
What is secure compilation?

Cătălin Hrițcu

Inria Paris

1

What is secure compilation?

• “Secure compilation aims to preserve high-level
language abstractions in compiled code, even
against adversarial low-level contexts.”
 – Secure Compilation Meeting website

• Fully abstract compilation et al fit this intuition

• Show 2 other properties fitting this intuition

– that provide practically motivated attacker models

• Secure compilation more than full abstraction

2

Side-channel attacks

• Low-level contexts can easily observe time

• Very powerful attacker (but realistic!)
– can observe the executed branches (instruction caches)

– can observe the memory access patterns (data caches)

• Achieving full abstraction against such a
powerful low-level attacker seems hopeless
– high-level contexts can’t observe low-level time

– very hard to prevent low-level contexts from observing
time (no concurrency, no external communication, ...)

3

enough

What can we do?

• Option 0: deny/ignore/postpone the problem,
stick with full abstraction and weak attackers

• Option 1: defend against side-channel attacks

• Option 2: devise weaker secure compilation
properties that are immune to side-channels

I’ll focus on these, but there might be more options

4

Option 1: defend against side-channels

• Hopeless: preserving observational equivalence
 of two arbitrary programs

• More realistic:
– single program with clearly identified secrets

– program is constant time with respect to secrets
• no secret dependent branches or memory accesses

• Property: compiler preserves constant time
– easy to achieve using existing compilers

• Limited scope: constant-time cryptography

5

Option 2: devise weaker property that
is immune to side-channels

• Hopeless: preserving observational equivalence
 of two arbitrary programs

• What’s left if one gives up confidentiality?

• Property: robust compilation
– preservation of safety in adversarial context (robust safety)

– conjectures: strictly stronger than compiler correctness

• strictly weaker than full abstraction + compiler correctness

– less extensional than FA, but achievable and still useful:
preservation of data invariants and other integrity properties

6

Let’s take a broad view on secure compilation

• Different security goals / attacker models
– Fully abstract compilation and variants,

constant time preservation, robust compilation, ...

• Different enforcement mechanisms
– static analysis, software rewriting, reference

monitors, secure hardware, randomization, ...

• Different proof techniques
– logical relations, bisimulation, multi-language

semantics, embedded interpreters, ...

7

