware
A Key enablermicro-policies(softwarehardware protection)

A Grand challengethe first efficient formally secure compilers
for realistic programming languagd€ and F*)

A Answering challenging fundamental questions *

I attacker models, proof techniques

I secure composition, micrpolicies for C

A Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

& Measuring & lowering the cost of secure compilation

F Most of this isvaporwareat this point but ...

T bhildina a commiinityy lookina for collaharatore and hirina

22

Collaborators & Community

A Traditional collaborators from MicrePolicies project
I UPenn MIT, Portland State, Draper Labs

Collaborators & Community

A Traditional collaborators from MicrePolicies project
I UPenn MIT, Portland State, Draper Labs
A Several other researchers working @ecure compilation

I Deepak Garg (MFBWS), Frank Piessens (KU Leuven),
Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR)

Collaborators & Community

A Traditional collaborators from MicrePolicies project
I UPenn MIT, Portland State, Draper Labs

A Several other researchers working @ecure compilation

I Deepak Garg (MFBWS), Frank Piessens (KU Leuven),
Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR)

A Secure compilation meetings (very informal)
I 1Stat Inria Paris in August 2016
i 2ndin Paris on 15 January 2017 before POPL at UPMC
I Work in progress proposal for Dagstuhl seminar in 2018

I build larger research community, identify open problems,
bring together communitieghardware, systems, security,
languages, verification, ...)

BACKUP SLIDES

A Looking for excellerihterns, PhD students
PostDocsstarting researchersandengineers

A We can also support outstanding
candidates in thénria permanent researcher
competition

25

