
When Good Components Go Bad
Formally Secure Compilation
Despite Dynamic Compromise

Cătălin Hrițcu

Inria Paris

1

https://secure-compilation.github.io

https://secure-compilation.github.io/

10 Co-authors ⇒ 100% acceptance rate

Cătălin
Hrițcu

Marco
Stronati

Arthur
Azevedo

de Amorim

Ana Nora
Evans

Andrew
Tolmach

Benjamin
Pierce

Théo
Laurent

Carmine
Abate

Inria Paris CMU U. Virginia U. Trento ENS Paris Portland State UPenn

Guglielmo
Fachini

2

Rob
Blanco

Compartmentalization can defend

against devastating low-level attacks

Inherently insecure languages like C

– any buffer overflow can be catastrophic

– ~100 different undefined behaviors
in the usual C compiler:
• use after frees and double frees, invalid casts,

signed integer overflows,

– root cause, but very challenging to fix:

• efficiency, precision, scalability,
backwards compatibility, deployment

3

Compartmentalization mitigation

• Break up security-critical applications into mutually
distrustful components with clearly specified privileges

• Protect component abstraction all the way down

– separation, static privileges, call-return discipline, types, ...

• Compartmentalizing compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Base this on efficient enforcement mechanisms:
– OS processes (all web browsers) — WebAssembly (web browsers)

– software fault isolation (SFI) — capability machines

– hardware enclaves (SGX) — tagged architectures

4

• Security guarantees one can make fully water-tight

– beyond just "increasing attacker effort"

• Intuitively, ...

... a vulnerability in one component does not immediately

destroy the security of the whole application

... since each component is protected from all the others

... and each component receives protection as long as

it has not been compromised (e.g. by a buffer overflow)

5

Strong security!?

Can we formalize this intuition?

6

This paper answers this question:

Formal definition expressing the
end-to-end security guarantees
of compartmentalization

What is a compartmentalizing compilation
chain supposed to enforce precisely?

Challenge formalizing security of mitigations

• We want source-level security reasoning principles

– easier to reason about security in the source language
if and application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

7

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

Compartmentalizing compilation should ...

• Restrict spatial scope of undefined behavior

– mutually-distrustful components

• each component protected from all the others

• Restrict temporal scope of undefined behavior

– dynamic compromise

• each component gets guarantees
as long as it has not encountered undefined behavior

• i.e. the mere existence of vulnerabilities doesn't
necessarily make a component compromised

8

i0 i1 i2

C0 C1 C2

∃ a sequence of component compromises explaining the finite trace t
in the source language, for instance t=m1·m2·m3 and

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝* m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝ m1·m2·m3

Finite trace records which component encountered
undefined behavior and allows us to rewind execution

∃A1.

∃A2.

If then

9

Security
definition:

Proof-of-concept formally
secure compilation chain in Coq

Illustrates our formal definition

10

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

Verified

Systematically tested (with QuickChick)
11

generic proof technique 23K lines of Coq, mostly proofs

https://secure-compilation.github.io

https://secure-compilation.github.io/

When Good Components Go Bad

• Formalized security of compartmentalization

– first definition supporting dynamic compromise

– restricting undefined behavior spatially and temporally

• Proof-of-concept secure compilation chain in Coq

– software fault isolation or tag-based reference monitor

• Generic definition and proof technique

– we expect them to extend and scale well (ask me about it!)

• We're hiring!

– PostDocs, Young Researchers, Students

12https://secure-compilation.github.io

https://secure-compilation.github.io/

Making this more practical ... next steps:

• Scale formally secure compilation chain to C language
– ongoing: allow shared memory and pointer passing (capabilities)

– eventually support enough of C to measure and lower overhead

– eventually support more enforcement mechanisms (back ends)

• Extend all this to dynamic component creation
– rewind to when compromised component was created

• ... and dynamic privileges:
– capabilities, dynamic interfaces, history-based access control, ...

• From robust safety to hypersafety (eg confidentiality)
[Exploring robust property preservation for secure compilation, arXiv:1807.04603]

13https://secure-compilation.github.io

https://secure-compilation.github.io/

BACKUP SLIDES

14

Now we know what these words mean!

Mutual distrust

Dynamic compromise

Static privilege

C1 A2 C3 A4 A5

C0 A1 C2 ⇓m2; Undef(C2)
↯

i0 i1 i2

C0 A1 C2

(at least in the setting of compartmentalization for unsafe low-level languages)

15

16

Restricting undefined behavior

• Mutually-distrustful components
– restrict spatial scope of undefined behavior

• Dynamic compromise
– restrict temporal scope of undefined behavior

– undefined behavior = observable trace event

– effects of undefined behavior
shouldn't percolate before earlier observable events
• careful with code motion, backwards static analysis, ...

– CompCert already offers this saner temporal model

– GCC and LLVM currently violate this model

17

Dynamic compromise

• each component gets guarantees as long as it
has not encountered undefined behavior

• a component only loses guarantees after an
attacker discovers and exploits a vulnerability

• the mere existence of vulnerabilities doesn't
immediately make a component compromised

18

We build this on Robust Compilation

robust trace property preservation
(robust = in adversarial context)

intuition:
– stronger than compiler correctness

(i.e. trace property preservation)

– confidentiality not preserved
(i.e. no hyperproperties)

– less extensional than fully
abstract compilation

19

high-level
attacker

low-level
attacker

high-level
component

compiled
component

high-level
attacker
causing t

∃

low-level
attacker
causing t

∃

.

.

compiler

∀(bad attack) trace t

Advantages: easier to realistically achieve and prove at scale

useful: preservation of invariants and other integrity properties

generalizes to preserving [relational] hyperproperties!

extends to unsafe languages, supporting dynamic compromise

⇒

Scalable proof technique
for our extension of robustly safe compilation

1. back-translating finite trace prefixes
to whole source programs

– limitation: only works for preserving (hyper)safety

2. generically defined semantics for partial programs

– related to whole-program semantics via
trace composition and decomposition lemmas

3. using whole-program compiler correctness proof
(à la CompCert) as a black-box

– for moving back and forth between source and target

all this yields much simpler and more scalable proofs

20

21

Making this stronger ... beyond safety

safety

data
confidentiality

data and code
confidentiality

[Exploring Robust Property Preservation
For Secure Compilation, arXiv...]

