
Journey Beyond Full Abstraction:
Exploring Robust Property Preservation 

for Secure Compilation

https://github.com/secure-compilation/exploring-robust-property-preservation

Carmine
Abate

Deepak
Garg Marco

Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS

Stanford
& CISPA

Inria Paris
Inria Paris Inria Paris

Rob
Blanco

Inria Paris

https://github.com/secure-compilation/exploring-robust-property-preservation


Good programming languages provide
helpful abstractions for writing more secure code

2



Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, interfaces, 
correctness and security specifications, ...

2



Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, interfaces, 
correctness and security specifications, ...

2

abstractions not enforced when compiling 
and linking with adversarial low-level code



Good programming languages provide
helpful abstractions for writing more secure code

• structured control flow, procedures, modules, interfaces, 
correctness and security specifications, ...

2

abstractions not enforced when compiling 
and linking with adversarial low-level code
• all source-level security guarantees are lost

• linked low-level code can read and write data and code,
jump to arbitrary instructions, smash the stack, ...



Secure compilation chains
• Protect source-level abstractions

even against linked adversarial low-level code

3



Secure compilation chains
• Protect source-level abstractions

even against linked adversarial low-level code
– various enforcement mechanisms possible: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

3



Secure compilation chains
• Protect source-level abstractions

even against linked adversarial low-level code
– various enforcement mechanisms possible: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Enable source-level security reasoning
– if source program is secure against all source contexts then 

compiled program is secure against all target contexts

3



Secure compilation chains
• Protect source-level abstractions

even against linked adversarial low-level code
– various enforcement mechanisms possible: processes, SFI, ...

– shared responsibility: compiler, linker, loader, OS, HW

• Enable source-level security reasoning
– if source program is secure against all source contexts then 

compiled program is secure against all target contexts

– but what should "is secure" mean?

3



4

What properties should we robustly preserve?



4

What properties should we robustly preserve?

trace properties
(safety & liveness)



4

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)



4

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)



4

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)



4

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)



4

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity



4

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality



4

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality



Journey Beyond Full Abstraction

5



without internal nondeterminism,
full abstraction is here

Journey Beyond Full Abstraction

5



without internal nondeterminism,
full abstraction is here

Journey Beyond Full Abstraction

5

doesn't imply any of our criteria
(even assuming compiler correctness)



without internal nondeterminism,
full abstraction is here

Journey Beyond Full Abstraction

5

doesn't imply any of our criteria
(even assuming compiler correctness)

no one-size-fits-all criterion! 



without internal nondeterminism,
full abstraction is here

Journey Beyond Full Abstraction

5

doesn't imply any of our criteria
(even assuming compiler correctness)

PostDocs &
Starting Researchers
@ Inria Paris

no one-size-fits-all criterion! 


