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Computers are insecure

A devastating lowlevel vulnerabilities
Ateasingout 2 important securityproblems

1. iInherently insecure lowevel languages

I memory unsafe any buffer overflow can beatastrophic
allowingremote attackers to gain complete control

2. unsafe interoperability with lowedevel code

I even code written irsafer languages
has to interoperate withnsecure lowlevel libraries

I unsafe interoperability highlevelsafety guaranteekst



How did we get here?

A programminglanguages, compilers
and hardware architectures -,
| designed in an era afcarce hardware resources
I too oftentrade off security forefficiency

A the world has change2017 vs 1972%)

| security matters, hardware resources abundant
I time to revisit some tradeoffs

F GOPOPDPIKS ydzYoSNI 2F !'bL- AyailalrttlriArzy
-- Dennis Ritchie and Ken Thompson, June 1972
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Key enabler: MicrePolicies

software-defined, hardwareaccelerated, tadpased monltorlng

|
pc tpc mem[0] tmO
ro trO —{dal2NH tml pé
rl trl mem[2] tm2
> mem[3] tm3
tpc “ trO “ trl = tm3 “ tm1

store

—

policy violation stopped!
(e.g. out of bounds write
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A low level + fine grainedunbounded pemword
metadata, checked & propagated on each instruction

A flexible: tags and monitor defined by software

—

A efficient: software decisions hardware cached si:ec

%_g@pressive complex policies for secure compilatipn
secureandsimpleenough to verify security in Coq‘;)

A real: FPGA implementation on top of RISAD R APER

12



. Way beyond MPX,
EXpressivenessy eisint

A monitor selfprotection Verified®
A protected compartments (in Coq) ¥’}
Adynamicsealing 0T
: A heap memory safety
: A codedata separation
. A controlflow integrity (CFI)

. Ataint tracking Evaluated

A .. (<10% runtime overhead}—L :
: o! {t [ hPRimp
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Micro-Policlies team

A Formal methods architecture& systems
A Currentteam:

I InraParisCat al i ,Gughktmot c u

Fachinj MarcoStronati, TheolLaurent

I UPennAndré DeHonBenjamin Pierce
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T Portland StateAndrew Tolmach

I MIT:Howie Shrobe
SteliosSidiroglouDouskos

I Industry DraperLabs
A Spinoff of past project
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SECOMP grand challenge

Use micrepolicies to buildhe first efficient formally
securecompilersfor realistic programming languageg

1. Provide secure semantics for lolevel languages
I C with protected componentand memory safety

2. Enforce secure interoperability with lowelevel code

I ASM, C, and Low*
[= safeCsubsetembedded in F* fowerification]

15
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Secure Compilation

holy grail of preserving security all the way down

------------------------------------------------------------
* .

: \
program behavior [ source > h(isgifﬁgvel
componemt)  attacker :
Compi|er not L 3
correctness] enough compiler A secure
(e.g.CompCelix . compilation
e . ~N

| target low-level
program behavior componen attacker

| Drotected  no extra power) €9 arbitrary
machine code
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Secure Compilation

holy grail of preserving security all the way down

------------------------------------------------------------
* .

. \  (safe) :
program behavior [ source f'_> highlevel | secure
: component)  attacker
Compi|er not ettt aeet e et aeateeean et an et et easaean et ennanananannnnans® 3
correctness] enough Secure
(e.g.CompCelix compilation
program behavior secure

Benefit sound security reasoning in the source language
forget about compiler chaiflinker, loader, runtime system)

forget that libraries are written in a lowdevel language
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Problems (1)very hard torealisticallyachieve
(hopeless against timing siddannels;
more realistic: preservation of noninterference)
(2) very difficult to proveX X 22
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(adversarial context)

A gives upon confidentiality
(relational/hyper properties)
I more robust to side channels
A conjectures:

I strongerthan (compositional)
compiler correctness

I weakerthan full abstraction +
compiler correctness

A less extensionathan FA

Advantageseasier to realistically achieve and prove
still useful preservatiorof invariantsand otherintegrity properties
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SECOMP: achieving secure compilation at scal

Low* language [ p———
(safe C subset in F?*) )
KremSe
5 ~
C language ! [ :__.I memory safe legacy C ) \
+ Components C component component
+ memorysafety
CompSet CompSe¢

A 4 A 4 A 4

[ 7t e Jftcomponen]

ASM language
(RIS&/ + micrepolicies)

n T N NN N N R R,
-

_______________________________________________
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@)tecting component boundaries

o

Add mutually distrustful components to C
I Interacting only viastrictly enforced interfaces

A CompSecompiler chain(based orCompCer
I propagate interface information to produced binary

________________________________________________________________________________
A

/

“ A Micro-policy simultaneously enforcing sgm -
I component separation
I type-safe procedure call and return discipline

A Interesting attacker model
I mutual distrust, unsafe source language

---------~
i ————— -

’—

jv """" Ongoing work, started with Yannis Juglaret etal .
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Mutual-distrust attacker model

(more interesting compared to vanilla FA or RC)

I compromise scenarios! scenarieindexedtrace properties .
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SECOMP In a nutshell

A We need moresecure languages, compilers, hardware
A Key enablermicro-policies(softwarehardware protection)

A Grand challengethe first efficient formally secure compilers
for realistic programming languagd€ and Low*)
A Answering challenging fundamental questions,
I properties/attacker models, proof techniques
I secure composition, micrpolicies for C

A Achieving strong security properties
+ testing and proving formally that this is the case

A Measuring & lowering the cost of secure compilatio

A Most of this isvaporwareat this point but ...

ﬁo I building a community, looking for collaborators, and hiring

to make some of this real
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%)tecting higherlevel abstractions, #§
o

A Low*: enforcing specifications in C

ﬁ I some can be turned intoontracts,checked
dynamicallymicro-policies can speed this up

A Limits of purelydynamic enforcement
I functional purity, termination, relational reasoning

I push these limits further and .
combine with static analysis

60



SECOMP focused on dynamic enforcement
but combining with static analysis can ...
A improve efficiency

S
I removing spurious dynamic checks
I e.g. turn off pointer checking for a statically memory
safe component that never sends or receives pointers
A improve transparency
I allowing more safe behaviors

| e.g. statically detect which copy of linear return
capability the code will use to return

I InNthiscaseinsound “stati c anal
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Verification and testing

A So far most secure compilation wask paper
i2yS OFyQUu OSNATFeEe F+y Ay
A SECOMP usesoof assistants Cog and F*
A Reduce effort
I more automation (e.g. based on SMT, like In F*)
I Integrate testing and provindgJuickChicland Luck)

A Problem not just with scale of mechanization

I devising googbroof techniquesfor secure
O2YLIATIFGAZ2Y A& | K20 NJ
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Remaining challenges fanicro-policies

A Micro-policies for C

I needed for vertical compiler composition

I will put micropolicies in the hands of programmers

A Secure micrepolicy composition

I micro-policies aranterferent reference monitors
i onemicreLJl2 f A Oé@ Qa O0SKIF GA2NJ Ol vy
Ae.g. composing anything with IFC can leak
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Collaborators & Community

A Core team at Inria Paris
I MarcoStronati(PostDoc)GuglielmoFachiniand ThéoLaurent (Interns)
l{[ﬁm I Looking forexcellentinterns, students researchersandengineers

A Traditional collaborators from MicrePolicies project
I UPenn MIT, Portland State, Draper Labs

A Other researchers working osecure compilation

I Deepak Garg (MFBWS), FranRiessengKU Leuven),
AmalAhmed (Northeastern), Cedrournet& NikSwamyo a { w0 X

A Secure compilation meetings
i 1stat Inria Paris in Aug. 201692t POPL in Jan. 2017, POPL workshop
I Upcoming: Dagstuhl seminar on Secure Compilaivtay, 2018

i build larger research community, identify open problems,

bring together communitiegHW, systems, securitiyL, verification, ...)
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Broad view on secure compilation

A Different security goals / attacker models

I Fully abstract compilation and variants,
robust compilation noninterference preservation, ..

A Different enforcement mechanisms

I referencemonitors, secure hardware, statianalysis,
software rewriting randomization ...

A Different proof techniques

I (bi)simulation, logicalrelations, multlanguage
semantics, embedded interpreters, ...
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