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abstractions not enforcedwhen compiling 
and linking with adversarial low-level code
Åall source-level security guarantees are lost

Ålinked low-level code can read and write data and code,
jump to arbitrary instructions, smash the stack, ...
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Secure compilation chains
ÅProtect source-level abstractions

even against linked adversarial low-level code
ïvarious enforcement mechanismspossible: processes, SFI, ...

ïshared responsibility: compiler, linker, loader, OS, HW

ÅEnable source-level security reasoning
ïif source program is secureagainst all sourcecontexts then 

compiled program is secureagainst all target contexts

ïbut what should "is secure" mean?
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What properties should we robustly preserve?
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only integrity


