Joint State Theorems for Public-Key Encryption and Digital Signature Functionalities with Local Computation

Max Tuengerthal

joint work with Ralf Küsters

ETH Zurich

FormaCrypt Meeting - 30. November 2007

IITM Model [Küsters 2006]

- Users/Machines modeled by PPT-IITMs
 - Inexhaustable ITM (IITM)
 - IITMs connect via tapes
- System of IITMs $S := M \mid (S \mid\mid S) \mid !S$
- Characteristics: Asynchronous communication
 - Model independent of security definition
 - Simple and yet expressive

IITM Model [Küsters 2006]

- Users/Machines modeled by PPT-IITMs
 - Inexhaustable ITM (IITM)
 - IITMs connect via tapes
- System of IITMs $S := M \mid (S \parallel S) \mid !S$
- Characteristics: Asynchronous communication
 - Model independent of security definition
 - Simple and yet expressive
- Generic addressing method for multiple instances

Two modes: CheckAddress Compute

$$S = M_1 \parallel !M_2$$

$$M_1 \xrightarrow{m} \text{acc?} M_2'$$

$$\text{no} \text{acc?} M_2''$$

$$\text{new instance of } M_2$$

IITM Model [Küsters 2006]

- Users/Machines modeled by PPT-IITMs
 - Inexhaustable ITM (IITM)
 - IITMs connect via tapes
- System of IITMs $S := M \mid (S \parallel S) \mid !S$
- Characteristics: Asynchronous communication
 - Model independent of security definition
 - Simple and yet expressive
- Generic addressing method for multiple instances

Note: ID can be SID or PID

Security Definition

Definition (Strong Simulatability)

Security Definition

- Transitive and reflexive
- Notion conceptual equiv. to blackbox simulatability [Pfitzmann and Waidner 2001], UC [Canetti 2001]
- ullet Corruption described in the formulation of \mathcal{F}/\mathcal{P}

Composition Theorem

Composition Theorem [Küsters 2006]

$$\mathcal{P}_1 \leq^{\mathsf{SS}} \mathcal{F}_1$$
, $\mathcal{P}_2 \leq^{\mathsf{SS}} \mathcal{F}_2$ implies
$$\mathcal{P}_1 \parallel \mathcal{P}_2 \leq^{\mathsf{SS}} \mathcal{F}_1 \parallel \mathcal{F}_2 \quad \text{and} \quad ! \underline{\mathcal{P}_1} \leq^{\mathsf{SS}} ! \underline{\mathcal{F}_1}$$

• Connection between $\mathcal{F}_1/\mathcal{P}_1$ and $\mathcal{F}_2/\mathcal{P}_2$ arbitrary

Composition Theorem

Composition Theorem [Küsters 2006]

$$\mathcal{P}_1 \leq^{SS} \mathcal{F}_1$$
, $\mathcal{P}_2 \leq^{SS} \mathcal{F}_2$ implies
$$\mathcal{P}_1 \parallel \mathcal{P}_2 \leq^{SS} \mathcal{F}_1 \parallel \mathcal{F}_2 \quad \text{and} \quad ! \underline{\mathcal{P}_1} \leq^{SS} ! \underline{\mathcal{F}_1}$$

ullet Connection between $\mathcal{F}_1/\mathcal{P}_1$ and $\mathcal{F}_2/\mathcal{P}_2$ arbitrary

Corollary

$$\mathcal{P} \leq^{SS} \mathcal{F}$$
 implies $\mathcal{Q} \parallel \underline{!}\mathcal{P} \leq^{SS} \mathcal{Q} \parallel \underline{!}\mathcal{F}$

- ullet ${\mathcal Q}$ uses multiple instances of ${\mathcal F}/{\mathcal P}$
- Corresponds to comp. thm. in UC model

Example: Protocol \mathcal{P} that uses public key encryption (PKE)

- ullet Replace use of PKE by calls to ideal functionality $\mathcal{F}_{\mathsf{PKE}}$
 - Simplifies security analysis
 - Use composition theorem to obtain security of ${\mathcal P}$
- ullet Analyze only single instance (session) of ${\cal P}$
 - Security of multiple sessions (! $\underline{\mathcal{P}}$) by composition theorem

Example: Protocol \mathcal{P} that uses public key encryption (PKE)

- ullet Replace use of PKE by calls to ideal functionality $\mathcal{F}_{\mathsf{PKE}}$
 - Simplifies security analysis
 - Use composition theorem to obtain security of ${\cal P}$
- ullet Analyze only single instance (session) of ${\cal P}$
 - Security of multiple sessions ($!\underline{\mathcal{P}}$) by composition theorem

Example: Protocol \mathcal{P} that uses public key encryption (PKE)

- ullet Replace use of PKE by calls to ideal functionality $\mathcal{F}_{\mathsf{PKE}}$
 - Simplifies security analysis
 - Use composition theorem to obtain security of ${\cal P}$
- ullet Analyze only single instance (session) of ${\cal P}$
 - Security of multiple sessions ($!\underline{\mathcal{P}}$) by composition theorem

Example: Protocol \mathcal{P} that uses public key encryption (PKE)

- ullet Replace use of PKE by calls to ideal functionality $\mathcal{F}_{\mathsf{PKE}}$
 - Simplifies security analysis
 - Use composition theorem to obtain security of ${\cal P}$
- ullet Analyze only single instance (session) of ${\cal P}$
 - Security of multiple sessions ($!\underline{\mathcal{P}}$) by composition theorem

 $!\mathcal{P} \parallel \mathcal{F}_{\mathsf{PKE}}$ Session 1 Session 2 ...

cannot simply use one instance of \mathcal{F}_{PKE} in multiple sessions

(General) Joint State Theorem – UC Model

Joint State Theorem in UC model [Canetti and Rabin 2003]

```
{\cal F} ideal functionality
```

 ${\mathcal Q}$ protocol that uses multiple instances of ${\mathcal F}$

 $\widehat{\mathcal{P}}$ realization of $\widehat{\mathcal{F}} \approx !\underline{\mathcal{F}}$ – multi session version

Then $\mathcal{Q}^{[\widehat{\mathcal{P}}]}$ realizes \mathcal{Q} using multiple instances of \mathcal{F}

(General) Joint State Theorem – UC Model

Joint State Theorem in UC model [Canetti and Rabin 2003]

- \mathcal{F} ideal functionality
- ${\mathcal Q}$ protocol that uses multiple instances of ${\mathcal F}$
- $\widehat{\mathcal{P}}$ realization of $\widehat{\mathcal{F}} \approx !\underline{\mathcal{F}}$ multi session version
- Then $\mathcal{Q}^{[\widehat{\mathcal{P}}]}$ realizes \mathcal{Q} using multiple instances of \mathcal{F}
- Good conceptual idea,
 but technical subtleties and limitations of model:
 - JUC operation $(\mathcal{Q}^{[\widehat{\mathcal{P}}]})$ needs to be defined explicitely
 - ! $\underline{\mathcal{F}}$ cannot be stated directly in UC model $(\widehat{\mathcal{F}}$ is single ITM)
 - $-\widehat{\mathcal{F}}$ is only approximation of $!\underline{\mathcal{F}}$ (exhaution of ITMs) Difficult (sometimes impossible) to realize $\widehat{\mathcal{F}}$

(General) Joint State Theorem – IITM Model

Joint State Theorem in IITM model

- \mathcal{F} ideal functionality
- Q protocol that connects to $!\underline{\mathcal{F}}$ (multi session)
- $\widehat{\mathcal{P}}$ \leq^{SS} $!\underline{\mathcal{F}}$

Then $Q \parallel \widehat{\mathcal{P}} \leq^{SS} Q \parallel \underline{\mathcal{F}}$

(General) Joint State Theorem – IITM Model

Joint State Theorem in IITM model

- \mathcal{F} ideal functionality
- Q protocol that connects to $!\underline{\mathcal{F}}$ (multi session)

$$\widehat{\mathcal{P}}$$
 \leq^{SS} $!\underline{\mathcal{F}}$

Then
$$Q \parallel \widehat{\mathcal{P}} \leq^{SS} Q \parallel \underline{\mathcal{F}}$$

- Proof: $Q \leq^{SS} Q$, $\widehat{\mathcal{P}} \leq^{SS} \underline{!}\underline{\mathcal{F}} \stackrel{\text{comp. thm.}}{\Longrightarrow} Q \| \widehat{\mathcal{P}} \leq^{SS} Q \| \underline{!}\underline{\mathcal{F}}$
- ullet No new composition operation (like $\mathcal{Q}^{[\widehat{\mathcal{P}}]}$) needed
- Elegant and rigorous formulation

- Joint State theorem itself does not yield practical realization
- ullet $\widehat{\mathcal{P}}$ not necessarily better than $\underline{!}\underline{\mathcal{P}}$

- Joint State theorem itself does not yield practical realization
- ullet $\widehat{\mathcal{P}}$ not necessarily better than $\underline{!}\underline{\mathcal{P}}$
- ullet Solution: Find \mathcal{P}^{JS} such that $\mathcal{P}^{JS} \parallel \mathcal{F} \leq^{SS} \underline{!} \underline{\mathcal{F}}$ and \mathcal{P}^{JS} is "sufficiently simple"

- Joint State theorem itself does not yield practical realization
- ullet $\widehat{\mathcal{P}}$ not necessarily better than $\underline{!}\underline{\mathcal{P}}$
- ullet Solution: Find \mathcal{P}^{JS} such that $\mathcal{P}^{JS} \parallel \mathcal{F} \leq^{SS} \underline{!} \underline{\mathcal{F}}$ and \mathcal{P}^{JS} is "sufficiently simple"
- ullet $\mathcal{P}^{\mathsf{JS}}$ is called **joint state realization** for \mathcal{F}

- Joint State theorem itself does not yield practical realization
- ullet $\widehat{\mathcal{P}}$ not necessarily better than $!\underline{\mathcal{P}}$
- ullet Solution: Find \mathcal{P}^{JS} such that $\mathcal{P}^{JS} \parallel \mathcal{F} \leq^{SS} \underline{!} \underline{\mathcal{F}}$ and \mathcal{P}^{JS} is "sufficiently simple"
- ullet $\mathcal{P}^{\mathsf{JS}}$ is called **joint state realization** for \mathcal{F}
- Consequences: comp. thm.
 - Reuse of realization: $\mathcal{P} \leq^{SS} \mathcal{F} \implies \mathcal{P}^{JS} \parallel \mathcal{P} \leq^{SS} ! \underline{\mathcal{F}}$

- Joint State theorem itself does not yield practical realization
- ullet $\widehat{\mathcal{P}}$ not necessarily better than $!\underline{\mathcal{P}}$
- ullet Solution: Find \mathcal{P}^{JS} such that $\mathcal{P}^{JS} \parallel \mathcal{F} \leq^{SS} \underline{\mathcal{F}}$ and \mathcal{P}^{JS} is "sufficiently simple"
- ullet $\mathcal{P}^{\mathsf{JS}}$ is called **joint state realization** for \mathcal{F}
- Consequences: comp. thm.
 - Reuse of realization: $\mathcal{P} \leq^{SS} \mathcal{F} \implies \mathcal{P}^{JS} \parallel \mathcal{P} \leq^{SS} ! \underline{\mathcal{F}}$
 - Iterative application:

- Joint State theorem itself does not yield practical realization
- ullet $\widehat{\mathcal{P}}$ not necessarily better than $!\underline{\mathcal{P}}$
- ullet Solution: Find \mathcal{P}^{JS} such that $\mathcal{P}^{JS} \parallel \mathcal{F} \leq^{SS} \underline{\mathcal{F}}$ and \mathcal{P}^{JS} is "sufficiently simple"
- ullet $\mathcal{P}^{\mathsf{JS}}$ is called **joint state realization** for \mathcal{F}
- Consequences: comp. thm.
 - Reuse of realization: $\mathcal{P} \leq^{SS} \mathcal{F} \implies \mathcal{P}^{JS} \parallel \mathcal{P} \leq^{SS} ! \underline{\mathcal{F}}$
 - Iterative application:

$$\mathcal{Q} \parallel ! \underline{(\mathcal{Q}' \parallel ! \underline{\mathcal{F}})} \geq^{\mathsf{SS}} \mathcal{Q} \parallel ! \underline{(\mathcal{Q}' \parallel \mathcal{P}^{\mathsf{JS}} \parallel \mathcal{F})} = \mathcal{Q} \parallel ! \underline{\mathcal{Q}'} \parallel ! \underline{\mathcal{P}^{\mathsf{JS}}} \parallel ! \underline{\mathcal{F}}$$

secure key encryption exch.

- Joint State theorem itself does not yield practical realization
- ullet $\widehat{\mathcal{P}}$ not necessarily better than $!\underline{\mathcal{P}}$
- ullet Solution: Find \mathcal{P}^{JS} such that $\mathcal{P}^{JS} \parallel \mathcal{F} \leq^{SS} \underline{\mathcal{F}}$ and \mathcal{P}^{JS} is "sufficiently simple"
- ullet $\mathcal{P}^{\mathsf{JS}}$ is called **joint state realization** for \mathcal{F}
- Consequences: comp. thm.
 - Reuse of realization: $\mathcal{P} \leq^{SS} \mathcal{F} \implies \mathcal{P}^{JS} \parallel \mathcal{P} \leq^{SS} ! \underline{\mathcal{F}}$
 - Iterative application:

by def.
$$\mathcal{Q} \parallel ! \underline{(\mathcal{Q}' \parallel ! \underline{\mathcal{F}})} \geq^{\text{SS}} \mathcal{Q} \parallel ! \underline{(\mathcal{Q}' \parallel \mathcal{P}^{\text{JS}} \parallel \mathcal{F})} = \mathcal{Q} \parallel ! \underline{\mathcal{Q}'} \parallel ! \underline{\mathcal{P}^{\text{JS}}} \parallel ! \underline{\mathcal{F}}$$
 secure key encryption
$$\geq^{\text{SS}} \mathcal{Q} \parallel ! \underline{\mathcal{Q}'} \parallel ! \underline{\mathcal{P}^{\text{JS}}} \parallel \mathcal{F}$$
 secure channel exch.
$$\geq^{\text{SS}} \mathcal{Q} \parallel ! \underline{\mathcal{Q}'} \parallel ! \underline{\mathcal{P}^{\text{JS}}} \parallel \mathcal{F}$$
 joint state realization

Application of JS Theorem to PKE

 $I: \{0,1\}^* \to \{0,1\}^* \text{ models leakage, e.g., } l_0: m \mapsto 0^{|m|}$

Key Generation: • recv **KeyGen** from decryptor, send **KeyGen** to adversary

- recv (e, d, k_e) from adv., store e, d, k_e
- send k_e to decryptor

 $I: \{0,1\}^* \to \{0,1\}^* \text{ models leakage, e.g., } l_0: m \mapsto 0^{|m|}$

```
Key Generation: • recv KeyGen from decryptor, send KeyGen to adversary
                 • recv (e, d, k_e) from adv., store e, d, k_e
                 • send k_e to decryptor
Encryption: \bullet recv (Enc, k', m) from encryptor
            • if k_e = k' and not corrupted then
                 c := e(k_e, l(m))
                 if d(c) \neq I(m) then return error
                 else store (m, c), return c
              else
                 return c := e(k', m)
```

 $I: \{0,1\}^* \to \{0,1\}^* \text{ models leakage, e.g., } l_0: m \mapsto 0^{|m|}$

```
Key Generation: • recv KeyGen from decryptor, send KeyGen to adversary
                 • recv (e, d, k_e) from adv., store e, d, k_e
                 • send k_e to decryptor
Encryption: \bullet recv (Enc, k', m) from encryptor
            • if k_e = k' and not corrupted then
                 c := e(k_e, l(m))
                 if d(c) \neq I(m) then return error
                 else store (m, c), return c
              else
                 return c := e(k', m)
Decryption: • recv (Dec, c) from decryptor
             • if (m, c), (m', c) stored, m \neq m' then return error
               else if (m, c) stored then return m
               else return d(c)
```

 $I: \{0,1\}^* \to \{0,1\}^* \text{ models leakage, e.g., } l_0: m \mapsto 0^{|m|}$

```
Key Generation: • recv KeyGen from decryptor, send KeyGen to adversary
                 • recv (e, d, k_e) from adv., store e, d, k_e
                 • send k_e to decryptor
Encryption: \bullet recv (Enc, k', m) from encryptor
            • if k_e = k' and not corrupted then
                 c := e(k_e, l(m))
                 if d(c) \neq I(m) then return error
                 else store (m, c), return c
              else
                 return c := e(k', m)
Decryption: • recv (Dec, c) from decryptor
             • if (m, c), (m', c) stored, m \neq m' then return error
               else if (m, c) stored then return m
               else return d(c)
Static Corruption: • recv (Corrupt) from adversary
```

 $I: \{0,1\}^* \to \{0,1\}^* \text{ models leakage, e.g., } l_0: m \mapsto 0^{|m|}$

```
Key Generation: • recv KeyGen from decryptor, send KeyGen to adversary
                 • recv (e, d, k_e) from adv., store e, d, k_e
                 • send k_e to decryptor
Encryption: \bullet recv (Enc, k', m) from encryptor
            • if k_e = k' and not corrupted then
                 c := e(k_e, l(m))
                 if d(c) \neq I(m) then return error
                 else store (m, c), return c
              else
                 return c := e(k', m)
Decryption: • recv (Dec, c) from decryptor
             • if (m, c), (m', c) stored, m \neq m' then return error
               else if (m, c) stored then return m
               else return d(c)
Static Corruption: • recv (Corrupt) from adversary
```

Non-interactive formulation, Advantage: Nested encryption

 $I: \{0,1\}^* \to \{0,1\}^* \text{ models leakage, e.g., } l_0: m \mapsto 0^{|m|}$

```
Key Generation: • recv KeyGen from decryptor, send KeyGen to adversary
                  • recv (e, d, k_e) from adv., store e, d, k_e
                  • send k_e to decryptor
                                                      no restrictions to e, d, k<sub>e</sub>
Encryption: \bullet recv (Enc, k', m) from encryptor
                                                      \Rightarrow quantification over all alg.
             • if k_e = k' and not corrupted then
                                                      ⇒ easier proofs/application
                  c := e(k_e, l(m))
                 if d(c) \neq I(m) then return error
                 else store (m, c), return c
               else
                  return c := e(k', m)
Decryption: • recv (Dec, c) from decryptor
             • if (m, c), (m', c) stored, m \neq m' then return error
               else if (m, c) stored then return m
               else return d(c)
Static Corruption: • recv (Corrupt) from adversary
```

Non-interactive formulation, Advantage: Nested encryption

identifying k_e with e does not work for JS

 $I: \{0,1\}^* \to \{0,1\}^* \text{ models leakage, e.g., } l_0: m \mapsto 0$

```
Key Generation: • recv KeyGen from decryptor, send KeyGen to adversary
                  • recv (e, d, k_e) from adv., store e, d, k_e
                  • send k_e to decryptor
                                                      no restrictions to e, d, k<sub>e</sub>
Encryption: \bullet recv (Enc, k', m) from encryptor
                                                      \Rightarrow quantification over all alg.
             • if k_e = k' and not corrupted then
                                                      ⇒ easier proofs/application
                  c := e(k_e, l(m))
                  if d(c) \neq I(m) then return error
                  else store (m, c), return c
               else
                  return c := e(k', m)
Decryption: • recv (Dec, c) from decryptor
             • if (m, c), (m', c) stored, m \neq m' then return error
               else if (m, c) stored then return m
               else return d(c)
```

Static Corruption: • recv (**Corrupt**) from adversary

• Non-interactive formulation, Advantage: Nested encryption

identifying k_e with e does not work for JS

 $I: \{0,1\}^* \rightarrow \{0,1\}^*$ models leakage, e.g., $l_0: m \mapsto 0$

Key Generation: • recv **KeyGen** from decryptor, send **KeyGen** to adversary

- recv (e, d, k_e) from adv., store e, d, k_e
- send k_e to decryptor

Encryption: \bullet recv (**Enc**, k', m) from encryptor

• if $k_e = k'$ and not corrupted then $c := e(k_e, l(m))$

if $d(c) \neq l(m)$ then return **error** else store (m, c), return c

else

return c := e(k', m)

no restrictions to e, d, k_e

- \Rightarrow quantification over all alg.
- ⇒ easier proofs/application

missing in other formulations

important for JS,

Decryption: • recv (**Dec**, c) from decryptor

• if (m, c), (m', c) stored, $m \neq m'$ then return **error** else if (m, c) stored then return m else return d(c)

Static Corruption: • recv (Corrupt) from adversary

• Non-interactive formulation, Advantage: Nested encryption

Realizing \mathcal{F}_{PKE} by Encryption Scheme

- $\Sigma = (\text{gen, enc, dec}) \text{public-key encryption scheme}$
- \mathcal{P}_{Σ} describes Σ as protocol in IITM model

Theorem

$$\Sigma$$
 is CCA-secure \Longrightarrow $\mathcal{P}_{\Sigma} \leq^{SS} \mathcal{F}_{PKE}(I)$

for all leakage I with |I(m)| = |m|

e.g. leakage $l_0: m \mapsto 0^{|m|}$

Joint State Realization for PKE

- Basic idea [Canetti and Herzog 2006]:
 - Encrypt $\langle sid, m \rangle$ instead of m
 - Upon decryption check if plaintext is of shape $\langle sid, m \rangle$ (else error)

Joint State Realization for PKE

- Basic idea [Canetti and Herzog 2006]:
 - Encrypt $\langle sid, m \rangle$ instead of m
 - Upon decryption check if plaintext is of shape $\langle sid, m \rangle$ (else error)

Joint State Theorem for PKE

$$\mathcal{P}_{\mathsf{PKE}}^{\mathsf{JS}} \parallel \mathcal{F}_{\mathsf{PKE}}(I') \leq^{\mathsf{SS}} ! \underline{\mathcal{F}_{\mathsf{PKE}}(I)}$$

where $I'(\langle sid, m \rangle) = \langle sid, I(m) \rangle$ (leakage of SID)

Joint State Realization for PKE

- Basic idea [Canetti and Herzog 2006]:
 - Encrypt $\langle sid, m \rangle$ instead of m
 - Upon decryption check if plaintext is of shape $\langle sid, m \rangle$ (else error)

Joint State Theorem for PKE

$$\mathcal{P}_{\mathsf{PKE}}^{\mathsf{JS}} \parallel \mathcal{F}_{\mathsf{PKE}}(I') \leq^{\mathsf{SS}} ! \underline{\mathcal{F}_{\mathsf{PKE}}(I)}$$

where $I'(\langle sid, m \rangle) = \langle sid, I(m) \rangle$ (leakage of SID)

- Proof employs leakage and decryption test
- Recall: Σ CCA-secure $\Rightarrow \mathcal{P}_{\Sigma} \leq^{SS} \mathcal{F}_{PKE}(l'_0)$

$$\implies \mathcal{P}_{\mathsf{PKE}}^{\mathsf{JS}} \parallel \mathcal{P}_{\Sigma} \leq^{\mathsf{SS}} ! \underline{\mathcal{F}_{\mathsf{PKE}}(I_0)}$$

More Results

Joint State Theorem for Replayable PKE

$$\mathcal{P}_{\mathsf{PKE}}^{\mathsf{JS}} | \mathcal{F}_{\mathsf{RPKE}}(I') \leq^{\mathsf{SS}} ! \underline{\mathcal{F}_{\mathsf{RPKE}}(I)}$$

where $I'(\langle \mathsf{sid}, m \rangle) = \langle \mathsf{sid}, I(m) \rangle$ (leakage of SID)

- $\mathcal{F}_{\mathsf{RPKE}}$ replayable PKE functionality (relaxation of $\mathcal{F}_{\mathsf{PKE}}$) (weakens non-malleability guarantee)
- Related to RCCA [Canetti, Krawczyk and Nielsen 2003]

More Results

Joint State Theorem for Replayable PKE

$$\mathcal{P}_{\mathsf{PKE}}^{\mathsf{JS}} \mid \mathcal{F}_{\mathsf{RPKE}}(I') \leq^{\mathsf{SS}} ! \underline{\mathcal{F}_{\mathsf{RPKE}}(I)}$$

where $I'(\langle sid, m \rangle) = \langle sid, I(m) \rangle$ (leakage of SID)

- $\mathcal{F}_{\mathsf{RPKE}}$ replayable PKE functionality (relaxation of $\mathcal{F}_{\mathsf{PKE}}$) (weakens non-malleability guarantee)
- Related to RCCA [Canetti, Krawczyk and Nielsen 2003]

Joint State Theorem for Digital Signatures

$$\mathcal{P}_{\mathsf{SIG}}^{\mathsf{JS}} \mid \mathcal{F}_{\mathsf{SIG}} \leq^{\mathsf{SS}} ! \underline{\mathcal{F}_{\mathsf{SIG}}}$$

ullet $\mathcal{F}_{\mathsf{SIG}}$ non-interactive signature functionality

Related Work

• [Pfitzmann, Waidner '01]:

Non-interactive parameterized \mathcal{F}_{PKE} and \mathcal{F}_{SIG} (JS not considered)

- ullet [Canetti, Rabin '03]: JS theorem for interactive $\mathcal{F}_{\mathsf{SIG}}$
- [CKN '03]: Interactive $\mathcal{F}_{\mathsf{RPKE}}$ (JS not considered)
- [Canetti '05]: Non-interactive \mathcal{F}_{PKE} and \mathcal{F}_{SIG} for JS point to [Canetti, Rabin '03]
 - de facto interactive $\mathcal{F}_{\mathsf{RPKE}}$
- [Canetti, Herzog '06]: Basic idea of \mathcal{P}_{PKE}^{JS} no proof, parameterized \mathcal{F}_{PKE}

Conclusion

JS realizations important for practical realizations

General JS theorem special case of comp. thm.
 in IITM model

- We presented JS realizations for non-interactive
 - PKE,
 - replayable PKE and
 - digital signature functionalities

Thank you for your attention!

Thank you for your attention!

Proof of JS Theorem for PKE:

Define simulator \mathcal{S} s.t. for all \mathcal{E} :

- ullet S obtains algorithms e, d and key k from \mathcal{E}
- S provides algorithms e_{sid} , d_{sid} and key k to $F_{PKE}[sid]$

$$e_{\text{sid}}(k, m) = e(k, \langle \text{sid}, m \rangle)$$

$$d_{\text{sid}}(c) = \begin{cases} m & \text{if } d(y) = \langle \text{sid}, x \rangle \\ \bot & \text{otherwise} \end{cases}$$

Proof of JS Theorem for PKE:

Define simulator \mathcal{S} s.t. for all \mathcal{E} :

- Main problem: Collisions in JS world
 - two plaintexts from different sessions encrypt to same ciphertext
 - can not occur by leakage and decryption test

$$dec(\underbrace{enc_k(I'(\langle sid, m \rangle))}) = I'(\langle sid, m \rangle) = \langle sid, I(m) \rangle$$
ciphertext c

ullet Proof holds for unbounded $\mathcal{E} \Rightarrow$ perfect indistinguishability