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IITM Model [Kiisters 2006]

e Users/Machines modeled by PPT-IITMs
— Inexhaustable ITM (IITM)
— |I'TMs connect via tapes

e Systemof ITMs S =M | (S||S)|IS

e Characteristics: — Asynchronous communication

— Model independent of security definition

— Simple and yet expressive

e Generic addressing method for multiple instances

ID version: M (id. x) accept if id is expected one
' X
- i (id, y) y M -

Note: ID can be SID or PID
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e [ransitive and reflexive

e Notion conceptual equiv. to blackbox simulatability
[Pfitzmann and Waidner 2001], UC [Canetti 2001]

e Corruption described in the formulation of F/P
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Composition Theorem

Composition Theorem [Kiisters 2006]
731 SSS .7'—1, 732 SSS .7:2 implies

PP <> Fi||F2 and 1P <P 1LF

e Connection between F;/P1 and F, /P> arbitrary

Corollary

P <> F  implies QP <> QJ IF

a N

e O uses multiple instances of F/P

M >0

™

e Corresponds to comp. thm. in UC model

Ay
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Motivating Joint State

Example: Protocol P that uses public key encryption (PKE)

e Replace use of PKE by calls to ideal functionality Fpke
— Simplifies security analysis
— Use composition theorem to obtain security of P

e Analyze only single instance (session) of P
— Security of multiple sessions ( IP) by composition theorem

P || Feke

cannot simply use one instance of Fpke In multiple sessions
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(General) Joint State Theorem — UC Model

Joint State Theorem in UC model [Canetti and Rabin 2003]

F ideal functionality
Q  protocol that uses multiple instances of F

AN AN

P realization of F =~ |JF — multi session version

Then QP realizes Q using multiple instances of F

e Good conceptual 1dea,
but technical subtleties and limitations of model:

— JUC operation (Q[ﬁ]) needs to be defined explicitely

— IF cannot be stated directly in UC model (]? s single ITM)

~ Fis only approximation of | F (exhaution of ITMs)

Difficult (sometimes impossible) to realize F
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(General) Joint State Theorem — [ITM Model

F ideal functionality
Q  protocol that connects to | F (multi session)

AN

P <> E
Then QP <99 Q| E

comp. thm.

e Proof: Q<55 Q, P<SSIF — Q || P <55 Q | \E
e No new composition operation (like Q1) needed

e Elegant and rigorous formulation
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e Joint State theorem itself does not yield practical realization
e P not necessarily better than I'P

e Solution: Find P’ such that P*||F <> IF
and PJ5 is “sufficiently simple”

e P> s called joint state realization for F

e Consequences: comp. thm.
— Reuse of realization: P <>> F — P»||P <> LE

— |lterative application:
by def.

QI NQE) 2> QI (QIPPIF) =9 'Q | 'P5 1E

JS + . thm.
come. >55 Q|1 1P | P
SECUre encryption JS + comp. thm. - N /

Jjoint state realization

channel




Application of JS Theorem to PKE
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e recv (e, d, ko) from adv., store e, d, ke
e send k. to decryptor

no restrictions to e, d, ke
= quantification over all alg.
= easier proofs/application

Encryption: e recv (Enc, k', m) from encryptor
e if k. = k" and not corrupted then
c = e(ke, I(m))
if d(c) # I(m) then return error

else store (m, ¢), return |
else ( | w important for JS,
return ¢ 1= e(k’, m) missing In other formulations
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o if (m, c),(m,c) stored, m# m’ then return error
else if (m, ¢) stored then return m
else return d(c)
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Realizing Fpkge by Encryption Scheme

e > = (gen, enc, dec) — public-key encryption scheme

e Ps describes > as protocol in [I TM model

> is CCA-secure =— Py <> Fpke(l)

for all leakage [ with |[(m)| = |m)|

e.g. leakage lo: m s 0l
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Joint State Realization for PKE

e Basic idea [Canetti and Herzog 2006]:
— Encrypt (sid, m) instead of m

— Upon decryption check if plaintext is of shape (sid, m)
(else error)

Joint State Theorem for PKE

Pere | Fexe(l) <> 1 Fpke(/)

where ['({sid, m)) = (sid, /(m)) (leakage of SID)

e Proof employs leakage and decryption test

e Recall: ¥ CCA-secure = Py <>° Feke ()

— Paxe | P <>° ' Fpkelh)
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More Results

Joint State Theorem for Replayable PKE

Poxe | Frexe(l") <> 1Frpie(/)

where ['({sid, m)) = (sid, /(m)) (leakage of SID)

e Frpke replayable PKE functionality (relaxation of Fpkeg)
(weakens non-malleability guarantee)

e Related to RCCA [Canetti, Krawczyk and Nielsen 2003]

Joint State Theorem for Digital Signatures

P& | Foic <> \Faig

e Fsic non-interactive signature functionality



Related Work

e [Pfitzmann, Waidner ’01]:
Non-interactive parameterized Fpke and Fgig
(JS not considered)

e [Canetti, Rabin '03]: JS theorem for interactive Fsg
e [CKN '03]: Interactive Frpke (JS not considered)

e [Canetti '05]: — Non-interactive Fpkg and Fsig
for JS point to [Canetti, Rabin '03]

— de facto interactive FrpkEe

e [Canetti, Herzog '06]: Basic idea of Payc
no proof, parameterized Fpke



Conclusion

e JS realizations important for practical realizations

e General JS theorem special case of comp. thm.
in II'TM model

e \We presented JS realizations for non-interactive
— PKE,
— replayable PKE and
— digital signature functionalities
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Proof of JS Theorem for PKE:

Define simulator § s.t. for all &:

& &
P PR = |1
‘ S Feke(/)
sid; v FRE U
Fere(l') sidp| 0= )

Sid3

e § obtains algorithms e, d and key k from £

e S provides algorithms eiq, dsig and key k to Fpke[sid]
eid(k, m) = e(k, (sid, m})
do() — {m it d(y) = (sid, x)

1 otherwise



Proof of JS Theorem for PKE:

Define simulator & s.t. for all &:

& &
PR PR = |
‘ S Feke(/)
sid; v FRE U
Fere(l') sidp| 0= )
Sid3

e Main problem: Collisions in JS world
— two plaintexts from different sessions encrypt to same ciphertext

— can not occur by leakage and decryption test
dec(enck(/'({sid, m)))) = I'({sid, m)) = (sid, I(m))

] h'd
ciphertext ¢

e Proof holds for unbounded £ = perfect indistinguishability



