The Next 700 Relational Program Logics

Kenji Maillard, **Cătălin Hriţcu**, Exequiel Rivas, Antoine Van Muylder

Inria Paris

Paper conditionally accepted at POPL'20: <u>https://arxiv.org/abs/1907.05244</u>

 $M_1A=S_1 \rightarrow A \times S_1$ $M_2A=S_2 \rightarrow A \times S_2$

 $W_{rel}A_1A_2 = ((A_1 \times S_1) \times (A_2 \times S_2) \rightarrow P) \rightarrow S_1 \times S_2 \rightarrow P$ $\theta_{rel}(c_1, c_2) = \lambda \text{post } s_1 \ s_2. \text{ post } (c_1 \ s_1, \ c_2 \ s_2)$

exploit syntactic similarity between c_1 and c_2

c₁ and c₂ run **independently**, not something SMT solvable

Solution: define relational program logics, using θ_{rel} for the semantics: $\models c_1 \sim c_2 \{w\} = \theta_{rel}(c_1, c_2) \leq w$

Rules defined using general recipe, $\forall M_1, M_2, \theta_{rel}, W_{rel}$

General recipe, 3 kinds of rules:

Rules from ambient dependent type theory
 Rules for monadic constructs (sound for all)

3. Rules for effect-specific actions

 $\vdash \texttt{get}() \sim \texttt{ret} a_2 \left\{ \lambda \varphi(s_1, s_2). \varphi((s_1, s_1), (a_2, s_2)) \right\} \qquad \vdash \texttt{put} s \sim \texttt{ret} a_2 \left\{ \lambda \varphi(s_1, s_2). \varphi(((), s), (a_2, s_2)) \right\}$

Recipe for algebraic operations (soundness guaranteed): unfold get and ret then apply θ_{rel} to them to obtain w This works: state, nondet, IO, RHL (state+loops), RHTT

1st extension (work in progress)

needed for probabilities, nondet refinement, ...

$$\begin{split} W_{\rm rel}A_1A_2 &= \left(\left(A_1 \times A_2\right) \rightarrow \begin{bmatrix} 0,1 \end{bmatrix} \right) \rightarrow \begin{bmatrix} 0,1 \end{bmatrix} \\ p,q: \begin{bmatrix} 0,1 \end{bmatrix} \quad r \sim \left(\mathcal{B}_p, \mathcal{B}_q\right) \\ &\vdash \mathsf{flip} \ p \sim \mathsf{flip} \ q \ \left\{ \lambda post. \sum_{b_1,b_2} r(b_1,b_2) \cdot post(b_1,b_2) \right\} \\ &\theta_{\rm rel}(d_1,d_2) = \lambda post. \inf_{r \sim (d_1,d_2)} \sum_{b_1,b_2} r(b_1,b_2) \cdot post(b_1,b_2) \end{split}$$

Lax relational monad morphism:

 $\theta_{\rm rel}\,({\rm bind}^{{\rm M}_1}\,m_1\,f_1,{\rm bind}^{{\rm M}_2}\,m_2\,f_2)\leq {\rm bind}^{{\rm W}_{\rm rel}}\,(\theta_{\rm rel}\,(m_1,m_2))\,(\theta_{\rm rel}\circ(f_1,f_2))$

2nd extension (for exceptions)

$$W_{\rm rel}^{\rm Exc}(A_1, A_2) = ((A_1 + E_1) \times (A_2 + E_2) \rightarrow \mathbb{P}) \rightarrow \mathbb{P}$$

$$\vdash m_1 \sim m_2 \{ w^m \} \qquad \forall a_1, a_2 \vdash f_1 a_1 \sim f_2 a_2 \{ w^f (a_1, a_2) \}$$

$$\vdash {\rm bind}^{M_1} m_1 f_1 \sim {\rm bind}^{M_2} m_2 f_2 \{ {\rm bind}^{W_{\rm rel}} w^m w^f \}$$
let ${\rm bind}^{W_{\rm rel}^{\rm Exc}} w_m (w_{f_1} : A_1 \rightarrow ((B_1 + E_1) \rightarrow \mathbb{P}) \rightarrow \mathbb{P})$

$$(w_{f_2} : A_2 \rightarrow ((B_2 + E_2) \rightarrow \mathbb{P}) \rightarrow \mathbb{P}) w_f \varphi =$$

$$w_m (\lambda x : (A_1 + E_1) \times (A_2 + E_2).$$
match x with

$$| \operatorname{Inl} a_1, \operatorname{Inl} a_2 \to w_f a_1 a_2 \varphi \\ | \operatorname{Inr} e_1, \operatorname{Inr} e_2 \to \varphi (\operatorname{Inr} e_1, \operatorname{Inr} e_2) \\ | \operatorname{Inl} a_1, \operatorname{Inr} e_2 \to w_{f_1} a_1 (\lambda be. \varphi be (\operatorname{Inr} e_2)) \\ | \operatorname{Inr} e_1, \operatorname{Inl} a_2 \to w_{f_2} a_2 (\lambda be. \varphi (\operatorname{Inr} e_1) be))$$

2nd extension is complex!

 $W_{rel}^{Exc}(A_1, A_2) = ((A_1 + E_1) \times (A_2 + E_2) \rightarrow \mathbb{P}) \rightarrow \mathbb{P}$

 $\Gamma \vDash c_1 \{w_1\} \sim c_2 \{w_2\} \mid w_{\text{rel}} = \begin{pmatrix} \forall \gamma_1 : \Gamma_1, \theta_1(c_1 \gamma_1) \leq w_1 \gamma_1, \\ \forall \gamma_2 : \Gamma_2, \theta_2(c_2 \gamma_2) \leq w_2 \gamma_2, \\ \forall (\gamma_1, \gamma_2) : \Gamma_1 \times \Gamma_2, \theta_{\text{rel}}(c_1 \gamma_1, c_2 \gamma_2) \leq w_{\text{rel}}(\gamma_1, \gamma_2) \end{pmatrix}$

We tame some of the complexity by switching to a *relational* dependent type theory (embedded in Coq)

The first relational program logic for catchable exceptions

Conclusions

Once we're completely done with the theory and work out some more examples ... this could be a good fit for F*!

EasyCrypt-style relational verification

- for an actual programming language with
 dependent types and tons of other goodies
- for arbitrary effects, relational specification monads, and relational monad morphisms

Verify your crypto proofs entirely in F*!