
Journey Beyond Full Abstraction:
Exploring Robust Property Preservation 

for Secure Compilation

https:// github.com/secure-compilation/exploring-robust-property-preservation

Carmine
Abate

Deepak
Garg Marco

Patrignani

CŇǘŇƭƛƴ
IǊƛǚŎǳ

Jérémy
Thibault

MPI-SWS

Stanford
& CISPA

Inria Paris
Inria Paris Inria Paris

Rob
Blanco

Inria Paris

https://github.com/secure-compilation/exploring-robust-property-preservation


Good programming languagesprovide
helpful abstractionsfor writing more secure code

2



Good programming languagesprovide
helpful abstractionsfor writing more secure code

Åstructured control flow, procedures, modules, interfaces, 
correctness and security specifications, ...

2



Good programming languagesprovide
helpful abstractionsfor writing more secure code

Åstructured control flow, procedures, modules, interfaces, 
correctness and security specifications, ...

2

abstractions not enforcedwhen compiling 
and linking with adversarial low-level code



Good programming languagesprovide
helpful abstractionsfor writing more secure code

Åstructured control flow, procedures, modules, interfaces, 
correctness and security specifications, ...

2

abstractions not enforcedwhen compiling 
and linking with adversarial low-level code
Åall source-level security guarantees are lost

Ålinked low-level code can read and write data and code,
jump to arbitrary instructions, smash the stack, ...



Secure compilation chains
ÅProtect source-level abstractions

even against linked adversarial low-level code

3



Secure compilation chains
ÅProtect source-level abstractions

even against linked adversarial low-level code
ïvarious enforcement mechanismspossible: processes, SFI, ...

ïshared responsibility: compiler, linker, loader, OS, HW

3



Secure compilation chains
ÅProtect source-level abstractions

even against linked adversarial low-level code
ïvarious enforcement mechanismspossible: processes, SFI, ...

ïshared responsibility: compiler, linker, loader, OS, HW

ÅEnable source-level security reasoning
ïif source program is secureagainst all sourcecontexts then 

compiled program is secureagainst all target contexts

3



Secure compilation chains
ÅProtect source-level abstractions

even against linked adversarial low-level code
ïvarious enforcement mechanismspossible: processes, SFI, ...

ïshared responsibility: compiler, linker, loader, OS, HW

ÅEnable source-level security reasoning
ïif source program is secureagainst all sourcecontexts then 

compiled program is secureagainst all target contexts

ïbut what should "is secure" mean?

3



4

What properties should we robustly preserve?



4

What properties should we robustly preserve?

trace properties
(safety & liveness)



4

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)



4

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)



4

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)



4

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)



4

More secure

More efficient
to enforce

Easier to prove

What properties should we robustly preserve?

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity


