PROSECCO

Cătălin Hrițcu, Inria Paris
Our research

Solving security problems

- programming securely with cryptography
- stopping web attacks
- building secure systems

Devising formal methods

- clear attacker models
- program verification tools
- bug finding techniques

Developing practical tools and systems

- F*, miTLS, HACL*, ProVerif, CryptoVerif,
- ProScript, CryptoCat, QuickChick, ...
Finding attacks in TLS

SMACK: State Machine Attack CKs

Implementations of the Transport Layer handle a variety of protocol versions and key exchange methods, prescribe a different message sequence. We address the problem of data in modes.

Tracking the FREAK Attack

The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP

Documents

The Register

Security

The sloth is coming! Quick, get MD5 out of our internet protocols

Researchers point to lingering hash function

“FREAK” flaw in Android cripples HTTPS crypto

Bug forces millions of sites to use easily breakable

FREAK Attack Threatens SSL Clients

Posted by Soulskill on Tuesday March 03, 2015 @04:29PM from the another-day-another-vuln dept.

For the nth time in the last couple of years, security experts are warning about a new

Informal scale vulnerability, this time in some popular SSL clients. The FREAK

attacker is forcing clients to downgrade to weaker ciphers and break their supposedly encrypted communications through a man-in-the-middle attack.

Researchers recently discovered that some SSL clients, including OpenSSL, will
Researchers

Karthik Bhargavan
Bruno Blanchet
Harry Halpin

Cătălin Hrițcu
Graham Steel
Christine Rizkallah

Cryptosense
Current team

Researchers (6)
Karthik Bhargavan
Bruno Blanchet
Harry Halpin
Cătălin Hriţcu
Graham Steel
Christine Rizkallah

PhD Students (4)
Benjamin Beurdeuche
Nadim Kobeissi
Kenji Maillard
Jean Karim Zinzindohoue

PostDocs (2)
Danel Ahman
Marco Stronati

Engineers (2)
Tomer Libal
Marc Sylvestre

Interns (4)
Victor Dumitrescu
Guglielmo Fachini
Natalia Kulatova
Théo Laurent

Visitors (3)
David Baelde (ENS Cachan)
Ana Nora Evans (Univ of Virginia)
David Evans (Univ of Virginia)

Diverse and international 11 nationalities Our working language is English

Collaborators at Microsoft Research, UPenn, MIT, Northeastern, Portland State, IMDEA, Imperial, UCL, ...
Use formal methods to achieve security of critical software

HTTPS stack (miTLS, Everest)
Modern cryptographic library (HACL*)
Secure messaging app (CryptoCat, NEXTLEAP)
Web browser core (CIRCUS)
Compilers & monitors (Micro-Policies, SECOMP)
TCP/IP network stack ...
Tools for analyzing abstract models of crypto protocols

ProVerif

symbolic model (Dolev-Yao)
fully automatic, efficient, precise, produces attack traces
wide range of crypto primitives and properties

CryptoVerif

computational model
semi-automatic: sequence of crypto games
exact security: bound on attack probability

Recent case studies: TLS 1.2 & 1.3, Signal, ARINC823
upcoming TLS 1.3: big redesign, new hope for verification
From verifying protocol models to actual implementations

Protocol models

capture core behavior: succinct, abstract, high-level
great for finding logical flaws [3Shake] and incorrect use of crypto [Lucky13] early in the protocol design phase
e.g. TLS 1.2 & 1.3 in ~1000 lines of ProVerif (best paper at Oakland'17)

Protocol implementations

large software projects: interoperable, efficient
concrete packet formats, multiple protocol modes
support legacy ciphersuites, complex APIs, composable subprotocols

more attacks: message parsing [HeartBleed], state machine [FREAK]
Verified reference implementation of TLS 1.2 & 1.3
Microsoft Research and Inria
Built on top of our HACL* crypto library
verified and faster than OpenSSL libcrypto and Sodium
Towards a verified HTTPS stack (Project Everest)
HTTPS ecosystem critical, complex
HTTPS ecosystem critical, complex and broken

20 years of attacks & fixes
- Buffer overflows
- Incorrect state machines
- Lax certificate parsing
- Weak or poorly implemented crypto
- Side channels
- Informal security goals
- Dangerous APIs
- Flawed standards

Mainstream implementations
- OpenSSL, SChannel, NSS, ...
- Still patched every month!

Certificates
- X.509
- ASN.1
- TLS
- RSA
- SHA
- ECD
- H
- 4Q
- Crypto APIs

Services & Applications
- Edge
- cURL
- WebKit
- Skype
- IIS
- Apache
- Nginx

The Washington Post
‘FREAK’ flaw undermines security for Apple and Google users, researchers discover
Project Everest Goals

Strong verified security

Widespread deployment

- efficiency
- interoperability
- drop-in replacement for OpenSSL, NSS, ...

![Diagram](image.png)
Everest stack verified with

Functional programming language
- like OCaml, F#, Haskell, ...
- extracted to OCaml or F# by default
- subset of F* compiled to efficient C code

Semi-automated verification using SMT
- like Dafny, FramaC, Why3, ...

Interactive verification using dependent types
- like Coq, Lean, Agda, ...
Is verified code secure in practice?

Unsafe languages
- Everest HTTPS
 - 30,000 LOC
- F*
- C/C++
- ASM
- Web browser/server
 - 2,000,000+ LOC

Insecure interoperability

OK we can verify this

Ooops
Secure compilation

Secure interoperability with lower-level code
 component separation, call and return discipline, types, ...

Dynamic enforcement, but at what cost?
 in software, 10x? 100x? 1000x?

Micro-policies
 new tagged hardware architecture
 associates large metadata tag to each word
 efficiently propagates and checks tags; hw caching
 dynamic monitoring: software defined, very flexible,
 fine-grained (words, instructions), fast ...
 ... average 10% runtime overhead for complex policies!
Use formal methods to achieve security of critical software

HTTPS stack (miTLS, Everest)
Modern cryptographic library (HACL*)
Secure messaging app (CryptoCat, NEXTLEAP)
Web browser/server core (CIRCUS)
Compilers & monitors (Micro-Policies, SECOMP)
TCP/IP network stack ...