Computer-Aided Security Proofs, Aarhus, Oct 9—13 2017 Security Verification with F* Cédric Fournet Catalin Hritcu Aseem Rastogi

The HTTPS Ecosystem is critical

- Default protocol—trillions of connections
- Most of Internet traffic (+40%/year)
- Web, cloud, email, VoIP, 802.1x, VPNs, IoT...

The HTTPS Ecosystem is complex

The HTTPS Ecosystem is broken

- 20 years of attacks & fixes
 Buffer overflows
 Incorrect state machines
 Lax certificate parsing
 Weak or poorly implemented crypto
 Side channels
 Implicit security goals
 Dangerous APIs
 - Flawed standards
 - Mainstream implementations OpenSSL, SChannel, NSS, ... Monthly security patches

Untrusted network (TCP, UDP, ...)

Verified Components for the HTTPS Ecosystem

- Strong verified
 safety & security
- Trustworthy, usable tools
- Widespread deployment

TLS/HTTPS: Just a Secure Channel?

Crypto provable security (core model)

One security property at a time —simple definitions vs composition Intuitive informal proofs Omitting most protocol details **New models & assumptions required** 😣

RFCs (informal specs)

Focus on wire format, flexibility, and interoperability **Security is considered, not specified**

Software safety & security (implementation)

Focus on performance, error handling, operational security Security vulnerabilities & patches

Application security (interface)

Lower-level, underspecified, implementationspecific. Poorly understood by most users. **Weak configurations, policies, and deployments**

Everest: verified secure usable components for the HTTPS stacks

By implementing standardized components and proving them secure, we validate both their design and our code.

source code, specs, security definitions, crypto games & constructions, proofs...

verify all properties (using automated provers) then erase all proofs

extract low-level code, with good performance & (some) side-channel protection

The TLS/HTTPS ecosystem

TLS Standards & Implementations

Internet Standard

1994 Netscape's Secure Sockets Layer

- 1995 SSL3 1999 TLS 1.0 (≈SSL3)
- 1999 TLS 1.0 (≈SSI 2006 TLS 1.1
- 2008 TLS 1.2
- 2017? TLS 1.3

Implementations:

OpenSSL Schannel NSS SecureTransport PolarSSL JSSE GNUTLS mITLS

Large C++ codebase (400K LOC), many forks <u>https://github.com/openssl/openssl</u> Optimized cryptography for 50 platforms

Terrible API

Frequent critical patches <u>https://openssl.org/news/vulnerabilities.html</u> **Never secure so far**

TLS Verification Goal: Secure Channel

Security Goal: As long as the adversary does not control the long-term credentials of the client and server, it cannot

- Inject forged data into the stream (authenticity)
- Distinguish the data stream from random bytes (confidentiality)

TLS protocol overview

Many configurations (some of them broken)

miTLS (2013—...) a first verified reference implementation

1. Internet Standard compliance & interoperability supporting SSL 3.0—TLS 1.2

2. Verified security:

we structured our code to enable its modular cryptographic verification, from its main API down to concrete algorithms (RSA, AES,...)

3. Experimental platform:

for testing corner cases, trying out attacks, analysing extensions and patches, ...

Excluding crypto algorithms, X.509, ...

Not fully mechanized (paper proofs too)

Not production code (poor performance)

Triple handshake attack (2014) flaw in the standard now patched in TLS

https://www.secure-resumption.com/

Systematically testing the TLS state machine new attacks against all mainstream implementations

TLS offers many ciphersuites, optional messages, extensions... sharing the same state machine.

miTLS provides a verified TLS state machine.

We systematically generated and tested deviant traces against other implementation (skipping, inserting, reordering valid messages)

We found many many exploitable bugs

Systematically testing the TLS state machine

new attacks against all mainstream implementations

TLS offers many ciphersuites, optional messages, extensions... sharing the same state machine.

miTLS provides a verified TLS state machine.

We systematically generated and tested deviant traces against other implementation (skipping, inserting, reordering valid messages)

An attack against TLS Java Library (open for 10 years)

We skip 6 messages

JSSE's client assumes the key exchange is finished, uses uninitialized 0x000000... as session key!

FREAK: downgrade to RSA_EXPORT (2015)

Man-in-the-middle attack against:

- servers that support RSA_EXPORT (512bit keys obsoleted in 2000) from 40% to 8.5%
- clients that accept ServerKeyExchange in RSA (state machine bug) almost all browsers have been patched

Similar attack, different crypto: LOGJAM (2015) downgrade to weak groups

TLS Attacks

TLS 1.3: a new hope

Much discussions

IETF, Google, Mozilla, Microsoft, CDNs, cryptographers, network engineers, ...

Much improvements

- Modern design
- Fewer roundtrips
- Stronger security

New implementations required for all

- Be first & verified too!
- Find & fix flaws before it's too late

Network Working Group Internet-Draft Obsoletes: 5077, 5246, 5746 (if approved) Updates: 4492 (if approved) Intended status: Standards Track Expires: September 23, 2016

The Transport Layer Security (TLS) Protocol Version 1.3

draft-ietf-tls-tls13-latest

Abstract

This document specifies Version 1.3 of the Transport Layer Security (TLS) protocol. The TLS protocol allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.

Status of This Memo

This Internet Droft is au		5.1.	Connectio	n State	1 States					
79.	Liswg / tis13-spec		• Watch	54	★ Star	130	∜ Fork	57		
Internet-Drafts are work that other groups may a current Internet-Drafts i	<> Code () Issues 32) Pull requests 9 III Wiki 4- Pulse III Graphs									
Internet-Drafts are draft	Filters ~ Q is:issue is:open Labels Milestones						New is	ssue		
Drafts as reference mat	① 32 Open	uthor 🕶	Labels -	Milesto	nes 🕶	Assignee	e≖ So	ort -		
This Internet-Draft will e	Define what the SignatureScheme code points are ##41 onesed 3 hours and by martinthomeon							Ç 0		
Copyright N										
Copyright (c) 2016 IETH reserved.	() PACS1 #440 opened 3 hours ago by martinthomson							μ0		
This document is subje Documents (http://truste	O-RTT when the server rejects a ClientHello #438 opened 14 days ago by martinthomson							Ç 0		
document. Please revie restrictions with respec	With resumption PSK, make the PSK label partly derived from the session hash #427 opened on Mar 9 by ekr									
Provisions and are prov	Remove DH-based 0-RTT #425 opened on Feb 23 by martinthomson							Γ 0		
or made publicly availal copyright in some of thi	Add encrypted NextRecordLength field to make next record's unencrypted heat #422 opened on Feb 23 by bford	ader optio	onal parked					ÇI 1		
modifications of such r adequate license from document may not be	PSK and Certificates? #421 opened on Feb 21 by wbl							Γ Ο		
it may not be created o as an RFC or to transla	Remove client authentication from 0-RTT #420 opened on Feb 21 by martinthomson							Ç 1		
1. Introducti	Should EncryptedExtensions have an inner list #419 opened on Feb 21 by ekr							Ç 0		
DISCLAIMER: This is a analysis.	Have the server provide the PSK index not the label? #418 opened on Feb 21 by ekr							Γ Ο		
RFC EDITOR: PLEASE	Allow servers to send KnownGroups									

E. Rescorla RTFM. Inc. March 22, 2016

- Table of Contents 1. Introduction
 - 1.1. Conventions and Terminology 1.2. Major Differences from TLS 1.2
- 2. Goals
- 3. Goals of This Document
- 4. Presentation Language
- 4.1. Basic Block Size 4.2. Miscellaneous
- 4.3. Vectors
- 4.4. Numbers
- 4.5. Enumerateds
- 4.6. Constructed Types 4.6.1. Variants
- 4.7. Constants
- 4.8. Cryptographic Attributes
- 4.8.1. Digital Signing
- 4.8.2. Authenticated Encryption with Additional Data (AEAD)
- 5. The TLS Record Protocol

Saving roundtrips for new connections

TLS 1.2

Two roundtrips before sending application data

TLS 1.3

One roundtrip before sending application data TLS 1.3

Zero roundtrip before sending application data Client has no guarantee the server is present or unique.

Server has no guarantee the client agrees on the connection

Trading performance for security

TLS 1.3: status

IETF WG9599 1321st draft including some of our proposals

- #4 log-based key separation extended session hashes (fixing attacks we found on 1.2)
- #11 stream terminators (eventually fixing an attack).
- #14 downgrade resilience
- #15 session ticket format
- #17 simplified key schedule pre-shared-key 0RTT
- #18 PSK binding (fixing an attack)

RFC finalized this month?

Cryptographic Algorithms for HTTPS

Algorithms get broken & replaced over time

Security relies on probabilistic cryptographic assumptions (who knows?) Modern design & implementations select between various algorithms & implementations for the same core functionality

~30 standard algorithms

- Hash and key-derivation functions (SHA256)
- Symmetric cryptography (AES_GCM, AES_CBC)
- Public-key encryption and signing
- Elliptic curves (NIST, 25519, 4Q)

High-performance

AES_GCM takes 0.46 cycle/byte on Intel Skylake Hand-tuned, low-level, architecture-specific

Testing for known bugs in 3rd-party code

The latest news and insights from Google on security and safety on the Internet

Project Wycheproof

December 19, 2016

Posted by Daniel Bleichenbacher, Security Engineer and Thai Duong, Security Engineer We're excited to announce the release of Project Wycheproof, a set of security tests that check cryptographic software libraries for known weaknesses. We've developed over 80 test cases which have uncovered more than 40 security bugs (some tests or bugs are not open sourced today, as they are being fixed by vendors). For example, we found that we could recover the private key of widely-used DSA and ECDHC implementations. We also provide ready-to-use tools to check Java Cryptography Architecture providers such as Bouncy Castle and the default providers in OpenJDK.

The main motivation for the project is to have an achievable goal. That's why we've named it after the Mount Wycheproof, the smallest mountain in the world. The smaller the mountain the easier it is to climb it!

Application Security: https://

Example: tracing https://www.visualstudio.com/

• Trust is transitive

each page involves connections to many servers (different origins)

- Trust is implicit 17 concurrent TLS connections, configurations, certificate chains
- Trust is a matter of state cookies, caches, configurations, proxies

www.visualstudio.com - F12 Developer Tools - Microsoft Ed F12 DOM Explorer Console Debugger	ge Network	Per	formance	Memory Emulation	Experiments			× D:**
🕨 📕 🕍 🔚 🍆 🐻 🎽 🔽	ontent typ	be						Find (Ctrl+F)
Name / Path	Protoc	Method	Result / Description	Content type	Received	Time	Initiator / Enders Body Pa	rameters Cookies Timings
https://www.visualstudio.com/	HTTPS	GET	200 OK	text/html	17.45 KB	655.72 ms	document Request URL: https://v	/ww.visualstudio.com/
wtjs https://c.webtrends.com/acs/account//Bowcm6o7(//s/	HTTPS	GET	200 OK	application/javascript	10.68 KB	48.46 ms	script Status Code: 200 /	ок
Combined.css?resources=0:Layout,0:ImageSprite,0:BGCol https://j.wsp.sec.s.msft.com/	HTTPS	GET	200 OK	text/css	9.77 KB	19.32 ms	link Accept text/html and	lication/vhtml+vml_image/ovr */*
Combined.css?resources=0:Layout,0:ImageSprite,0:BGCol	HTTPS	GET	200	text/css	(from cache)	0 s	Accept-Encoding: gzip	, deflate, peerdist
sizzle_1.minjs	HTTPS	GET	200	application/javascript	6.64 KB	11.86 ms	script Accept-Language: en-	G8, en; q=0.8, fr-FR; q=0.5, fr; q=0.3
optimize.js	HTTPS	GET	200	application/javascript	20.13 KB	24.86 ms	script Cookie: ASPSESSIONII	e SSDBSBRS=LKKBNICDNCAMGGG.
Loader.js	HTTPS	GET	304	application/javascript	(from cache)	20.27 ms	script Host: www.visualstudi	o.com
Combined.js?resources=0:Ubilities,1:FixUnevenHeights,2:L	HTTPS	GET	200	application/javascript	8.6 KB	15.66 ms	script X-P2P-PeerDist: Versio	0 (Windows NT 10.0; Win64; x64) n=1.1
https://i2-vso.sec.s-mstt.com/ SearchBox.jss?boxid=HeaderSearchTextBox&btnid=Head	HTTPS	GET	200	application/x-javascript	4.66 KB	313.5 ms	script X-P2P-PeerDistEx: Min	ContentInformation=1.0, MaxCont.
https://il.services.social.microsoft.com/search/Widgets/ jquery-2.1.0.min.js	HTTPS	GET	304	application/x-javascript	(from cache)	10.86 ms	Response Headers script Cache-Control: private	
https://ajax.aspnetcdn.com/ajax/jQuery/ Combined.css?resources=0:Home.1,0:HeroRotator.1,2;jqu	HTTPS	GET	200	text/css	2.71 KB			
https://www.visualstudio.com/ analytics.js	HTTPS	GET	OK 304	text/javascript	(from ca		нттру	
https://www.google-analytics.com/ Bootstrap.js	HTTPS	GET	304	application/x-javascript	(from			
https://nexus.ensighten.com/msvscs/ 2	HTTPS	GET	Not Modified 200	text/javascript				
https://ots.optimize.webtrends.com/ots/api/js-4.1/204335/WT3 serverComponent.php?r=578293.73067009158/ClientID=	HTTPS	GET	OK 200	text/iavascript		Χ.	509 → ASN.1	
https://nexus.ensighten.com/msvscs/prod/	1111-2	GLI	OK	textjavascript				L
jquery.min.js https://ajax.googleapis.com/ajax/libs/jquery/1.12.0/	HTTPS	GET	304	text/javascript	(from			
321c0db7485fb02e24b7b5ddedd3dbd8.js?conditionId0= https://nexus.ensighten.com/msvscs/prod/code/	HTTPS	GET	304 Not Modified	application/x-javascript	(from			TLS
platform.js https://www.microsoft.com/content/f/feeds/msdn/en-us/	HTTPS	GET	304 Not Modified	application/x-javascript	(from	_ I.		
ai.0.js https://az416426.vo.msecnd.net/scripts/a/	HTTPS	GET	304 Not Modified	application/x-javascript	(from	_ ↓I	***	
a.js;m=11087202615936;cache=0.2511960009749005? https://ad.atdmt.com/m/	HTTP/2	GET	200	text/javascript	739 B			
2 https://ots.optimize.webtrends.com/ots/api/is-4.1/204335/0nl1t	HTTPS	GET	200 OK	text/javascript		RS		
0f90383d2deb0c0878e399d284d548aejs?conditionId0=2	HTTPS	GET	200 OK	application/x-javascript	(from	- F		
26f2e6c1568be56d0b08f2295feb40c3.js?conditionId0=28 https://news.enciphten.com/msscs/news/code/	HTTPS	GET	200	application/x-javascript	(from		40	
rio.ashx?ootc=200647323	HTTPS	GET	200	text/javascript	4.38 K	Cryp	to Algorithms	
ms.js	HTTPS	GET	200	application/x-javascript	(from			•
sizzle.min.map https://cwebtrends.com/acs/common/js/custom/sizzle/	HTTPS	GET	200 OK	text/plain	27.38 KB		Network bu	ffers

Unsolved issues with HTTPS

SSL Stripping (Marlinspike)	Cookie-based Attacks (various variants)	CRIME / BREACH (Rizzo, Duong et al.)	Virtual Host Confusion (Delignat-Lavaud)		
TLS is optional in HTTP and can be disabled by an active attacker	Shared cookie database for HTTP and HTTPS can be used to mount various session fixation and login CSRF attacks.	Attackers can easily mount adaptive chosen-plaintext attacks. Encryption after compression can leak secrets through length.	HTTPS servers do not correlate transport-layer and HTTP identities, leading to origin confusion		
Mitigated by correct use of HTTP Strict Transport Security (HSTS)	Mitigated by new binding proposals (ChannelID, Token Binding). Mitigation is not widely implemented.	Mitigated by refreshing secrets (e.g. CSRF tokens). Some protocol-specific mitigations (QUICK, HTTP2)	Mitigated by configuration of HTTPS servers with strict host rules		
Mitigation not widely used. and vulnerability is still widespread in practice.	Difficult to mitigate in browsers with current technologies. Can be used to attack many websites.	Ad-hoc mitigation; attack is still widespread in practice as HTTP compression remains popular.	Ad-hoc mitigation. Attack still widespread in practice.		
2006 2007 2			2012 2014		

Long-term identities: X.509

Public-Key Infrastructure (Certificate Chains)

Designed in 1984; widely criticized but hard to replace HTTPS is just one application

Same complexity as TLS?

ASN.1 grammar; many extensions and interpretations 50% of "TLS attacks" are in fact X.509 attacks

Recent initiatives

Global scans for millions of certificates Certificate pinning & transparency Let's encrypt! <u>https://letsencrypt.org/</u>

Verification?

Complex ambiguous format Certificate issuance and revocation policies

Side Channel Challenge (Attacks)

Protocol-level side channels	Traffic analysis	Timing attacks against cryptographic primitives	Memory & Cache			
TLS messages may reveal information about the internal protocol state or the application data	Combined analysis of the time and length distributions of packets leaks information about the application	A remote attacker may learn information about crypto secrets by timing execution time for various inputs	Memory access patterns may expose secrets, in particular because caching may expose sensitive data (e.g. by timing)			
 Hello message contents (e.g. time in nonces, SNI) Alerts (e.g. decryption vs. padding alerts) Record headers 	 CRIME/BREACH (adaptive chosen plaintext attack) User tracking Auto-complete input theft 	 Bleichenbacher attacks against PKCS#1 decryption and signatures Timing attacks against RC4 (Lucky 13) 	 OpenSSL key recovery in virtual machines Cache timing attacks against AES 			
Bleichenbacher Vaudenay AES cache ti Remote timing attacks are practical	ming	Side-channel leaks in Web applications	BREACH CRIME Lucky13 DROWN ->			
2000 2006 200	7 2008 2009	2010 2011 20	12 2013 2014			

Demo

miTLS in F* today

AEAD record-layer crypto 14K lines of code and proofs Verified & compiled to C

miTLS, protocol layer: 16K lines of code and proofs Compiled to Ocaml. Partially verified.

Client: IE

-								×
¢	← → Ø + https://www.mitls.org:444/ Ø -		🧔 miTLS, Triple Handshake, S	× 📑 👻			命公	<u>ت</u>
	TLS miTLS	Publications	Attacks	Code	FlexTLS	People		^
	This website is powered b	v an experimental v	version of miTLS. You can re	eport bugs and inter	operability problems on th	e Github issue tra	acker	

miTLS: A Verified Reference Implementation of TLS

miTLS is a verified reference implementation of the TLS protocol. Our code fully supports its wire formats, ciphersuites, sessions and connections, re-handshakes and resumptions, alerts and errors, and data fragmentation, as prescribed in the RFCs; it interoperates with mainstream web browsers and servers. At the same time, our code is carefully structured to enable its modular, automated verification, from its main API down to computational assumptions on its cryptographic algorithms.

The stable version of miTLS including the new 0.9 release are written in F# and specified in F7. We present security specifications for its main components, such as authenticated stream encryption for the record layer and key establishment for the handshake. We describe their verification using the F7 refinement typechecker. To this end, we equip each cryptographic primitive and construction of TLS with a new typed interface that captures its security properties, and we gradually replace concrete implementations with ideal functionalities. We finally typecheck the protocol state machine, and thus obtain precise security theorems for TLS, as it is implemented and deployed. We also revisit classic attacks and report a few new ones.

The development version is written and verified in F*, a ML-like functional programming language aimed at program verification. You can learn more about F* on its project homepage.

We integrate miTLS & its verified crypto with Internet Explorer.

We run TLS 1.3 sessions with ORTT without changing their application code.

Server: nginx

A high performance server for HTTP, reverse proxy, mail,...

We replace OpenSSL with miTLS & its crypto: the modified server supports TLS 1.3 with tickets and 0-RTT requests.

Nginx Architecture

