Efficient Formally Secure Compilers
to a Tagged Architecture
GQtalin Hritecl
= Inria Paris
K’ Prosecco team
5 year vision
ERC SECOMRtps:// securecompilation.qgithub.io

https://secure-compilation.github.io/

Computers are insecure

A devastating lowlevel vulnerabilities
Ateasingout 2 important securityproblems

1. iInherently insecure lowevel languages

I memory unsafe any buffer overflow can beatastrophic
allowingremote attackers to gain complete control

2. unsafe interoperability with lowedevel code

I even code written irsafer languages
has to interoperate withnsecure lowlevel libraries

I unsafe interoperability highlevelsafety guaranteekst

How did we get here?

A programminglanguages, compilers
and hardware architectures -,
| designed in an era afcarce hardware resources
I too oftentrade off security forefficiency

A the world has change2017 vs 1972%)

| security matters, hardware resources abundant
I time to revisit some tradeoffs

F GOPOPDPIKS ydzYoSNI 2F !'bL- AyailalrttlriArzy
-- Dennis Ritchie and Ken Thompson, June 1972

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monltorlng

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monltorlng

plc mem[O]
ro —{@daU2NB NI NME
rl mem[2]

> mem[3]

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monltorlng

plc tpc mem[O] tmO
ro trO —{dal2NH tml pé
rl trl mem[2] tm2

> mem[3] tm3

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monltorlng

|
pc tpc mem[0] tmO
ro trO —{dal2NH tml pé
rl trl mem[2] tm2
> mem[3] tm3
tpc tr0 “ trl “ tm3 “ tml

store

|
>

e

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monltorlng

plc tpc mem[0] tmO
ro trO —{dal2NH tml pé
rl trl mem[2] tm2

> mem[3] tm3

tm3 “ tml

tpc’ “ t m3°

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monltorlng

plc tpc’ mem[0] tmO
ro trO —{dal2NH tml pé
rl trl mem[2] tm2

> mem[3] t m3°

tm3 “ tml

tpc’ “ t m3°

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monltorlng

|
pc tpc’ mem[0] tmO
ro trO —{dal2NH tml pé
rl trl mem[2] tm2
> mem[3] t m3°
tpc “ tr0 “ trk = tm3 “ tml

store

>

allow

monitor

softwar e

——

tpc’ “ t m3°

S

deci

Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monltorlng

|
pc tpc mem[0] tmO
ro trO —{dal2NH tml pé
rl trl mem[2] tm2
> mem[3] tm3
tpc “ trO “ trl = tm3 “ tm1

store

—

policy violation stopped!
(e.g. out of bounds write

4

A low level + fine grainedunbounded pemword
metadata, checked & propagated on each instruction

A flexible: tags and monitor defined by software

—

A efficient: software decisions hardware cached si:ec

%_g@pressive complex policies for secure compilatipn
secureandsimpleenough to verify security in Coq‘;)

A real: FPGA implementation on top of RISAD R APER

12

. Way beyond MPX,
EXpressivenessy eisint

A monitor selfprotection Verified®
A protected compartments (in Coq) ¥’}
Adynamicsealing 0T
: A heap memory safety
: A codedata separation
. A controlflow integrity (CFI)

. Ataint tracking Evaluated

A .. (<10% runtime overhead}—L :
: o! {t [hPRimp

e e rnmmrnmnmmnmnmmmmmmmnmnmmmnmnmmnmm M mr MM mrM I r M mMmMMmMmm T mrT I I mrM T T T I T 13'

Micro-Policlies team

A Formal methods architecture& systems
A Currentteam:

I InraParisCat al i ,Gughktmot c u

Fachinj MarcoStronati, TheolLaurent

I UPennAndré DeHonBenjamin Pierce
Arthur Azevedo de AmorinNickRoessler

T Portland StateAndrew Tolmach

I MIT:Howie Shrobe
SteliosSidiroglouDouskos

I Industry DraperLabs
A Spinoff of past project
DARPA CRASH/SAFE (20014)

SECOMP grand challenge

Use micrepolicies to buildhe first efficient formally
securecompilersfor realistic programming languageg

1. Provide secure semantics for lolevel languages
I C with protected componentand memory safety

2. Enforce secure interoperability with lowelevel code

I ASM, C, and Low*
[= safeCsubsetembedded in F* fowerification]

15

Secure Compilation

holy grail of preserving security all the way down

Secure Compilation

holy grail of preserving security all the way down

program behavior [source J

compiler
correctnes compiler
(e.g.CompCenx

target
program behavior

16

Secure Compilation

holy grail of preserving security all the way down

program behavior

compiler j not

|

source
compone

]

correctnes enough compiler

(e.g.CompCenx

-

program behavior

_

|

target
compone

P>

low-level
attacker

~

e.g. arbitrary
machine code

16

Secure Compilation

holy grail of preserving security all the way down

*

program behavior

Compiler not ROV R
correctnes enough Compiler

(e.g.CompCenx

J

source

componenf:_> high-level

attacker

.

secure

-

program behavior

_

low-level

compone attacker

~

compilation

e.g. arbitrary
machine code

16

Secure Compilation

holy grail of preserving security all the way down

--
* .

: \
program behavior [source > h(isgifﬁgvel
componemt) attacker :
Compi|er not L 3
correctness] enough compiler A secure
(e.g.CompCelix . compilation
e . ~N

| target low-level
program behavior componen attacker

| Drotected no extra power) €9 arbitrary
machine code

16

Secure Compilation

holy grail of preserving security all the way down

--
* .

. \ (safe) :
program behavior [source f'_> highlevel | secure
: component) attacker
Compi|er not ettt aeet e et aeateeean et an et et easaean et ennanananannnnans® 3
correctness] enough Secure
(e.g.CompCelix compilation
program behavior secure

Benefit sound security reasoning in the source language
forget about compiler chaiflinker, loader, runtime system)

forget that libraries are written in a lowdevel language

16

Our original secure compilation target:
fully abstract compilation

(preservation obbservationakquivalencé
1sthigh-level
component

compiler
4 A

low-level 1t compiled low-level
attacker component attacker

- J

22

Our original secure compilation target:
fully abstract compilation

(preservation obbservationakquivalencé
1st high-level 2nd high-level
component component

compiler compiler
4 A A

(
low-level 1t compiled low-level 2nd compiled low-level
attacker component attacker component attacker
_

- J

22

Our original secure compilation target:
fully abstract compilation

(preservation obbservationakquivalencé

4 N 4 N
higirlevel " gsthighievel | _ high-level ond high-level] _ high-level
attacker, [component attacker component attacker
_ J _ J
compiler compiler
e
4 N 4
low-level 1t compiled low-level 2nd compiled low-level
attacker component attacker component attacker
_ J _

22

Our original secure compilation target:
fully abstract compilation

(preservation obbservationakquivalencé

4 N 4 N
highrlevel | gst highlevel | high-level 21 highlevel | _ high-level
attacker, [component attacker component attacker
_ A Y, _ Y,
compiler E compiler
. e
4 - N 4
low-level 1t compiled low-level 2nd compiled low-level
attacker component attacker component attacker
_ J _

22

Our original secure compilation target:
fully abstract compilation

(preservation obbservationakquivalencé

4 N 4 N

higivlevel (" 3sthigh-level | high-level 20 highlevel) _ high-level

attacker, [component attacker component attacker
_ A Y, _ Y,

compiler E compiler
. e

4 - N 4 N

low-level 1t compiled low-level 2nd compiled low-level

attacker component attacker component attacker
_ J _ J

Problems (1)very hard torealisticallyachieve
(hopeless against timing siddannels;
more realistic: preservation of noninterference)
(2) very difficult to proveX X 22

Our new first target: robust compilation

trace properties

high-level
component

compiler
(" ™

low-level compiled low-level
attacker component attacker

breaking™ _)

27

Our new first target: robust compilation

trace properties

4)
high-level high-level high-level
attacker _ component attacker
breaking”
_ J
compiler
e)

low-level compiled low-level
attacker component attacker

breaking™ _)

27

Our new first target: robust compilation

trace properties

~)
high-level high-level high-level
attacker _ component attacker
breaking”
N A
compiler E
r :)

low-level compiled low-level
attacker component attacker

breaking™ _)

27

Our new first target: robust compilation

trace properties A robust satisfaction preserved
- ~ (adversarial context)
high-level high-level high-level
attacker _ component attacker
breaking”
- A
compiler E
f : A

low-level compiled low-level
attacker component attacker

breaking™ _)

27

Our new first target: robust compilation

trace properties

high-level
attacker
breaking”

low-level
attacker
breaking™

(")
high-level high-level
. component attacker
\- A
compiler E
4 : ™
compiled low-level
component attacker
_ J

A robust satisfaction preserved
(adversarial context)

A gives upon confidentiality
(relational/hyper properties)
I more robust to side channels

27

Our new first target: robust compilation

trace properties A robust satisfaction preserved
- ~ (adversarial context)
high-level high-level highlevel | A gives upon confidentiality
attacker | || component attacker (relational/hyper properties)
breaking” . :
\ A/ i more robust to side channels
compiler A conjectures:
- - N i strongerthan (compositional)

compiler correctness

low-level [complledl%_) Iow-lekvel i weakerthan full abstraction +
attacker _ [{_Ccomponen attacker compiler correctness

breaking™ Y,

27

Our new first target: robust compilation

trace properties A robust satisfaction preserved
- ~ (adversarial context)
high-level high-level highlevel | A gives upon confidentiality
attacker , [component attacker (relational/hyper properties)
breaking” . :
\ A/ i more robust to side channels
compiler A conjectures:
- - N i strongerthan (compositional)
§ compiler correctness

low-level [complledt(}_) '01’;"'9‘2’9' i weakerthan full abstraction +
attacker _ [{_Ccomponen atacker compiler correctness

breaking™ _)

A less extensionathan FA

27

Our new first target: robust compilation

trace properties

high-level
attacker
breaking”

low-level
attacker
breaking™

4)
high-level high-level
. component attacker
\- A
compiler E
4 : ™
compiled low-level
component attacker
_ J

A robust satisfaction preserved
(adversarial context)

A gives upon confidentiality
(relational/hyper properties)
I more robust to side channels
A conjectures:

I strongerthan (compositional)
compiler correctness

I weakerthan full abstraction +
compiler correctness

A less extensionathan FA

Advantageseasier to realistically achieve and prove
still useful preservatiorof invariantsand otherintegrity properties

27

SECOMP: achieving secure compilation at scal

Low* language

(safe C subset in F*) [miTkS]

C language
+ components
+ memorysafety

SECOMP: achieving secure compilation at scal

Low* language .
(safe C subset in F*) [miTLS]
KremSei
C language
+ components []

+ memorysafety

SECOMP: achieving secure compilation at scal

Low* language .
. mITLS
(safe C subset in F*) []
KremSei
C Ianguage memory safe
+ components [: I Ccomponent]

+ memorysafety

SECOMP: achieving secure compilation at scal

Low* language .)
. mITLS
(safe C subset in F?*) [)
KremSei
C Ianguage [H memory safe]
+ components C component

+ memorysafety

SECOMP: achieving secure compilation at scal

Low* language .)
. TL
(safe C subset in F?*) [miLts
KremSei
C language
f
+ components [H c i?r%yoizr?t]
+ memorysafety
CompSe
ASM language [H]

(RIS&/ + micrepolicies)

35

SECOMP: achieving secure compilation at scal

Low* language [p———
(safe C subset in F*))
KremSe
C Ianguage [H memory safe legacy C]
+ components C component component

+ memorysafety
CompSe CompSe

ASM language ASM
(RIS&/ + micrepolicies) [H H Component]

35

SECOMP: achieving secure compilation at scal

*
Low Ianguage [p———
(safe C subset in F*))
KremSe
C Ianguage [H memory safe legacy C]
+ components C component component
+ memorysafety
CompSet CompSe¢
\ 4 \ 4 \ 4
ASM language [H }{) } ASM]
(RIS©/ + micrepolicies) component

\\?rg l[

protecting component boundaries

35

SECOMP: achieving secure compilation at scal

*
Low Ianguage [p———
(safe C subset in F*))
KremSe
C Ianguage [H memory safe legacy C)
+ components C component component
+ memorysafety
CompSet CompSe¢
\ 4 \ 4 \ 4
ASM language [H }{) } ASM]
(RIS©/ + micrepolicies) component

\\?rg l[

protecting component boundaries

35

SECOMP: achieving secure compilation at scal

Low* language [p———
(safe C subset in F?*))
KremSe
5 ~
C language ! [:__.I memory safe legacy C) \
+ Components C component component
+ memorysafety
CompSet CompSe¢

A 4 A 4 A 4

[7t e Jftcomponen]

ASM language
(RIS&/ + micrepolicies)

n T N NN N N R R,
-

35

@)tecting component boundaries

o

Add mutually distrustful components to C
I Interacting only viastrictly enforced interfaces

A CompSecompiler chain(based orCompCer
I propagate interface information to produced binary

__
A

/

“ A Micro-policy simultaneously enforcing sgm -
I component separation
I type-safe procedure call and return discipline

A Interesting attacker model
I mutual distrust, unsafe source language

---------~
i ————— -

’—

jv """" Ongoing work, started with Yannis Juglaret etal .

Protected components micrgolicy

memory registers

Jalr @ ne | .. r

[

@ENtnyd ,..[

Storer, MW,

Loadvr, 'br,

Jumpr,

[Towards a Fully Abstract Compiler Using Midpolicies, Juglaret et al, TR 2015]*

[

[Towards a Fully Abstract Compiler Using Midpolicies, Juglaret et al, TR 2015]*

Protected components micrgolicy

memory

Jalr

@n

registers

.. @ENntrnyJ ...

stack leve

pPC

current color

Storer, MW,

Loadvr, 'br,

Jumpr,

Protected components micrgolicy

memory registers

. @n C
stack leve P
current color

Jalr

crosscomponent call
only allowed atEntry point &
only if from authorized caller

[

@ENtryd ..l

Storer, MW,

Loadvr, 'br,

Jumpr,

[Towards a Fully Abstract Compiler Using Midpolicies, Juglaret et al, TR 2015]*

Protected components micrgolicy

memory registers

Jalr

@Ret n

[

S@Entry . Q0 ne |,
Storer, MW,

Loadvr, 'br,

Jumpr,

[Towards a Fully Abstract Compiler Using Midpolicies, Juglaret et al, TR 2015]*

[

[Towards a Fully Abstract Compiler Using Midpolicies, Juglaret et al, TR 2015]*

Protected components micrgolicy

memory

Jalr

<€

registers

linear return capability

..@EntryJ ,...

@Ret n

changed color

@(n+1)

|

Storer, MW,

Loadvr, 'br,

Jumpr,

ncrement

pC

Fa

[

[Towards a Fully Abstract Compiler Using Midpolicies, Juglaret et al, TR 2015]*

Protected components micrgolicy

registers

memory
Jalr
linear return capability
< @Ret n
@ENntryd ..}
Storer, M., [« 2" e
Loadvr, 'br,
Jumpr,

€

[

Protected components micrgolicy

registers

memory
Jalr
linear return capability
< @Ret n
@ENntryd ..}
Storer, M., [« 2" e
Loadvr, 'br,
Jumpr,

loads and stores to the same

component always allowed

[

Protected components micrgolicy

memory

registers

Jalr

linear return capability

@Ret n

@Retn

..@EntryJ ,...

}

Storer, Mwr,,

_@@+1)

Loadwr, br,

Jumpr,

[

Protected components micrgolicy

memory

Jalr

registers

linear return capability

@Ret n

@Retn

..@EntryJ ,...

}

Storer, Mwr,,

_@@+1)

Loadwr, br,

Jumpr,

PC

iInvariant:

at most one

return capability
per call stack level

[

Protected components micrgolicy

registers

memory
Jalr
linear return capability
@Ret n
@ENntryd ..}
Storer, Mwr,,
Loadwr, br,
1
Jumpr, [gintl) pC

iInvariant:

at most one

return capability
per call stack level

[

Protected components micrgolicy

memory

Jalr

..@EntryJ ,...

}

Storer, Mwr,,

Loadwr, br,

Jumpr,

registers

linear return capability

@Ret n

crosscomponent
return only allowed
via return capability

@(n+1)

PC

iInvariant:

at most one

return capability
per call stack level

Mutual-distrust attacker model

(more interesting compared to vanilla FA or RC)

I compromise scenarios! scenarieindexedtrace properties .

C, and G fully defined

ABAAA
C4CQ i ’5 violates™ (s)

m low-level attack from compromised,@, GQ > @

[Beyond Good and Eviuglaret Hritcu, et al , CS

56

Mutual-distrust attacker model

(more interesting compared to vanilla FA or RC)

I compromise scenarios! scenarieindexedtrace properties .

‘ m ‘ m violates™ (S)

m high-level attack from some fully defined, A, A
C, and G fully defined

'2 m '5
C4CQ i ’5 violates™ (s)

m low-level attack from compromised,@, GQ > @

[Beyond Good and Eviuglaret Hritcu, et al , CS

56

SECOMP In a nutshell

A We need moresecure languages, compilers, hardware
A Key enablermicro-policies(softwarehardware protection)

A Grand challengethe first efficient formally secure compilers
for realistic programming languagd€ and Low*)
A Answering challenging fundamental questions,
I properties/attacker models, proof techniques
I secure composition, micrpolicies for C

A Achieving strong security properties
+ testing and proving formally that this is the case

A Measuring & lowering the cost of secure compilatio

A Most of this isvaporwareat this point but ...

ﬁo I building a community, looking for collaborators, and hiring

to make some of this real

58

BACKUP SLIDES

%)tecting higherlevel abstractions, #§
o

A Low*: enforcing specifications in C

ﬁ I some can be turned intoontracts,checked
dynamicallymicro-policies can speed this up

A Limits of purelydynamic enforcement
I functional purity, termination, relational reasoning

I push these limits further and .
combine with static analysis

60

SECOMP focused on dynamic enforcement
but combining with static analysis can ...
A improve efficiency

S
I removing spurious dynamic checks
I e.g. turn off pointer checking for a statically memory
safe component that never sends or receives pointers
A improve transparency
I allowing more safe behaviors

| e.g. statically detect which copy of linear return
capability the code will use to return

I InNthiscaseinsound “stati c anal

61

Verification and testing

A So far most secure compilation wask paper
i2yS OFyQUu OSNATFeEe F+y Ay
A SECOMP usesoof assistants Cog and F*
A Reduce effort
I more automation (e.g. based on SMT, like In F*)
I Integrate testing and provindgJuickChicland Luck)

A Problem not just with scale of mechanization

I devising googbroof techniquesfor secure
O2YLIATIFGAZ2Y A& | K20 NJ

62

Remaining challenges fanicro-policies

A Micro-policies for C

I needed for vertical compiler composition

I will put micropolicies in the hands of programmers

A Secure micrepolicy composition

I micro-policies aranterferent reference monitors
i onemicreLJl2 f A Oé@ Qa O0SKIF GA2NJ Ol vy
Ae.g. composing anything with IFC can leak

63

Collaborators & Community

A Core team at Inria Paris
I MarcoStronati(PostDoc)GuglielmoFachiniand ThéoLaurent (Interns)
l{[ﬁm I Looking forexcellentinterns, students researchersandengineers

A Traditional collaborators from MicrePolicies project
I UPenn MIT, Portland State, Draper Labs

A Other researchers working osecure compilation

I Deepak Garg (MFBWS), FranRiessengKU Leuven),
AmalAhmed (Northeastern), Cedrournet& NikSwamyo a { w0 X

A Secure compilation meetings
i 1stat Inria Paris in Aug. 201692t POPL in Jan. 2017, POPL workshop
I Upcoming: Dagstuhl seminar on Secure Compilaivtay, 2018

i build larger research community, identify open problems,

bring together communitiegHW, systems, securitiyL, verification, ...)
64

Broad view on secure compilation

A Different security goals / attacker models

I Fully abstract compilation and variants,
robust compilation noninterference preservation, ..

A Different enforcement mechanisms

I referencemonitors, secure hardware, statianalysis,
software rewriting randomization ...

A Different proof techniques

I (bi)simulation, logicalrelations, multlanguage
semantics, embedded interpreters, ...

65

