
1

Joint work with Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco,
Ştefan Ciobâcă, Adrien Durier, Akram El-Korashy, Boris Eng, Ana Nora Evans,

Guglielmo Fachini, Deepak Garg, Théo Laurent, Marco Patrignani,
Benjamin Pierce, Marco Stronati, Éric Tanter, Jérémy Thibault, and Andrew Tolmach

Supported by ERC Starting Grant SECOMP.

Huge security problem:
The C programming language is unsafe

–any buffer overflow can be catastrophic

–~100 different undefined behaviors

in the usual C compiler:
• use after frees and double frees, invalid type casts,

signed integer overflows,

– root cause, but very challenging to fix:

• efficiency, precision, scalability,

backwards compatibility, deployment

2

Mitigation: fine-grained compartmentalization

• The C programming language does provide useful abstractions
– structured control flow, procedures & interfaces, pointers & shared memory

– used in most programs, but not enforced at all during compilation

– add fine-grained components to C: easy to define and can naturally interact

• Build secure compilation chain that protects these abstractions
– all the way down, at component boundaries (so hopefully more efficient)

– against components dynamically compromised by undefined behavior

• Target different enforcement mechanisms
– SFI, programmable tagged architecture, capability machines, ...

• Formally verify the security of this compilation chain
3

Formally verifying a secure compilation chain
for unsafe C components

We've been working on this project for the last 5+ years

This talk

• how far did we get?

• what were the main challenges we had to overcome?

– security definitions, enforcement, proof techniques

• what's left for us to do? (in the following 5 years?)

• what are some more general open problems?

4

• Formal definition expressing end-to-end guarantees
of secure compilation chain [CCS'18]

• Restrict spatial scope of undefined behavior
– mutually-distrustful components

• each component protected from all the others

• Restrict temporal scope of undefined behavior
– dynamic compromise

• each component gets guarantees
as long as it has not encountered undefined behavior

5

We reduce this security goal to a variant of:

Robust Safety Preservation

6

source
context

target
context

source
components

compiled
components

source
context
(no UB)
∃

target
context∃

.

.

compiler

∀(not yet compromised) source components.
∀(bad/attack) finite trace t.

⇒

⇝t

⇝t

(= compiled
compromised

components, with UB)

OR prefix of t + UB in not yet compromised
source component

Intuition: by repeating this game we explain
longer and longer prefixes of t in terms of
source semantics + component compromise

[When Good Components Go Bad, CCS'18]

(prototype secure compilation chain)

Compartmentalized
unsafe source

Compartmentalized
intermediate machine

Buffers, procedures, components

Programmable
tagged architecture

Bare-bone machine

SFI

Hardware-accelerated enforcement
[POPL'14, Oakland'15, ASPLOS'15, POST'18, CCS'18]

component C2 {
private var counter;
private var password;
public procedure get_counter() {
counter := counter + 1;
return counter;

}
}

Simple RISC abstract machine with

build-in compartmentalization

7

• formally verifying security of the whole compilation chain

• such proofs very difficult and tedious

–wrong conjectures survived for decades

–250 pages of proof on paper for toy compiler

• we propose more scalable proof techniques

• machine-checked proofs in the Coq proof assistant

– with property-based testing stopgap to find bugs early

8

Compartmentalized
unsafe source

Compartmentalized
intermediate machine

Simple RISC abstract machine with

build-in compartmentalization

Verified

Systematically tested (with QuickChick)

generic proof technique

[finished ~1 year after CCS'18,
arXiv:1802.00588 report,
further extended afterwards]

Proving and testing our prototype

Programmable
tagged architecture

Bare-bone machine

SFI

9

Scalable proof technique
(for our variant of Robust Safety Preservation)

1. back-translating finite trace prefix to whole source program

2+4. compiler correctness proof (à la CompCert) used as a black-box

3+5. also simulation proofs

10

Extending proof technique

• Recent: From memory isolated components [CCS'18]
to fine-grained dynamic memory sharing
by passing safe pointers (e.g. capabilities)

– [SecurePtrs, Akram El-Korashy et al, arXiv:2110.01439]

• Ongoing: beyond robust preservation of safety

– Back-translating finite sets of finite traces
[Jérémy Thibault et al, CSF'19]

– Nanopass Back-Translation of Call-Return Trees
[Jérémy Thibault, upcoming]

11[CSF'19, ESOP'20]

• CompCert already temporally restricts UB

• Added spatial UB restrictions:
– extended CompCert with components and interfaces

• Mostly done: extending correct compilation proofs
– proof technique uses correct compilation "as black box", mostly

– but adding components to all CompCert levels still required some work

• Coming soon: secure compilation proofs for CompCert
– need to port back-translation and recomposition proofs

– first time this kind of secure compilation proofs would be done at this scale

12

CompCert C with
components

CompCert RISC-V ASM
with components

RISC-V with
programmable tags

vanilla RISC-V

SFI

Future: multiple enforcement mechanisms

CompCert variant

CHERI RISC-V
(capabilities)

Formally verify

Systematically test
13

• Dynamic component creation
– from code-based to data-based compartmentalization

– criterion: rewind to when compromised component was created

• Enforcement beyond robust preservation of safety

– in the presence of side-channels or even micro-architectural attacks

• Protect abstractions of verification language like Low* (Everest)

– Some related work in progress: safe F*-ML interop by runtime monitoring
and turning checkable F* specifications into dynamic contracts

14

BACKUP SLIDES

15

what we
currently do

35

More secure

More efficient
to enforce

Easier to prove

Going beyond Robust Preservation of Safety [CSF'19, ESOP'20]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

realistically
enforceable?

current
proof
technique?

Scalable proof technique
(for our variant of Robust Safety Preservation)

1. back-translating finite trace prefix to whole source program

17

source
context

target
context

source
components

compiled
components

source
context∃

target
context∃

.

.

compiler⇒

⇝t

⇝t

OR prefix of t + UB in ...

back-
translation

