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Computers are insecure 

Ådevastating low-level vulnerabilities 

Åprogramming languages, compilers, 

and hardware architectures 

ïdesigned in an era of scarce hardware resources 

ïtoo often trade off security for efficiency 

Åthe world has changed (2016 vs 1972*) 

ïsecurity matters, hardware resources abundant 

ïtime to revisit some tradeoffs 
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ϝ άΦΦΦǘƘŜ ƴǳƳōŜǊ ƻŦ ¦bL· ƛƴǎǘŀƭƭŀǘƛƻƴǎ Ƙŀǎ ƎǊƻǿƴ ǘƻ млΣ ǿƛǘƘ ƳƻǊŜ ŜȄǇŜŎǘŜŘΦΦΦέ 
-- Dennis Ritchie and Ken Thompson, June 1972 
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ά{ǇŜƴŘƛƴƎ ǎƛƭƛŎƻƴ ǘƻ     
ƛƳǇǊƻǾŜ ǎŜŎǳǊƛǘȅέ 
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vulnerable since May 2008 

DNS queries 



Safer high-level languages? 
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Safer high-level languages? 

 

Åmemory safe (at a cost) 

Åuseful abstractions for writing secure code: 

ïGC, type abstraction, modules, immutability, ... 

Ånot immune to low-level attacks 

ïlarge runtime systems, in C++ for efficiency 

ïunsafe interoperability with low-level code 

Ålibraries often have large parts written in C/C++ 

Åenforcing abstractions all the way down too expensive 
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Teasing out 2 different problems 

Å1. inherently insecure low-level languages 

ïmemory unsafe: any buffer overflow can be catastrophic 

           allowing remote attackers to gain complete 

control 
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Teasing out 2 different problems 

Å1. inherently insecure low-level languages 

ïmemory unsafe: any buffer overflow can be catastrophic 

           allowing remote attackers to gain complete control 

Å2. unsafe interoperability with lower-level code 

ïeven code written in safer high-level languages 

has to interoperate with insecure low-level libraries 

ïunsafe interoperability: all high-level safety guarantees lost 

8 
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Ålow level + fine grained: unbounded per-word 
metadata, checked & propagated on each 
instruction 
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Ålow level + fine grained: unbounded per-word 
metadata, checked & propagated on each instruction 

Åflexible: tags and monitor defined by software 

Åefficient: software decisions hardware cached 

Åexpressive: complex policies for secure compilation 

Åsecure and simple enough to verify security in Coq 

Åreal: FPGA implementation on top of RISC-V 
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Åinformation flow control (IFC) 

Åmonitor self-protection 

Åprotected compartments 

Ådynamic sealing 

Åheap memory safety 

Åcode-data separation 

Åcontrol-flow integrity (CFI) 

Åtaint tracking 

     

 

Expressiveness 

Verified 
(in Coq) 

Evaluated  
(<10% runtime overhead) 

ώhŀƪƭŀƴŘΩмрϐ 

 ώtht[Ωмпϐ 

ώ!{t[h{Ωмрϐ 

Way beyond MPX, 
SGX, SSM, etc 



Å Formal methods & architecture & systems 

Å Current team: 

ï Inria Paris: /ŇǘŇƭƛƴ IǊƛǚŎǳ, Marco Stronati 
(until recently Yannis Juglaret, Boris Eng) 

ïUPenn: André DeHon, Benjamin Pierce, 
Arthur Azevedo de Amorim, Nick Roessler 

ïPortland State: Andrew Tolmach 

ïMIT: Howie Shrobe, 
Stelios Sidiroglou-Douskos 

ï Industry: Draper Labs, Bluespec Inc 
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Å Formal methods & architecture & systems 

Å Current team: 

ï Inria Paris: /ŇǘŇƭƛƴ IǊƛǚŎǳ, Marco Stronati 
(until recently Yannis Juglaret, Boris Eng) 

ïUPenn: André DeHon, Benjamin Pierce, 
Arthur Azevedo de Amorim, Nick Roessler 

ïPortland State: Andrew Tolmach 

ïMIT: Howie Shrobe, 
Stelios Sidiroglou-Douskos 

ï Industry: Draper Labs, Bluespec Inc 

Å Spinoff of past project: 
DARPA CRASH/SAFE (2011-2014) 

Micro-Policies team 
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SECOMP grand challenge 

Use micro-policies to build the first efficient formally 

secure compilers for realistic programming languages 

13 

1. Provide secure semantics for low-level languages 

ïC with protected components and memory safety 

2. Enforce secure interoperability with lower-level code 

ïASM, C, and F* [= OCaml/F# + verification] 
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full 
abstraction 
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not 
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not efficiently achievable today 
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legacy C 
component 

CompSec 

ASM 
component 

F* language 
(OCaml/F# + verification) 

    C language 
+ memory safety  
+ components 

ASM language 
(RISC-V + micro-policies) 

protecting higher-level abstractions 

stronger connection to Everest expedition 
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ÅInteresting attacker model 

ïextending full abs. to mutual distrust + unsafe source 
17 Recent work, joint with Yannis Juglaret et al 
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follows from άǎǘǊǳŎǘǳǊŜŘ full abstraction 
                                   ŦƻǊ ǳƴǎŀŦŜ ƭŀƴƎǳŀƎŜǎέ Ҍ άǎŜǇŀǊŀǘŜ ŎƻƳǇƛƭŀǘƛƻƴέ 
 

[Beyond Good and Evil, Juglaret, HritcuΣ Ŝǘ ŀƭΣ /{CΩмсϐ 



Protecting higher-level abstractions 

20 

ÅML abstractions we want to enforce with micro-policies 

ïtypes, value immutability, opaqueness of closures, 

parametricity (dynamic sealing), GC vs malloc/free, ... 

                                                        

                                                        

                                                                  

                                                          

                                      

                                                      

                                                            



Protecting higher-level abstractions 

20 

ÅML abstractions we want to enforce with micro-policies 

ïtypes, value immutability, opaqueness of closures, 

parametricity (dynamic sealing), GC vs malloc/free, ... 

ÅF*: enforcing full specifications using micro-policies 

ïsome can be turned into contracts, checked dynamically 

ïfully abstract compilation of F* to ML trivial for ML interfaces 

(because F* allows and tracks effects, as opposed to Coq) 

                                      

                                                      

                                                            



Protecting higher-level abstractions 

20 

ÅML abstractions we want to enforce with micro-policies 

ïtypes, value immutability, opaqueness of closures, 

parametricity (dynamic sealing), GC vs malloc/free, ... 

ÅF*: enforcing full specifications using micro-policies 

ïsome can be turned into contracts, checked dynamically 

ïfully abstract compilation of F* to ML trivial for ML interfaces 

(because F* allows and tracks effects, as opposed to Coq) 

ÅLimits of purely-dynamic enforcement 

ïfunctional purity, termination, relational reasoning 

                                                            



Protecting higher-level abstractions 

20 
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ÅF*: enforcing full specifications using micro-policies 

ïsome can be turned into contracts, checked dynamically 

ïfully abstract compilation of F* to ML trivial for ML interfaces 

(because F* allows and tracks effects, as opposed to Coq) 

ÅLimits of purely-dynamic enforcement 

ïfunctional purity, termination, relational reasoning 

ïpush these limits further and combine with static analysis 
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SECOMP focused on dynamic enforcement 
but combining with static analysis can ... 

Åimprove efficiency 
ïremoving spurious checks 

ïe.g. turn off pointer checking for a statically memory 
safe component that never sends or receives pointers 

Åimprove transparency 
ïallowing more safe behaviors 

ïe.g. statically detect which copy of linear return 
capability the code will use to return 

ïin this case unsound static analysis is fine 

21 
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ÅWe need more secure languages, compilers, hardware 

Å Key enabler: micro-policies (software-hardware protection) 

ÅGrand challenge: the first efficient formally secure compilers 

                  for realistic programming languages (C and F*) 

Å Answering challenging fundamental questions 

ïattacker models, proof techniques 

ïsecure composition, micro-policies for C 

Å Achieving strong security properties like full abstraction 

+ testing and proving formally that this is the case 

ÅMeasuring & lowering the cost of secure compilation 

ÅMost of this is vaporware at this point but ...  

ïbuilding a community, looking for collaborators, and hiring 
22 
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Collaborators & Community 
Å Traditional collaborators from Micro-Policies project 

ïUPenn, MIT, Portland State, Draper Labs 

Å Several other researchers working on secure compilation 

ïDeepak Garg (MPI-SWS), Frank Piessens (KU Leuven), 

Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR) 

Å Secure compilation meetings (very informal) 

ï1st at Inria Paris in August 2016 

ï2nd in Paris on 15 January 2017 before POPL at UPMC 

ïWork in progress proposal for Dagstuhl seminar in 2018 

ïbuild larger research community, identify open problems, 

bring together communities (hardware, systems, security, 

                                                      languages, verification, ...) 



BACKUP SLIDES 
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ÅLooking for excellent interns, PhD students, 
PostDocs, starting researchers, and engineers 

ÅWe can also support outstanding 
candidates in the Inria permanent researcher 
competition 
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