
1

Current group:

- Cătălin Hrițcu (Faculty)

- Cezar Andrici (PhD)

- Jérémy Thibault (PhD)

- Rob Blanco (PostDoc)

- Maxi Wuttke (PhD)

- Dongjae Lee (Intern)

Alumni:

- Carmine Abate (PhD)

- Théo Winterhalter (PostDoc)

- Adrien Durier (PostDoc)

- Aïna Linn Georges (Intern)

+ many more before MPI-SP

Posters

Discuss

Talk



• Suppose we have a secure source program ...
– For instance formally verified in F* [POPL'16,'17,'18,'20, ICFP'17,'19, ...]

– e.g. EverCrypt verified crypto library, shipping in Firefox, Linux Kernel, ...

– e.g. simple verified web server, linking with unverified libraries (Cezar's poster)

• What happens when we compile such a verified program
and link it with adversarial low-level code?

– low-level code that can be buggy, vulnerable, compromised, malicious

– currently: all guarantees are lost, lower-level attacks become possible

– secure compilation: protect the source abstractions all the way down

2

adversarial
low-level code

compiled
program

protected
compartment

sandboxed
compartment



3

Compartment 1

• Insecure languages like C enable devastating vulnerabilities

• Mitigate vulnerabilities by compartmentalizing the program

• We don't know which compartments will be compromised

– protect vulnerable C compartments from each other

• We don't know when a compartment will be compromised

– every compartment should receive protection until compromised

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5



4



F* code

low-level
code

verified
program

compiled
program

compiler

satisfies π

satisfies π
no extra powerprotected

Where π can e.g. be "the web server's private key is not leaked"

F*code∀

low-level
code∀

⇒

∀security property π

We explored many classes of properties one can preserve this way:
Journey Beyond Full Abstraction [CSF'19, ESOP'20, TOPLAS'21]

More interesting definition for vulnerable C compartments [CSF'16, CCS'18]
5



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

CompCert verified C compiler extended with compartments

CHERI RISC-V
capability machine

6

magically secure semantics

Hardware-accelerated enforcement

[POPL'14, S&P'15, ASPLOS'15,
POST'18, CCS'18, CSF'23]

Software-Fault Isolation

Done for simplified languages,
yet to be ported to RISC-V

(inspiration for ARM Morello)

[PriSC'23, ongoing]



• Proving mathematically that our compilation chains
achieve secure compilation

– such proofs generally very difficult and tedious
• wrong conjectures for full abstraction survived for decades

• 250 pages of proof on paper for toy compiler

– we propose more scalable proof techniques

– machine-checked proofs in the Coq and F* proof assistants

– systematic testing to find wrong conjectures early
[POPL'17, ICFP'13, ITP'15, JFP'16]

29



Large subset of C
with compartments

RISC-V ASM
with compartments

Micro-Policies: ASM
with programmable tags

vanilla ASM

CompCert with
compartments

CHERI RISC-V
capability machine

Proving Secure Compilation in Coq

Scalable proof technique for secure compilation
•applied to simpler languages [CCS'18, CSF'22]
•now extending to CompCert with compartments
•reuses compiler correctness proof (extended!)
•aiming to finish secure compilation proof by July

–milestone in terms of realism! all prior work toy!

• for details see poster by Jérémy and Rob

8

Software-Fault Isolation

Done for simpler languages,
yet to be ported to RISC-V

Machine-checked
proofs

Testing and

Systematic testing

Future 
verification
challenge



9

Verify capability backend

ARM Morello
capability machine

Capability passing

against micro-architectural side-channel attacks,
for arbitrary compartmentalized programs in F*, C, or Wasm

(not only constant time crypto code)

Preserve data confidentiality


