Computer-Aided Security Proofs, Aarhus, Oct 9—13 201/

Security Veritication with F*

Cédric Fournet _—
Catalin Hritcu

V
Aseem Rastog — ?

=
i’?‘/\l\ A

*the Everest VERIified End-to-end Secure Transport

. . |":‘“_| B https://loginlive.com/’ - Microsoft Corporati...
Microsoft e> T 2- & =

Research G

VeriSign has identified this site as:

.~. Microsoft Corporation

Redmeond, Washington

2 X
hm—— .¢Microsoft Research - Inria Us -

INVENTEURS DU MONDE NUMERIQUE JOINT CENTRE This connection to the server is encrypted.

Should | trust this site?

Yiew certificates

-verest™: Verifieo
Drop-In Replacements
for TLS/HTTPS

The HTTPS Ecosystem is critical

Services & Applications

Edge " cURL [[WebKit || Skype | Apache [[Nginx

!Iienty Qervy

» Default protocol—tri
« Most of Internet traffic

HTTPS Ecosystem

lions of connections
(+40%/year)

« Web, cloud, email, VolP 802.1x, VPNs, loT...

The HTTPS Ecosystem is complex

Services & Applications

Edge"cURLWebKit Skype [| IS || Apache [[Nginx

Clients) Q Servers

HTTPS

\ 4

> X.509 —{ ASN.1

a

Certification
Authority

TLS

k
\ 4

LRSA 1 SHA

ECDH || 4Q
rypto Algorithms

a

\ 4

k Network buffers /

\ 4

Untrusted network (TCP, UDP, ..))

The HTTPS Ecosystem is broken

« 20 years of attacks & fixes e —

Buffer overflows ,
Edge cURL | WebKlt Skype [| IS || Apache [[Nginx

Incorrect state machines
Lax certificate parsing Clizmits . Servers
Weak or poorly implemented crypto TTPS
Side channels
OOO

Certification
Implicit security goals Authority X5_09 AT U%‘l
Dangerous APIs

TLS

Flawed standards ” a
A [l SHA |
» Mainstream implementations Cr;;f%a
OpenSSL, SChannel, NSS, ...
Monthly security patches \ Network butterst

Untrusted network (TCP, UDP, ..))

Veritied Components for the HTTPS Ecosystem

. S’[rOﬂg verified Services & Applications
safety & security

» Trustworthy, usable tools
« Widespread deployment

HTTPS

Certification ||
Authority

=+ X.509 —{ ASN.1

TLS

* % %k

LRSA | SHA |«

l 5\ ECDH || AES
Crypto Algorithms '

‘ :W \ Network buffers /

THEOREM PROVER

Untrusted network (TCP, UDP, ..))

leam Everest

|_Cambridge |

| Bangalore |
I Redmond |

A & Danel Ahman :

Rassetc;rgi Victor Dumitrescu Paris (|NR|A) I

Pittsburgh (CMU)

Antoine

Delignat-Lavaud

Karthik —
Bhargavan Cédric
Fournet
Santiago Protzenko

Zanella-Beguelin [5 Patrie
E\ i Godefroid
Leonardo . [Oﬂ
‘ Christoph ~ de Moura t “ at\
Wintersteiger & \I er\ \C

Jean Karim n
Zinzindohoue Kobeissi

e proQfd

TLS/HTTPS: Just a Secure Channel?

Crypto provable Software safety & security

security (core model) (implementation)
One security property at a time Focus on performance, error handling,
—simple definitions vs composition operational security
Intuitive informal proofs Security vulnerabilities & patches

Omitting most protocol details
New models & assumptions required ®

RFCs (informal specs) Application security (interface)
Focus on wire format, Lower-level, underspecified, implementation-
flexibility, and interoperability specific. Poorly understood by most users.

Security is considered, not specified Weak configurations, policies, and deployments

e . o e e
--| ed source code, specs, security definitions,

Eve re St ve Fl crypto games & constructions, proofs...
Secyre uysapile :i verify all properties
(using automated provers)
COI’T‘ OO e @PJ[S for l then erase all proofs
the _lT__ DS StaCkS extract low-level code,

kreMLin with good performance &

l (some) side-channel protection
By implementing C/C++
standardized components
and pll‘.(éVIngbthehm >ECUre, gec. - interop with rest of
we validate pboth their dll el TLS/HTTPS ecosystem

clang

design and our code.

production code

The TLS/HTTPS ecosystem

TLS Standards & Implementations
Internet Standard

1994 Netscape's Secure Sockets Layer
1995 SSL3

1999 TLS 1.0 (»SSL3)
2006 TLS 1.1

2008 TLS 1.2
20177 TLS 1.3

Implementations:

O p e n S S I_ SChannel Nss SecureTransport PolarSSL JSSE cnutts mis

Large C++ codebase (400K LOC), many forks https://github.com/openssl/openss|

Optimized cryptography for 50 platforms

Terrible API
Frequent critical patches https://openssl.org/news/vulnerabilities.html

Never secure so far

https://github.com/openssl/openssl
https://openssl.org/news/vulnerabilities.html

TLS Verification Goal: Secure Channel

client credential

connect (server,port) ;
send “GET..”;

data = recv();

send “POST..”;

Security Goal: As long as the adversary does not control

i 5§

Public Key
Infrastructure
3
(
client @

adversary

server

server credential

accept (port) ;
request = recv();
send “<html>."”;

order = recv();

the long-term credentials of the client and server, it cannot
* Inject forged data into the stream (authenticity)
 Distinguish the data stream from random bytes (confidentiality)

Client

LS protocol overview

Hello

Keying

e

Server

 >

Protocol negotiation
« Agree on version

« Agree on ciphersuite
Determines all crypto algos

Authenticated Key Exchange

« Verify server/client identity
* Generate master secret

« Derive connection keys

Finished

—

Key & transcript confirmation
* Completes authentication

* Matches transcripts

« Authenticated encryption

AppData

Application data streams
* Full duplex channel
* Authenticated encryption

Many configurations (some of them broken)

Client Server

Hello) 7 protocol versions
100s of ciphersuites
10s of extensions

Keying RSA key transport or

DHE/ECDHE exchange

RSA/DSA/ECDSA
signatures

Finished

AppData | HMAC with AES-CBC
oP HMAC with RC4
AES-GCM, Chacha-Poly1305

miTLS (2013—...)

e

. Microsoft Research - Inria
JOINT CENTRE

a first veritied reference implementation

1. Internet Standard compliance & interoperability
supporting SSL 3.0—TLS 1.2

2. Verified security:
we structured our code to enable its
modular cryptographic verification,
from its main APl down to concrete

algorithms (RSA, AES,..)

3. Experimental platform:
for testing corner cases, trying out attacks,
analysing extensions and patches, ...

Excluding crypto
algorithms, X.509, ...

Not fully mechanized
(paper proofs too)

Not production code
(poor performance)

Triple handshake attack (2014) [e senc

ClientBalla{cr, |[RSA4, DH]....)

CliantHellolor, [HSA])

ZarvarBollolsr, sid, fi'.ﬁ'.ﬁ.E.'JC_ﬁLG_I "
ServerCartificatalcerig, pkg) *

SarvarCartificatelceria, pk,) - — -

= HallaD Hns scssion: Hns sossion:
. . cerverseodmae | gid, ms, anog — eeri), sid, ms, o, 5r sid, mia, anoe — Tl
CliantHeyExch er, v, KEX_ALG, ENC_ALG o, KET_ALD, ERC_ALG

. wirs(pky, pms))
o T s’ 2 ¥ skl T S
a: 1. New session - : T
Hns comnection: Hmrem: Hus connection:

sid, ms, or', ar', ood, sod sid, ma, o, st sl s, o, o', evd, sud

CliantFinished
- (sync keys) ydataims,lg))
LS Applaca,
SarvarFinished|werifydata|rms, logg))

AppData;

——

ClisotHelloder”, [KEXALS'), [ERCALC, ewd)

SarvarFinished{verifydata/ms, logh))
SarvarSallofsr”. mad’ KEE ALG', ENC_ALG', cvd, svd)
e s, O, T

- . m— - sal cerd s, pk)

Cache new session: K oows: Cnche new session: e . . - r.'.-r-.ll
sid, rnis, anon — cerf sid, ms, or, s sid, rns, anon — cerig — 3 t t
or, v, 5 AL ERC_ALG o, sr, S A, ENC_ALG e o re n e g O I a I O n 2aguant
.olong

T oobeme]
ey — === (forwarding)
S=Ei ClicmsRayl
| | I I CarzificaceVeri

ClleecliCE
CliemcFinished|verifydata[ms’, bagg)]

Sarvartos
ServerFioisbad|{verfydatams’, log, i)

User Attacker
=
Cache new session: Emwrars: Cache now sessiom:
aid’, ma', et — oo o aid, ma eerdo ris
Hus spsion: Konows: Has session: or' o' HEL_ALC', ENC ALC or®, or' KENALC', ENCALC'
sid, ma, anon — cert wid, s orar sid, ma, anon — eerig, AppData;
er, ar, KEEX_ALG, ENC_ALG er, ar, KEX_ALG ERC_ALG AppOatay

ClientHallojer”, mid)

Accepts datn strenm:
Applatal + Apphaxad

I *

. =1 o ar, mid)

2. resumption s
hemmaeds - (GynC transcript) ————

New connection:

i, ma, o' o’ wid, s, er’, ar’, evd, sed

AppData

https://www.secure-resumption.com/

e
Cl

New oo
mid, ma, o' wr', e

ClientHello

Server-Gated Crypto J

(abbreviated handshake)

Systemat

(full handshake)

the TLS state machine .z

Nick = 1

verNewSessionTicket Ntick = 0
Export Egﬁ *

ka = RSA

ServerKeyExchange] R3A ServerCCS3

Static DH
sz = DHE|ECDHE

new attacks against all mainstream implementations

(authenticate client?) ServerFinished
TLS offers many ciphersuites, optional messages, o o
extensions... sharing the same state machine.

miTLS provides a verified TLS state machine.

We systematically generated and tested
deviant traces against other implementation

(skipping, inserting, reordering valid messages) chienceinisned fest results
Sy for OpenSSL:

ootk cach colored
arrow is a bug

We found many many exploitable bugs

ServerCCs

Server Finished

Systematically testing
the TLS state machine

new attacks against all mainstream implementations

TLS offers many ciphersuites, optional messages,
extensions... sharing the same state machine.

miTLS provides a verified TLS state machine.
We systematically generated and tested

deviant traces against other implementation
(skipping, inserting, reordering valid messages)

ClientHello(v, [kz1, kzs, .. .])

ServerHello(v, kx)

ServerCertificate(certs)]

ServerKe“'lange(- .

Server”Done

CIientKe“-ange(- .

CIE“CS

)

CIientFinish”ac(log, .

Sel“CS

ServerFinished(mac(log’, - - -

ApplicationData*

We skip 6 messages

JSSE's client assumes
the key exchange

is finished, uses
uninitialized
0x000000...

as session key!

FREAK: downgrade to RSA_EXPORT (2015)

Man-in-the-middle attack against:
* servers that support RSA_EXPORT (512bit keys obsoleted in 2000) from 40% to 8.5%

* clients that accept ServerKeyExchange in RSA (state machine bug) almost all browsers
have been patched

Client C MitM Server S

ClientHello(cr,[...,RSA,...]) ClientHello(cr, [RSA_EXPORT))
ServerHello(sr, RSA) B ServerHello(sr, RSA_EXPORT)
ServerCertificate(certs)

A A A

_lgg_c_ ServerKeyExchange(slgn(cr | sr | psi12, sks) |
~. CIientKeyExchange(rsaenc(pmS,p512)> Factori ng
(ms, k1, ko) = kdf(pms, cr | sr) ss12 = factor(ps12) in 7-1 Oh Slml|ai’ attaCk,
(s, oty) = kdfpms, e | o7 different crypto:
ClientCCS
lggic P ClientFinished (mac(log, ms)) : LO G‘JA M (2 01 5)

ServerCCS

ServerFinished(mac(logl:, ms)) d OWnN g [a d e J[O

authenc(ky,Data)

- authenc(ky, Data’) Wea |< g rOU pS

<

Y

TLS Attacks

Crypto
failures IS RC4 RSAS512bit SHAT
_________________________ SLOTH - DROWN
Renegotiation CRIME Triple)
Protocol Attack Handshake
ECDHE Cross-
A TTESTES BEAST protocol Attack Logjam J
(Rogaway 02) I
—————— — — 4= — — — — — -— — — lucky13 - — POODLE - FREAK — -— —.
| y
L OpenSSL entropy J L EarlyCCS J
Implementation Heartbleed
bugs ~ SKIP

v . v
2007 2008 2009 2010 2011 2012 2013 2014 2015

TLS 1.3: a new hope

Much discussions

IETF, Google, Mozilla, Microsoft, CDNs,
cryptographers, network engineers, ...

Much improvements

« Modern design
« Fewer roundtrips
« Stronger security

New implementations
required for all

« Be first & verified too!
« Find & fix flaws before it's too late

Network Working Group E. Rescorta Table of Contents

Internet-Draft RTFM, Inc
Obsoletes: 5077, 5246, 5746 (if March 22, 2016 1. Introduction 2
approved) 1.1. Conventions and Terminology

Updates: 4492 (if approved)
Intended status: Standards Track
Expires: September 23, 2016

The Transport Layer Security (TLS)
Protocol Version 1.3
draft-ietf-tls-tls13-latest

Abstract

This document specifies Version 1.3 of the Transport Layer Security
(TLS) protocol. The TLS protocol allows client/server applications to
communicate over the Internet in a way that is designed to prevent
eavesdropping, tampering, and message forgery.

Status of This Memo

This Internet-Draft is su))
79 [/ tiswg / tis13-spec

1.2. Major Differences from TLS 1.2
2. Goals
3. Goals of This Document
4. Presentation Language
4.1. Basic Block Size
42 Miscellaneous
4.3 Vectors
4.4. Numbers
4.5. Enumerateds
4.6. Constructed Types
4.6.1. Variants
4.7. Constants
4 8. Cryptographic Altnbutes
4.8.1. Digital Signing

4.8.2 Authenticated Encryption with
Additional Data (AEAD)

5. The TLS Record Protocol
5.1. Connection States

® Watch~ 54 w Star 130 % Fork 57
Internet-Drafts argy Code @ Issues 32 I Pull requests 9 Wiki 4~ Pulse | Graphs
that other groups
current Internet-|
Intornet-Drafts are Filters ~ isissue is:open Labels Milestones m
replaced, or obs
Drafts as refer (D 320pen 155 Closed Author~ Labels > Miesiones = Assignee~ Sort =
This Internet-Draft
() Define what the SignatureScheme code points are Jo
C B h 1 #441 opened 3 hours ago by martinthomson
opyri
py g) PKCS1 oo
Copyright (c) 2016 #440 opened 3 hours ago by martinthomson
reserved
x (1) 0-RTT when the server rejects a ClientHello o
This document is #438 opened 14 days ago by martinthomson
Documents (http:/
document. Please () With resumption PSK, make the PSK label partly derived from the session hash Qs
restrictions with r #427 opened on Mar 9 by ekr
must include Si
Provisions and are () Remove DH-based 0-RTT o
#425 opened on Feb 23 by martinthomson
This document
or made publicly av () Add encrypted NextRecordLength field to make next record's unencrypted header optional parked o1
copynght in some #422 opened on Feb 23 by bford
modifications of
adequate license fi (0 PSK and Certificates? oo
document may nﬂ #421 opened on Feb 21 by wbl
it may not be cr o R client auther from O-RTT o1
as an RFC or to #420 opened on Feb 21 by martinthomson
() Should EncryptedExtensions have an inner list o
1 L Introdu #419 opened on Feb 21 by ekr
DISCLAIMER: This () Have the server provide the PSK index not the label? o

analysis. #418 opened on Feb 21 by ekr

RFC EDITOR Allow servers to send KnownGrouns

10

Saving roundtrips for new connections

Client Server

0 w’
Hello
1 /
W
 Finished ———
2

TLS 1.2

Two roundtrips
before sending
application data

Client

0

1

2

Server

Hello

Hello, Finished
F iniShed

TLS 1.3

One roundtrip
before sending
application data

Client

0

Hell

TLS 1

Server

Hello

o, Finishied

W

3

Zero roundtrip
before sending
application data

0.5

Client has no
guarantee

the server is
present or unique.

Server has no
guarantee the
client agrees on
the connection

Trading
performance
for security

TLS 1.3: status

IETF W(G9599

1321t draft including

some of our proposals

#4 | log-based key separation
extended session hashes
(fixing attacks we found on 1.2)
stream terminators

(eventually fixing an attack)

downgrade resilience
session ticket format
simplified key schedule
pre-shared-key ORTT
#18 | PSK binding (fixing an attack)

RFC finalized this month?

#11

#14
#15
#17

[o=e]

Clicnthallo(cr, [S4, DH]..)

CliantBelto(er, [REA])

SorvarRollolsrvid TS A ENCATE]

ServerCartificatelceris ko)

Cache new session:
sid.ms, sn0m
o RS LS

ClismtFinished

Serverfiallodong

CliesieyEach

[t}

1. new session
(sync keys)

ServarFinished

(=]

Han comoction:
sid e, s, eod, sud

Azposta,

" AL (e], o

Implementing and Proving the TLS 1.3 Record Layer

Antoine Delignat-Lavaud, Cédric Fournet,

Markulf Kohlweiss, Jonathan Protzenko, Aseem Rastogi,

Nikhil Swamy. Santiago Zanella-Béguclin
Microsaft Research

{antdl, fournet ,markulf, prof

nswamy, santiago}@mic

Abstract—The record layer is the main bridge between TLS
applications and internal sub-protocols. Its core functionality
is an elaborate form of authenticated encryption: streams
of messages for each sub-protocol (handshake, alert, and

ion data) are fragmented, multiplexed, and encrypled
jonal padding to hide their lengths. Conversely, the sub-
protocols may provide fresh keys or signal stream termination
10 the record layer.

Compared to prior versions, TLS L3 discards obsolete
schemes in favor of a common construction for Authenticated
Encryption with Associated Data (AEAD), instantiated with
algorithms such as AES-GCM and ChaCha20-Poly1305. It
differs from TLS 1.2 in its use of padding, associated data
and nonces. It also encrypts the content-type used to multiplex
between sub-protocols. New protocol features such as early
application data (0-RTT and 0.5-RTT) and late handshake
messages require additional keys and a more general model

Karthikeyan Bhargavan, Jianyang Pan,
Jean Karim Zinzindohoué
INRIA Paris-Rocquencourt
karthikeyan.bhargavan@inria.fr,
panyang3148gmall. com
jean-karim.z

nzindohoue@inria.fr

L INTRODUCTION

Transport Layer Security (TLS) is the main protocol
for secure communications over the Internet. With the fust
growth of TLS traffic (now most of the Web [48]), numerous
concerns have been raised about its security, privacy, and
performance. These concerns are justified by a history of
attacks st deployed versions of TLS, often originating
in the record layer.

History and Attacks Wagner and Schneier [49] report
many weaknesses in SSL 2.0. The MAC construction offers
very weak security regardless of the encryption strength, The
padding length is unauthenticated, allowing an attacker 1o
truncate fragments. Stream closure is also unauthenticated:
although_an_engd-of-st alert was_added in SSL_3.0.

Han comsoction:
s, s, e, s, evd, s

TLS 1.3 IETF Hackathon

Downgrade Resilience in Key-Exchange Protocols

Karthikeyan Bhargavan®, Christina Brzuska!, Cédric Fournet!, Matthew Green®,
Markulf Kohlweiss' and Santiago Zanella-Béguelin!
*Inria Paris-Rocquencourt, Email: karthikeyan.bhargavanBinria.fr
THamburg University of Technology, Email: brzuska@tuhh.de

*Microsoft Research, Email

Abstract—Key-exchange protocols such as TLS, SSH, IPsec,
and ZRTP are highly with typical

fournet ,markulf, santiago}@microsoft.com
fijohns Hopkins University, Email: mgre

@cs. jhu.de

supporting multiple protocol versions, cryptographic algorithms
and parameters. In the first messages ol the peers
negotiate one specific combination: the protocol mode, based on
their local configurations. With few notable exceptions, most
erypiographic analyses of configurable protocols consider a single
maode at a time. In contrast, downgrade attacks, where a network
adversary forces peers to use a mode weaker than the one they
would normally negotiate, are a recurrent problem in practice.

How to support configurability while at the same time guar-

againsi
about the downgrade resilience of
combine these findings to def

the conditions under which several protocols ac
we discuss patterns that guarantee downgrade security by des
and explain how to use them to stregthe the securly of existing
protocols, including a newly proposed draft of TLS 1.3,

L. INTRODUCTION
Popular protocols such as TLS, SSH and IPScc as used
in practice do not fit a simple textbook definition of a key-
exchange protocol, where the state machine, cryptographic
algorithms, parameters and message formats are all fixed in
advance. Rather, these modern protocols feature cryptographic
agility. which provides for confi selection_of multinle

(K i) = k(g™)

A, g7 sign(sk 4, (G 9" %)), mae(kn,, A)

(i,

= kdf(y*T)

B, sign(skys, (Gy 0, 0¥)), mac(, 1)

— —
Fig. 1: SIGMA-N: Basic SIGMA [30] with group negotiation

than the one they would have used on their own. Such attacks
have been identified in a number of protocols, most famously
in the early versions of the SSL protocol [43] and even in
recent versions of TLS (2, 39].

Surprisingly, there has been relatively littde formal work
around the security of negotiation in modern cryptographic
protocols. Several recent works formally prove the security of
different aspects of TLS and SSH. Some [25. 31] only model
a single mode at a time. Some [12, 13] do madel negotiation
of weak algorithms, but do not guarantee negotiation of the
preferred mode. Some others [9, 21] consider only i i

5 IEEE Security & Privacy” X 4

< - 0

[& mitsorg

Goals)

TLS 1.3: Design, Implementation & Verification Workshop

30 April 2017, University Pierre and Marie Curie (UPMC), Paris, France

Affiliated with IEEE Euro Security & Privacy and Eurocrypt

Topics)

Call for Speakers)

Agenda) Contact

x| =

)

Aims and Goals

Workshop topics

« Evolution of the TLS 1.3 specification

+ Cryptographic security proofs of the TLS 1.3 handshake and record
- Safe and secure implementations of cryptographic primitives

- Security evaluation of TLS implementations and deployment

- Applications built on top of new TLS 1.3 features (e.g. 0-RTT, late authentication)

V> v

The goals of the TLS:DIV workshop are threefold: first, to explain and justify the latest changes to the TLS 1.3 design (from draft 13 to draft
19); second, to give an overview of some ongoing efforts to prove the cryptographic security of the TLS 1.3 protocol, and third, to showcase
recent tools and metheods to evaluate and improve the safety and security of TLS implementations, up to the level of cryptographic primitives.

The workshop is organized by the Everest project team and consists of invited talks from leading experts on key exchange security and
implementation of cryptography on topics related to the analysis and implementation of TLS.

Nmiosoft’ I

Cryptographic Algorithms tor HTTPS

Algorithms get broken & replaced over time

Security relies on probabilistic cryptographic assumptions (who knows?)

Modern design & implementations select between
various algorithms & implementations for the same core functionality

~30 standard algorithms

- Hash and key-derivation functions (SHA256) / —
« Symmetric cryptography (AES_GCM, AES_CBC)
« Public-key encryption and signing X.509 (—» ASN.1 |
- Elliptic curves (NIST, 25519, 4Q) L —_

High-performance
AES_GCM takes 0.46 cycle/byte on Intel Skylake Crypto Algorithms

Network buffers

Hand-tuned, low-level, architecture-specific \

Testing for
DUQS

KNOWI

Bm_pa

Ty COC

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Project Wycheproof
December 19, 2016

Posted by Daniel Bleichenbacher, Security Engineer and Thai Duong, Security Engineer

We're excited to announce the release of Project Wycheproof, a set of security tests
that check cryptographic software libraries for known weaknesses. We've developed
over 80 test cases which have uncovered more than 40 security bugs (some tests or
bugs are not open sourced today, as they are being fixed by vendors). For example, we
found that we could recover the private key of widely-used DSA and ECDHC
implementations. We also provide ready-to-use tools to check Java Cryptography

Architecture providers such as Bouncy Castle and the default providers in OpenJDK.

The main motivation for the project is to have an achievable goal. That's why we've
named it after the Mount Wycheproof, the smallest mountain in the world. The smaller

the mountain the easier it is to climb it!

Application Security: https://

https://www.visualstudio.com/

e Jrustis transitive

each page involves connections
to many servers (different origins)

e Jrustis implicit
17 concurrent TLS connections,
configurations, certificate chains

« Trustis a matter of state
cookies, caches, configurations, proxies

Experiments

" BNED e BE=E IY- Content type |
Name / Result/ Initiator / Headers Body Parameters Cookies Timings
Path Protoo Method Description Content type Received Time Type
httpsy/ fwww visualstudio.com/ HTTPS GET 200 text/html 1745 KB 65572 ms cocument o
o Request Method: GET
HTTPS GET applicationfjovascript 10.68 KB 4846 ms script Status Code: [l 200/ OK
Combined.css?resources=0dayout O:imageSprite 08GCol.. HTTPS GET text/css 9.77K8 1932ms ik 4 Requast Headers
hitps//i-vso msft.com X Accept: text/html, application/xhtml+xml, image/pr, */*
Combined css?resources=0Layout 0:imageSprite :BGCol.. HTTPS GET 200 text/css fr 0s
. 1.min; HTTPS GET applicationfjavascript 664 KB 1186 ms
optimiz HTTPS GET 200 applicationfjovascript 20.13KB 2486ms script
Loaderjs HTTPS GET 304 application/javascript from ca 2027 ms script
Combined js?resources=0:Utilities, 1 HTTPS GET 200 applicationfjavascript 86 K8 1566 ms script
Ps//i2-vso.secs-msf.com OK
SearchBoxjss?boxid=HeaderSearchTextBox&btnid=Head... HTTPS GET 200 application/x-javascript 4.66 KB 3135 ms
ttps: services socia ICrosoft.col £ar Vidgets. OK
jquery-2.1.0.minjs HTTPS GET 304 application/x-javascript (from cache) 1086 ms script
Combined.cssTresources=0:Home. 1 (:HeroRotator.1,2;qu... HTTPS GET 200 text/css 271KB
HTTPS GET 304 text/javascript from ¢
alytics. co
HTTPS GET 304 application/x-javascript 0
com/msvscs: Not Modified \ 4
2 HTTPS GET 200 text/javascript
ots.opt trends.com/ots/api/js-4.1/20 S/WT: OK
serverComponent php?r=578293 7306700915&CfientiD=.. HTTPS GET 200 text/javascript X 509 = AS N . 1
tDs//nexus.ensighten Com/msvscs/pros 0
jquery.minjs HTTPS GET 304 text/javascript A \ 4
hetps: 2Lgoogleapis.com/aanAibs/jouery 2.0
321c0db7435fb02e24b7b5ddedd3dbd8 js?conditionld0=... HTTPS ~GET 304 application/x-javascript (from TLS
platform js HTTPS GET 304 application/x-javascript [from
tps//ww cro 1 lent/f/feeds d u Not Modi
HTTPS GET 304 application/xjavascript (from
426vams scripts/a Net Modified v * % %
ajsm=11087202615936;cache=0.25119600097490057 HTTP2 GET 200 text/javascript 739 8
et it comn P
2 WS G 2w ey — RSA SHA |«
hitps/ots.optimize webtrends.com/ots/api/js-4.1/204335/0nUt X
0f0383d2deb0c0878e399d284d548ae js?conditionld0=2.. HTTPS GET 200 application/xjavascript (from
6d0b08F2295feb40c3 js7conditionid0=28... HTTPS ~GET 200 application/x-javascript (from
sighten. com/msvscs/procicode .
|
HTTPS GET 200 text/javascript 4384 Crypto Algonthms
ick/se \ 4
HTTPS GET 200 application/x-javascript (from
S WS GeT 200 text/plan 738K Network buffers
0 out of 0 errors 32 out of 83 requests 113.78 KB out of 1.91 MB transferred 251 5 out of 5.14 5 taken (DOMCon T —————

https://www.visualstudio.com/

Unsolved issues with HTTPS

SSL Stripping Cookie-based Attacks CRIME / BREACH Virtual Host Confusion
(Marlinspike) (various variants) (Rizzo, Duong et al.) (Delignat-Lavaud)

TLS is optional in HTTP and Shared cookie database for Attackers can easily mount HTTPS servers do not

can be disabled by an HTTP and HTTPS can be adaptive chosen-plaintext correlate transport-layer
active attacker used to mount various attacks. Encryption after and HTTP identities,
session fixation and login compression can leak leading to origin confusion
CSRF attacks. secrets through length.
Mitigated by correct use of Mitigated by new binding Mitigated by refreshing Mitigated by configuration
HTTP Strict Transport proposals (ChannellD, secrets (e.g. CSRF tokens). of HTTPS servers with strict
Security (HSTS) Token Binding). Mitigation ~ Some protocol-specific host rules
is not widely implemented. mitigations (QUICK, HTTP2)
Mitigation not widely used. Difficult to mitigate in Ad-hoc mitigation; attack is Ad-hoc mitigation.
and vulnerability is still browsers with current still widespread in practice Attack still widespread in
widespread in practice. technologies. Can be used as HTTP compression practice.
to attack many websites. remains popular.

2006 2007 2008 2009 2010 2011 2012 2013

Long-term identities: X.509

Public-Key Infrastructure (Certificate Chains)

Designed in 1984; widely criticized but hard to replace
HTTPS is just one application

Same complexity as TLS?

ASN.1 grammar; many extensions and interpretations
50% of “TLS attacks” are in fact X.509 attacks

Recent Initiatives

Global scans for millions of certificates
Certificate pinning & transparency
Let's encrypt! hitps://letsencrypt.org/

Verification?

Complex ambiguous format
Certificate issuance and revocation policies

/ HTTPS

TLS

* %k %k

LRSA | SHA |e

ECDH || 4Q

.

Crypto Algorithms

A 4
\ Network buffers /

https://letsencrypt.org/

Ime‘lﬂe Of R@Ceﬂt PK‘ Fal‘ureS The SHAppening

512 bit Korean
School CAs

Crypto failures

Formatting & semantics

VeriSign

NetDiscovery Trustwave ANSSI

TURKTRUST
CA failures

2 R ‘ ' !

2006 2007 2008 2009 2010 2011 2012 2013 2014

Side Channel Challenge (Attacks)

Timing attacks against
cryptographic primitives

Memory & Cache

Protocol-level Traffic analysis
side channels

TLS messages may reveal
information about the
internal protocol state or the
application data

* Hello message contents
(e.g. time in nonces, SNI)

* Alerts (e.g. decryption vs.
padding alerts)

* Record headers

(Bleichenbacher 1

Combined analysis of the
time and length distributions
of packets leaks information
about the application

 CRIME/BREACH (adaptive
chosen plaintext attack)

e User tracking

e Auto-complete input theft

[Vaudenay N AES cache timing }

Remote timing
attacks are practical

vV

2006

2007

2008 2009

A remote attacker may learn
information about crypto
secrets by timing execution
time for various inputs

Bleichenbacher attacks
against PKCS#1 decryption
and signatures

Timing attacks against RC4

Memory access patterns may
expose secrets, in particular

because caching may expose
sensitive data (e.g. by timing)

* OpenSSL key recovery in
virtual machines

e Cache timing attacks
against AES

1 BREACH

(Lucky 13)

(ECDSA

Side-channel t'.m'ng
leaks in Web
applications

(Tag size 1 (CRIME 1 (Lucky13 1 (DROWN ->1

I

1

2010 2011

2012

|

2013

MITLS in F* today

miTLS, protocol layer:

16K lines of code and proofs
Compiled to Ocaml.
Partially verified.

AEAD record-layer crypto
14K lines of code and proofs
Verified & compiled to C

Client:

ee @ https://www.mitls.org:444 PO~ &C @ miTLs, Triple Handshake, S... (5]
Ml

tus MITLS Publications Attacks Code FlexTLS People

This website is powered by an experimental version of miTLS. You can report bugs and interoperability problems on the Github issue tracker.

miTLS: A Verified Reference Implementation of TLS

miTLS is a verified reference implementation of the TLS protocol. Our code fully supports its wire formats, ciphersuites, sessions and
connections, re-handshakes and resumptions, alerts and errors, and data fragmentation, as prescribed in the RFCs; it interoperates with
mainstream web browsers and servers. At the same time, our code is carefully structured to enable its modular, automated verification, from
its main API down to computational assumptions on its cryptographic algorithms.

The stable version of miTLS including the new 0.9 release are written in F# and specified in F7. We present security specifications for its
main components, such as authenticated stream encryption for the record layer and key establishment for the handshake. We describe their
verification using the F7 refinement typechecker. To this end, we equip each cryptographic primitive and construction of TLS with a new
typed interface that captures its security properties, and we gradually replace concrete implementations with ideal functionalities. We finally
typecheck the protocol state machine, and thus obtain precise security theorems for TLS, as it is implemented and deployed. We also revisit
classic attacks and report a few new ones.

The development version is written and verified in F*, a ML-like functional programming language aimed at program verification. You can
learn more about F* on its project homepage.

&'zw_,‘,ﬁ_,. ?: Niﬁiosoft'

The TLS Protocol

We integrate miTLS & its verified crypto
with Internet Explorer.

We run TLS 1.3 sessions with ORTT
without changing their application code.

Server: nginx

80%

60%

40%

20%

0%

Web server developers: Market share of the top million busiest
sites

[IETCRAFT — Apache

—— Microsoft
—— Other
—— nginx
—— Google

.—-——"_'_“'J-‘r

—_— —

'/__

o® 00 o T Bt N2 ohe e

e2® et ot T it T 1o et et Tyt Te® Tt ¥ ot TR

A high performance server for
HTTP, reverse proxy, mail,...

We replace OpenSSL with miTLS & its crypto:
the modified server supports TLS 1.3
with tickets and 0-RTT requests.

Nginx Architecture

Master Process
p / Backends \
(IP1, Port1) [Certificate -
n | virtual Application servers
irtua
Memory Caches
Server TLS Y
- - | = N Y,
© S ©
| Certificate o v o 4)
(IP2, Port2) c = c
< Virtual TS ': — ':
- Local Files
Server &J 8 &J
5 || S| 5
= = = \ %
[Certificate]
(IPx, Portk) Virtual Shared Cache
) Server TLS L JL Jk J

