
The Next 700 Relational Program Logics

Kenji Maillard,
Ca ̆tălin Hriţcu, Exequiel Rivas, Antoine Van Muylder

Inria Paris

Paper conditionally accepted at POPL'20: 
https://arxiv.org/abs/1907.05244

https://arxiv.org/abs/1907.05244


2

M1,M2 Wrel

θrel

two (different) 
computational 

monads

relational
specification 

monad

relational monad 
morphism

WrelA1A2=((A1×S1)×(A2×S2)→P)→S1×S2→PM1A=S1→A×S1

M2A=S2→A×S2 θrel(c1,c2)=λpost s1 s2. post (c1 s1, c2 s2) 

c1 and c2 run independently, 
not something SMT solvable

exploit syntactic similarity
between c1 and c2

Solution: define relational program logics,
using θrel for the semantics: ⊧ c1~c2 {w} = θrel(c1,c2) ≤ w 

Rules defined using general recipe, ∀M1,M2,θrel,Wrel



General recipe, 3 kinds of rules:
1. Rules from ambient dependent type theory

2. Rules for monadic constructs (sound for all)

3. Rules for effect-specific actions

3

Recipe for algebraic operations (soundness guaranteed):
unfold get and ret then apply θrel to them to obtain w

This works: state, nondet, IO, RHL (state+loops), RHTT



1st extension (work in progress)

needed for probabilities, nondet refinement, ...

4

Lax relational monad morphism:



2nd extension (for exceptions)

5



2nd extension is complex!

6

We tame some of the complexity by switching to a 
relational dependent type theory (embedded in Coq)

The first relational program logic for catchable exceptions



Conclusions

Once we're completely done with the theory ...
... and work out some more examples
... this could be a good fit for F*!

EasyCrypt-style relational verification

– for an actual programming language with 
dependent types and tons of other goodies

– for arbitrary effects, relational specification 
monads, and relational monad morphisms

Verify your crypto proofs entirely in F*!

7


