
When Good Components Go Bad
Formally Secure Compilation
Despite Dynamic Compromise

Cătălin Hrițcu

Inria Paris

1

2

Security foundations research is about

making this diagram mathematically formal

[What are we trying to achieve?]

– negative definition: What (kind of) attacks are we trying to prevent?

– positive definition: What security property are we aiming for?

[How can we effectively achieve it?]

– static: informal audit, program verification, type systems, ...

– dynamic: reference monitors, hardware mechanisms, crypto, ...

– trade off security vs. precision, efficiency, compatibility, ...

[How can we make sure we achieved it?]

3

4

• Marketing snake oil: trussst me, it isss very sssecure

• ...

• Security experts, metrics, standards

• Security testing, red teaming, bounty programs

• ...

• Mathematical proofs with various levels of rigor

• Formal, machine-checked proofs

– in a proof assistant like Coq, Isabelle, HOL, F*, EasyCrypt, ...

– about abstract models or concrete implementations

– under various assumptions and trusted computing base

5

Easier and
more scalable

Better
assurance

Formally Secure
Compartmentalization

When Good Components Go Bad (CCS 2018)
Beyond Good and Evil (CSF 2016)

6

Cătălin
Hrițcu

Marco
Stronati

Tezos
(ex Inria)

Arthur
Azevedo

de Amorim
CMU (ex Inria)

Ana Nora
Evans

U. Virginia
(ex Inria)

Andrew
Tolmach
Portland

State

Benjamin
Pierce
UPenn

Théo
LaurentCarmine

Abate

Guglielmo
Fachini
Nozomi

(ex Inria)

Rob
Blanco

Yannis
Juglaret
DGA-MI
(ex Inria)

Jérémy
Thibault

Florian
Groult

Core team at Inria Paris

Collaborators

Boris Eng
Paris 7

(ex Inria)

Inherently insecure languages like C

–any buffer overflow can be catastrophic

–~100 different undefined behaviors

in the usual C compiler:
• use after frees and double frees, invalid type casts,

signed integer overflows,

– root cause, but very challenging to fix:

• efficiency, precision, scalability,

backwards compatibility, deployment

8

Compartmentalization mitigation

• Break up security-critical applications into
mutually distrustful components with clearly specified privileges

• Enforce this component abstraction all the way down

– separation, static privileges, call-return discipline, types, ...

• Compartmentalizing compilation chain:

– compiler, linker, loader, runtime, system, hardware

• Base this on efficient enforcement mechanisms:
– OS processes (all web browsers) — hardware enclaves (SGX)

– WebAssembly (web browsers) — capability machines

– software fault isolation (SFI) — tagged architectures

9

[What are we trying to achieve?]

• Hoping for strong security guarantees one can make fully water-tight

– beyond just "increasing attacker effort"

• Intuitively, if we use compartmentalization ...

... a vulnerability in one component does not immediately

destroy the security of the whole application

... since each component is protected from all the others

... and each component receives protection as long as

it has not been compromised (e.g. by a buffer overflow)

10

11

Formal definition expressing the
end-to-end security guarantees
of compartmentalization

What is a compartmentalizing compilation
chain supposed to enforce precisely?

Can we formalize this intuition?

Challenge formalizing security of mitigations

• We want source-level security reasoning principles

– easier to reason about security in the source language
if and application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

12

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

}

Compartmentalizing compilation should ...

• Restrict spatial scope of undefined behavior

– mutually-distrustful components
• each component protected from all the others

• Restrict temporal scope of undefined behavior

– dynamic compromise
• each component gets guarantees

as long as it has not encountered undefined behavior

• i.e. the mere existence of vulnerabilities doesn't
necessarily make a component compromised

13

i0 i1 i2

C0 C1 C2

∃ a sequence of component compromises explaining the finite trace t
in the source language, for instance t=m1·m2·m3 and

↓ ↓ ↓ ⇝ t

i0 i1 i2

C0 C1 C2
⇝* m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝* m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝ m1·m2·m3

Finite trace records which component encountered
undefined behavior and allows us to rewind execution

∃A1.

∃A2.

If then

14

Security
definition:

[How can we effectively enforce this?]

Proof-of-concept
secure compilation chain

15

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

16

Expectation: other enforcement mechanisms should work as well

tpc’ tm3’

Micro-Policies [Oakland’15, ASPLOS ’15,...]

17

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’ tm3’

tpc

tr0

tr1

tm1

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3

tm3≠

tm3

=

ra

Compartmentalization micro-policy

18

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

pc

memory

C1

C2

...

pc ra

r

rm

@n

@(n+1)

@Ret n

registers

Store ra → ⋆rm

pc ...@(n+1)

cross-component call
only allowed at EntryPoint

linear return capability
stack level

current color

changed color

increment

loads and stores to the same
component always allowed

@Ret n

pc ra rm
@(n+1)

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

cross-component
return only allowed
via return capability

[How can we make sure we achieved our goal?]

Proof-of-concept formally secure
compilation chain in Coq

19

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

Verified

Systematically tested (with QuickChick)
20

generic proof technique 22K lines of Coq, mostly proofs

https://secure-compilation.github.io

https://secure-compilation.github.io/

We reduce our proof goal to a variant of:

Robust Safety Preservation

21

source
context

target
context

source
components

compiled
components

source
context∃

target
context∃

.

.

compiler

∀source components.
∀(bad/attack) finite trace t.

⇒

source
context

target
context

source
components

compiled
components

source
context
trace t∀

target
context
trace t

∀

.

.

compiler

∀source components.
∀π safety property.

⇒

⇝t⇒ t∈π

⇝t⇒ t∈π

⇔

⇝t

⇝t

back-
translation

proof-oriented characterizationrobust preservation of safety

Simple and scalable proof technique
(for our variant of Robust Safety Preservation)

1. back-translating finite trace prefix to whole source programs

2+4. compiler correctness proof (à la CompCert) used as a black-box

3+5. also simulation proofs, but at a single level

22

When Good Components Go Bad

– first definition supporting mutually distrustful
components and dynamic compromise

– restricting undefined behavior spatially and temporally

– software fault isolation or tag-based reference monitor

– Generic proof technique that extends and scales well

23

Making this more practical ... next steps:

• Scale formally secure compilation chain to C language
– allow shared memory (ongoing) and pointer passing (capabilities)

– eventually support enough of C to measure and lower overhead

– check whether hardware support (tagged architecture) is faster

• Extend all this to dynamic component creation
– rewind to when compromised component was created

• ... and dynamic privileges
– capabilities, dynamic interfaces, history-based access control, ...

• From robust safety to hypersafety (confidentiality) [CSF'19]

• Secure compilation of EverCrypt, miTLS, ...

24

My dream: secure compilation at scale

25

EverCrypt

memory safe
C component

legacy C
component

ASM
component

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

language

Going beyond Robust
Preservation of Safety

Journey Beyond Full Abstraction (CSF 2019)

26

Carmine
Abate

Deepak
Garg Marco

Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS

Stanford
& CISPA

Inria Paris
Inria Paris Inria Paris

Rob
Blanco

Inria Paris

27

More secure

More efficient
to enforce

Easier to prove

Going beyond Robust Preservation of Safety [CSF'19]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

realistically
enforceable?

current
proof
technique

When Good Components Go Bad

– first definition supporting mutually distrustful
components and dynamic compromise

– restricting undefined behavior spatially and temporally

– software fault isolation or tag-based reference monitor

– Generic proof technique that extends and scales well

