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Huge security problem:
The C programming language is unsafe

–any buffer overflow can be catastrophic

–~100 different undefined behaviors

in the usual C compiler:
• use after frees and double frees, invalid type casts, 

signed integer overflows, ...............................

– root cause, but very challenging to fix:

• efficiency, precision, scalability,

backwards compatibility, deployment
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Mitigation: fine-grained compartmentalization

• The C programming language does provide useful abstractions
– structured control flow, procedures & interfaces, pointers & shared memory

– used in most programs, but not enforced at all during compilation

– add fine-grained components to C: easy to define and can naturally interact

• Build secure compilation chain that protects these abstractions
– all the way down, at component boundaries (so hopefully more efficient)

– against components dynamically compromised by undefined behavior

• Target different enforcement mechanisms
– SFI, programmable tagged architecture, capability machines, ...

• Formally verify the security of this compilation chain
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Formally verifying a secure compilation chain 
for unsafe C components

We've been working on this project for the last 5+ years

This talk

• how far did we get?

• what were the main challenges we had to overcome?

– security definitions, enforcement, proof techniques

• what's left for us to do? (in the following 5 years?)

• what are some more general open problems?
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• Formal definition expressing end-to-end guarantees
of secure compilation chain [CCS'18]

• Restrict spatial scope of undefined behavior
– mutually-distrustful components

• each component protected from all the others

• Restrict temporal scope of undefined behavior
– dynamic compromise

• each component gets guarantees
as long as it has not encountered undefined behavior
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We reduce this security goal to a variant of:

Robust Safety Preservation
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(prototype secure compilation chain)

Compartmentalized
unsafe source

Compartmentalized 
intermediate machine

Buffers, procedures, components

Programmable
tagged architecture

Bare-bone machine

SFI

Hardware-accelerated enforcement
[POPL'14, Oakland'15, ASPLOS'15, POST'18, CCS'18]

component C2 {
private var counter;
private var password;
public procedure get_counter() {
counter := counter + 1;
return counter;

}
}

Simple RISC abstract machine with

build-in compartmentalization
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• formally verifying security of the whole compilation chain

• such proofs very difficult and tedious

–wrong conjectures survived for decades

–250 pages of proof on paper for toy compiler

• we propose more scalable proof techniques

• machine-checked proofs in the Coq proof assistant

– with property-based testing stopgap to find bugs early
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Compartmentalized 
unsafe source

Compartmentalized 
intermediate machine

Simple RISC abstract machine with

build-in compartmentalization

Verified

Systematically tested (with QuickChick)

generic proof technique

[finished ~1 year after CCS'18,
arXiv:1802.00588 report,
further extended afterwards]

Proving and testing our prototype

Programmable
tagged architecture

Bare-bone machine

SFI
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Scalable proof technique
(for our variant of Robust Safety Preservation)

1. back-translating finite trace prefix to whole source program

2+4. compiler correctness proof (à la CompCert) used as a black-box

3+5. also simulation proofs
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Extending proof technique

• Recent: From memory isolated components [CCS'18]
to fine-grained dynamic memory sharing
by passing safe pointers (e.g. capabilities)

– [SecurePtrs, Akram El-Korashy et al, arXiv:2110.01439]

• Ongoing: beyond robust preservation of safety

– Back-translating finite sets of finite traces
[Jérémy Thibault et al, CSF'19]

– Nanopass Back-Translation of Call-Return Trees
[Jérémy Thibault, upcoming]
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• CompCert already temporally restricts UB

• Added spatial UB restrictions:
– extended CompCert with components and interfaces

• Mostly done: extending correct compilation proofs
– proof technique uses correct compilation "as black box", mostly

– but adding components to all CompCert levels still required some work

• Coming soon: secure compilation proofs for CompCert
– need to port back-translation and recomposition proofs

– first time this kind of secure compilation proofs would be done at this scale
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CompCert C with 
components

CompCert RISC-V ASM
with components

RISC-V with 
programmable tags

vanilla RISC-V

SFI

Future: multiple enforcement mechanisms 

CompCert variant

CHERI RISC-V
(capabilities)

Formally verify

Systematically test
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• Dynamic component creation
– from code-based to data-based compartmentalization

– criterion: rewind to when compromised component was created

• Enforcement beyond robust preservation of safety

– in the presence of side-channels or even micro-architectural attacks

• Protect abstractions of verification language like Low* (Everest)

– Some related work in progress: safe F*-ML interop by runtime monitoring 
and turning checkable F* specifications into dynamic contracts
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BACKUP SLIDES
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what we 
currently do

35

More secure

More efficient
to enforce

Easier to prove

Going beyond Robust Preservation of Safety [CSF'19, ESOP'20]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

realistically
enforceable?

current
proof
technique?



Scalable proof technique
(for our variant of Robust Safety Preservation)

1. back-translating finite trace prefix to whole source program
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