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Abstract

In order to obtain implementations of security protocols proved se-
cure in the computational model, we previously proposed the following
approach: we write a specification of the protocol in the input language
of the computational protocol verifier CryptoVerif, prove it secure us-
ing CryptoVerif, then generate an OCaml implementation of the protocol
from the CryptoVerif specification using a specific compiler that we have
implemented. However, until now, this compiler was not proved correct,
so we did not have real guarantees on the generated implementation. In
this paper, we fill this gap. We prove that this compiler preserves the
security properties proved by CryptoVerif: if an adversary has probabil-
ity p of breaking a security property in the generated code, then there
exists an adversary that breaks the property with the same probability p
in the CryptoVerif specification. Therefore, if the protocol specification
is proved secure in the computational model by CryptoVerif, then the
generated implementation is also secure.

Keywords: cryptographic protocol, computational model, implementation,
compiler, CryptoVerif, OCaml, verification

1 Introduction
The verification of security protocols is an important research area since the
1990s: the design of security protocols is notoriously error-prone, and errors
can have serious consequences. Formal verification first focused on verifying
formal specifications of protocols. However, verifying a specification does not
guarantee that the protocol is correctly implemented from this specification.

∗This paper is an extended version of the work originally presented at the 2nd Conference
on Principles of Security and Trust (POST 2013), Rome, Italy, March 2013 [10].
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It is therefore important to make sure that the implementation is secure, and
not only the specification. Moreover, two models were considered for verifying
protocols. In the symbolic model, the so-called Dolev-Yao model, messages are
terms. This abstract model facilitates automatic proofs. In contrast, in the
computational model, typically used by cryptographers, messages are bitstrings
and attackers are polynomial-time probabilistic Turing machines. Proofs in the
latter model are more difficult than in the former, but yield a much more precise
analysis of the protocol. Therefore, we would like to obtain implementations of
protocols proved secure in the computational model.

To reach this goal, we proposed the following approach in [9]. We start
from a formal specification of the protocol. In order to prove the specified
protocol secure in the computational model, we rely on the automatic protocol
verifier CryptoVerif [6, 8, 7]. This verifier can prove secrecy and authentication
properties. The generated proofs are proofs by sequences of games, like the
manual proofs written by cryptographers. These games are formalized in a
probabilistic process calculus. The specification of the protocol given as input
to CryptoVerif then consists of a process representing the protocol to prove (the
initial game of the proof), assumptions on the cryptographic primitives (such
as “encryption is IND-CPA” and “decrypting a ciphertext with the correct key
yields the initial cleartext”), and the security properties to prove. CryptoVerif
then looks for a proof of the desired security properties, and when it finds one,
it also provides a formula that bounds the probability of success of an attack
against the desired properties as a function of the runtime of the adversary,
the number of sessions of the protocol, and the probability of breaking each
primitive.

In order to obtain a proved implementation from the specification, we have
written a compiler that takes a CryptoVerif specification and returns an imple-
mentation in the functional language OCaml (http://caml.inria.fr). This
compiler starts from a CryptoVerif specification annotated with implementation
details. The annotations specify how to divide the protocol in different roles, for
example, key generation, server, and client, and how to implement the various
cryptographic primitives and types. They also specify which CryptoVerif vari-
ables should be written into files, because they are communicated from one role
to another. For instance, the key generation typically writes long-term keys into
files, so that they can be used by subsequent roles. The compiler then generates
an OCaml module for each role in the input file. In order to get a full imple-
mentation of the protocol, this module is combined with manually written code,
responsible in particular for sending and receiving messages from the network,
which we call the network code. For instance, in the case of the client-server
protocol, both the client and server programs consist of a mix of our generated
modules, which deal with the heart of the cryptographic protocol, and manually
written network code, which deals with non-cryptographic details.

To make sure that the generated implementation is actually secure, we need
to prove the correctness of our compiler. This proof was still missing in [9].
It is the topic of this paper. To make this proof, we need a formal semantics
of OCaml. We adapt the operational small-step semantics of a core part of
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OCaml by Owens et al. [17, 18]. We add to this language support for simplified
modules, multiple threads where only one thread can run at any given time,
and communication between threads by a shared part of the store.

An adversary against the generated implementation is an OCaml program
using the modules generated by our compiler. On the CryptoVerif side, an ad-
versary is a process running in parallel with the verified protocol. In our proof,
for each OCaml adversary, we construct a corresponding CryptoVerif adversary
that simulates the behavior of the OCaml adversary. When the OCaml adver-
sary calls one of the functions generated by our compiler, which comes from an
oracle in the CryptoVerif process, the CryptoVerif adversary calls this oracle.
Then we establish a precise correspondence between the traces of the Cryp-
toVerif process with that CryptoVerif adversary and the traces of the OCaml
program. This correspondence allows us to show that the probability of success
of an attack is the same on the CryptoVerif side and on the OCaml side. There-
fore, if CryptoVerif proves that the protocol is secure, then the generated OCaml
implementation is also secure, and the bound on the probability of success of
an attack computed by CryptoVerif is also valid for the implementation.

We have made several assumptions to obtain this proof; the most important
ones are:

A1. The random number generator used by the OCaml cryptographic library
is perfect.

A2. The implementation of each cryptographic primitive is a pure function
and satisfies the assumptions made on it in the specification.

A3. The roles are executed in the order specified in CryptoVerif (e.g., in a
key-exchange protocol, the key generation is called before the servers and
clients).

A4. The adversary and the network code do not access files created by our
implementation (e.g. private key files).

A5. The network code is a well-typed OCaml program, which does not use
unsafe OCaml functions to bypass the type system.

A6. The network code does not mutate data passed to or received from gener-
ated code. This property can be guaranteed by representing such data by
immutable OCaml types. However, such data includes bitstrings and the
most natural type for representing bitstrings is the OCaml type string,
which is mutable1. Immutable strings can be implemented in OCaml us-
ing an abstract type instead of string. In our semantics, strings are
immutable values.

A7. Our semantics of threads is obeyed, which implies that only one thread
can run at any given time and that one cannot fork in the middle of a
role.

1From version 4.02, OCaml has a command-line option that makes string immutable.
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Because the network code and our generated modules run inside the same pro-
grams, we use Assumptions A5 and A6 to make sure that the network code does
not interfere with the generated code. In particular, Assumption A5 prevents
the network code from accessing the variables contained in the environment of
functions returned by our generated code. These variables may contain secret
keys, which the network code could send to the adversary if it had access to
them. Moreover, our generated code may return both a public key and a func-
tion that includes this public key in its environment. If the network code could
modify the returned public key, it would modify the key used by the function
as well, so the protocol would use an unexpected public key. Assumption A6
avoids that. Assumptions A5 and A6 are the only requirements on the network
code needed to prove security so, except for these two assumptions, we consider
the network code as part of the adversary. In Assumption A7, the requirement
that only one thread can run at any given time can be weakened as we discuss
informally at the end of Section 5.2.5: the essential requirement is that two
processes that read or write the same file are not run concurrently, which can
be enforced using locks. Assumption A7 also limits forking: forking is allowed
when the local store is empty. In case one needs to fork in the middle of a role,
one can split the role into two, which has the effect of transmitting the store via
files between the two roles. It may also be possible to extend our result with an
explicit fork instruction in the OCaml language.

Assumptions A1, A5, and A7 are built into our semantics of OCaml, defined
in Section 5. Assumption A2 is formalized below by Assumption 8.4, with addi-
tional technical details formalized in Assumptions 8.1 and 8.2. Assumptions A3,
A4, and A6 are formalized by Assumptions 6.1, 7.2, and 8.3, respectively.

In this work, we do not consider side-channel attacks, such as timing and
power consumption attacks, nor physical attacks. Like other mechanized tools
for cryptographic proofs, CryptoVerif does not deal with these attacks.

Related work. Several approaches have been considered in order to obtain
proved implementations of security protocols. In the symbolic model, several ap-
proaches generate protocols from specifications, e.g. [16, 19]. Other approaches
analyze implementations by extracting a specification verified by a symbolic pro-
tocol verifier, e.g. [5, 1], or analyze them by other tools such as the model-checker
ASPIER [11], the general-purpose C verifier VCC [13], symbolic execution [12],
or typing [4, 20].

In contrast, the following approaches provide computational security guar-
antees, by analyzing implementations. The tool FS2CV [15] translates a subset
of F# to the input language of CryptoVerif, which can then prove the pro-
tocol secure. The tool F7 [4], which uses a dependent type system to prove
security properties on protocols implemented in F#, has been adapted to the
computational model in [14]; it uses type annotations to help the proof. The
symbolic execution approach of [1] provides computational security guarantees
by applying a computational soundness result, which however restricts the class
of protocols that can be considered. The tool of [2] generates a CryptoVerif
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model from a C implementation; however, it can analyze only a single execution
path.

Recently, Almeida et al [3] introduced a new approach for generating imple-
mentations with a computational proof. They extend the cryptographic prover
EasyCrypt to support C-like programs, then they generate proved assembly
code using an extended version of the CompCert certified C compiler. They
mainly target cryptographic primitives (for instance, OAEP), and using Easy-
Crypt requires the user to give the games of the cryptographic proof, while in
our approach CryptoVerif generates them.

To the best of our knowledge, our approach and that of [3] are the only
ones for generating implementations with a computational proof. [2], [3], and
our work are the only ones to provide an explicit bound on the probability of
success of an attack against the verified protocol implementation.

2 Intuitive Overview
In order to prove the correctness of a compiler, we first need a formal semantics
of the source and target languages, and a formal definition of the compiler.
Handling all this formalism is probably the main challenge of this paper; it
explains its length.

After introducing some notations (Section 3), our first task is to formally de-
fine the common input language of CryptoVerif and of our compiler (Section 4).
We define the semantics of this language as a probabilistic transition system
on semantic configurations. CryptoVerif uses events to define security proper-
ties. For instance, a security property may be “if event Baccepts(m′) has been
executed, then event Asends(m′) has also been executed”. For each security
property, we define a distinguisher D that is true when the executed sequence
of events breaks the security property. We denote by Pr[Ci(Q0 | Qadv) :

(CV) D]
the probability that the security property associated to D is broken starting
from the initial configuration Ci(Q0 | Qadv), which runs the protocol Q0 in par-
allel with the adversary Qadv. In other words, Pr[Ci(Q0 | Qadv) :(CV) D] is the
probability that the adversary Qadv breaks the desired security property of the
protocol Q0. When it proves the security property, CryptoVerif provides a for-
mula that bounds this probability for any adversary Qadv, as a function of the
runtime of the adversary, the execution time of the cryptographic primitives and
of various CryptoVerif constructs, the number of calls to each oracle, the prob-
ability of collisions between random numbers, and the probability of breaking
each primitive.

Section 5 defines the OCaml language. We rely on the operational small-
step semantics of a core part of OCaml by Owens et al. [17, 18], which we
adapt to our setting. We add a primitive for random choices, which makes the
semantics probabilistic. We also add support for simplified modules, multiple
threads, and communication between threads by a shared part of the store. We
adopt a simplified model of parallelism: only one thread runs at a time, and
the adversary is in charge of scheduling. This model of parallelism is close to
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what happens in CryptoVerif; we explain informally why it is sufficient for our
purpose in Section 5. Like the semantics of the CryptoVerif input language, the
semantics of OCaml is defined as a probabilistic transition system on semantic
configurations.

In order to prove our compiler, we instrument OCaml code in three ways
(Section 6). We add events to the language, so that we can specify security
properties in OCaml as we do in CryptoVerif. We introduce tagged functions
and closures, which have the same semantics as ordinary functions and closures,
but contain additional tags used in our code generation to indicate from which
role or oracle the function comes. Each CryptoVerif role is translated by our
compiler into an OCaml module; we add to the OCaml semantics a multiset of
callable modules, which indicates which modules can be called to guarantee that
only allowed roles are executed, as required by Assumption A3. We show that
this instrumentation does not alter the semantics of OCaml: an instrumented
program behaves exactly in the same way as that program with the instrumen-
tation deleted, provided only allowed roles are executed. More precisely, we
show a weak bisimulation between the non-instrumented and the instrumented
semantics.

Section 7 defines the translation from CryptoVerif to OCaml. In this transla-
tion, each role generates a module, and the oracles are represented by closures.
Basically, the translation implements in OCaml the semantics of CryptoVerif
given in Section 4. The translation is the same as the one given [9], except that
the generated OCaml code is instrumented. The generated modules are com-
bined with manually written network code (which is in particular responsible
for inputting and outputting messages on the network) to produce the complete
programs that implement the protocol. These programs are run in interaction
with an adversary, which we also represent by an OCaml program. This is
possible because OCaml with random choices is probabilistic Turing complete.
The code generated from the CryptoVerif process Q0, the network code, and the
adversary are all grouped into the OCaml program program0, and we denote
by C0(Q0, program0) the initial (instrumented) OCaml semantic configuration
that runs program0. The probability Pr[C0(Q0, program0) :

(ML) D] denotes the
probability that the OCaml adversary defined in program0 breaks the security
property associated to the distinguisher D of the protocol Q0.

Section 8 proves the correctness of this compiler. Informally, when Cryp-
toVerif shows that Q0 satisfies a certain security property, it shows that for
any CryptoVerif adversary Qadv, the probability Pr[Ci(Q0 | Qadv) :(CV) D] is
bounded by a certain bound. Our goal is to show that the same probability
bound also applies to the generated implementation, that is, the probability
Pr[C0(Q0, program0) :(ML) D] that program0 breaks the security property is
bounded by the same bound for any program0.

The presence of an arbitrary adversary complicates the proof. As illustrated
in Figure 1 and detailed in Section 8.3, to solve this problem, we build from
the OCaml adversary defined in program0 a CryptoVerif adversary Qadv(Q0,
program0) that simulates program0. Basically, we run the OCaml program
program0 inside a CryptoVerif function simulateML. Since these functions can
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Figure 1: Overview of our proof

represent deterministic Turing machines, when program0 needs to generate a
random number, the function simulateML returns and this generation is per-
formed by CryptoVerif. Similarly, when program0 would call the generated
implementation of an oracle, the function simulateML returns and Qadv(Q0,
program0) calls the corresponding CryptoVerif oracle in Q0.

The initial CryptoVerif configuration is then C0(Q0, program0) = Ci(Q0 |
Qadv(Q0, program0)). We prove that, for all protocols Q0, OCaml adversaries
defined in program0, and distinguishers D, we have

Pr[C0(Q0, program0) :
(CV) D] = Pr[C0(Q0, program0) :

(ML) D] . (1)

From this property, it is easy to see that, if CryptoVerif bounds the proba-
bility Pr[Ci(Q0 | Qadv) :(CV) D] for any adversary Qadv for Q0, then the same
bound also holds for the probability Pr[C0(Q0, program0) :

(ML) D] correspond-
ing to the generated implementation. Indeed, Pr[C0(Q0, program0) :

(ML) D] =
Pr[C0(Q0, program0) :(CV) D] = Pr[Ci(Q0 | Qadv(Q0, program0)) :(CV) D] and
Qadv(Q0, program0) is an adversary for Q0.

To prove (1), we basically need to show that Q0 | Qadv(Q0, program0) and
program0 using the code generated from Q0 behave similarly. This proof pro-
ceeds in several steps:

• First, we state our assumptions on the implementation of the crypto-
graphic primitives, and show that the primitives behave correctly inde-
pendently of the rest of the program (Section 8.1).

• Second, we prove that the OCaml translation of a CryptoVerif oracle be-
haves like the oracle (Section 8.2).

• Finally, in Section 8.4, we prove that the CryptoVerif adversary inter-
acting with Q0 behaves like the OCaml adversary interacting with the
generated implementation. This proof is done by establishing a precise
relation between the CryptoVerif and OCaml semantic configurations.

Therefore, we obtain the desired proof of (1) (Theorem 8.38). Because of the
length of this proof, details are postponed to the appendix. An index of nota-
tions can be found in Appendix H.
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3 Notations
Let us introduce some basic notations. When f is a function, we denote by
Dom(f) the domain of f , that is, the set of elements x such that f(x) is defined.
We denote by f [x 7→ y] the function f ′ defined by f ′(x) = y and f ′(x′) = f(x′)
for x′ 6= x. When f1 and f2 are functions with disjoint domains, we denote by
f1∪f2 the function f ′ defined by f ′(x) = f1(x) if x ∈ Dom(f1) and f ′(x) = f2(x)
if x ∈ Dom(f2). When f1 and f2 are functions, we write f1 ⊆ f2 (or f2 ⊇ f1)
when Dom(f1) ⊆ Dom(f2) and, for all x ∈ Dom(f1), we have f2(x) = f1(x).
We denote by ∅ any function whose domain is the empty set ∅.

We use the following notations for lists. Let [ ] be the empty list, and x :: l
be the list obtained by adding the element x to the list l. Let [x1; . . . ;xk] be the
list x1 :: . . . :: xk :: [ ]. Let [x ∈ l | Prop(x)] be the list containing all elements x
of l that satisfy the property Prop(x), in the same order as in l. This construct
is defined by induction on lists:

[x ∈ [ ] | Prop(x)]
def
= [ ] ,

[x ∈ y :: l | Prop(x)]
def
=

{
[x ∈ l | Prop(x)] if ¬Prop(y) ,
y :: [x ∈ l | Prop(x)] otherwise .

The concatenation of lists l1 @ l2 is the list containing all elements of l1 followed
by all elements of l2. The membership test x ∈ l is true when l contains the
element x, and false otherwise. Let |l| be the length of the list l, and nth(l, n)
be the nth element of list l.

We define the function almostunif (A, b) as the probability that the element
b ∈ A is chosen among elements of the set A, according to an almost uni-
form distribution: we require that, for every set A,

∑
b∈A almostunif (A, b) = 1,

almostunif (A, b) > 0 for all b ∈ A, and
∑
b∈A

∣∣∣almostunif (A, b)− 1
|A|

∣∣∣ ≤ ε for
some ε > 0. Indeed, probabilistic Turing machines can choose random elements
uniformly only in sets of cardinal a power of 2. For other sets, they can choose
random elements with a probability distribution as close as we wish to uniform,
that is, we can make ε as small as we wish in the formula above.

Fonts. We use a sans-serif font for CryptoVerif keywords (e.g., foreach) and
role names (e.g., keygen), a roman font for CryptoVerif function, constant, event,
and oracle symbols, and an italic font for CryptoVerif types, variables, and file
names. We use a bold font for OCaml keywords (e.g., match) and constructors
(e.g., Callable), and an italic font for OCaml types and other identifiers. We
use uppercase italic letters (e.g., E, P ) and a calligraphic font (e.g. C) for
CryptoVerif semantic elements, while we use lowercase italic words (e.g., env)
and a blackboard font (e.g., C) for OCaml semantic elements. We use an italic
font for most other mathematical symbols, and a sans-serif font for constant
elements.
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M ::= terms
x[̃i] variable access
f(M1, . . . ,Mm) function application

Q ::= oracle definitions
0 nil
Q | Q′ parallel composition
foreach i ≤ N do Q replication N times
O[̃i](x1 [̃i] : T1, . . . , xk [̃i] : Tk) := P oracle definition

P ::= oracle bodies
return(M1, . . . ,Mk);Q return
end end
x[̃i]

R← T ;P random number
x[̃i]←M ;P assignment
if M then P else P ′ conditional
insert Tbl(M1, . . . ,Mk);P insert in table
get Tbl(x1 [̃i], . . . , xk [̃i]) suchthat M in P else P ′

get from table
event ev(M1, . . . ,Mk);P event
let (x1 [̃i] : T1, . . . , xk′ [̃i] : Tk′) = O[M1, . . . ,Ml](M

′
1, . . . ,M

′
k) in P else P ′

oracle call
let x[̃i] : T = loop O[M1, . . . ,Ml](M

′) in P else P ′

loop

Figure 2: Syntax of the CryptoVerif language

4 The CryptoVerif Input Language
This section presents the syntax and semantics of the CryptoVerif input lan-
guage, as well as the annotations that specify implementation details. Cryp-
toVerif supports two input languages: the channel and oracle front-ends. The
channel front-end [6] uses channels to pass data between the adversary and the
protocol, and the oracle front-end [8] defines oracles that can be called by the
adversary. In this paper, we focus on the oracle front-end, which is closer to
the syntax of games used by cryptographers; oracles are also easier to translate
into OCaml functions. (Our compiler also supports the channel front-end.) We
adapt the semantics given in [6] for the channel front-end to the oracle front-end.

4.1 Syntax and Informal Semantics
Let us first introduce the syntax of the CryptoVerif language in Figure 2. The
language is typed, and types T are subsets of bitstring⊥

def
= bitstring∪{⊥} where

bitstring is the set of all bitstrings and ⊥ is a symbol that is not a bitstring,
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used, for example, to represent the failure of a decryption. The boolean type
bool

def
= {true, false}, where true is the bitstring 1 and false 0, and the types

bitstring and bitstring⊥ are predefined.
Variables x[i1, . . . , im] are arrays of bitstrings of a given type T . As for-

malized by Property 4.3 below, each variable x[i1, . . . , im] has a single defini-
tion and the indices i1, . . . , im are the indices of the replications foreach im ≤
Nm do . . . foreach i1 ≤ N1 do Q present above the definition of x: each repli-
cation foreach i ≤ N do Q creates N copies of the process Q, in which i is
set to 1, . . . , N respectively. Then the indices i1, . . . , im have different values
in different executions of the definition of x, so that each cell of the array x
is assigned at most once. Therefore, arrays allow us to remember all values of
the variables during the execution of the process. We call the indices i1, . . . , im
replication indices, and we abbreviate i1, . . . , im by ĩ. The indices i1, . . . , im
are ordered from the inner-most to the outer-most replication. Since the in-
dices of x are entirely determined by the replications above the definition of x,
we often omit them to lighten notations. Each function f comes with its type
T1 × · · · × Tm → T ; all CryptoVerif functions are deterministic and efficiently
computable. Some functions are predefined, and some are infix, like the equal-
ity test = and boolean operations. The cryptographic primitives used in the
protocol are represented by CryptoVerif functions. Terms M represent compu-
tations over bitstrings: they can be variable accesses x[i1, . . . , im] or function
applications f(M1, . . . ,Mm).

The oracle definitions Q represent the oracles that will become available to
the adversary at this point. The nil construct 0 provides no oracle. The parallel
composition Q | Q′ provides oracles in Q and Q′. The replication foreach i ≤
N do Q provides N copies of Q, indexed by i ∈ {1, . . . , N}. The bound N is
unspecified and is used by CryptoVerif to express the maximum probability of
breaking the protocol, which typically depends on the number of calls to the
various oracles. The oracle definition O[̃i](x1 [̃i] : T1, . . . , xk [̃i] : Tk) := P makes
available the oracle O[̃i]; when O[̃i] is called by the adversary with arguments
a1, . . . , ak, it executes the oracle body P with xj [̃i] set to aj .

The oracle bodies P represent the behavior of the oracle. A return statement
return(M1, . . . ,Mk);Q returns the result ofM1, . . . ,Mk to the caller, and makes
available oracles in Q. An end statement end returns to the caller with an error.
A random number assignment x[̃i] R← T ;P stores a uniformly chosen random
value of type T in variable x[̃i], and continues by executing P . The type T must
consist of all bitstrings of a given size; in this case, we say that T is a fixed-length
type. An assignment x[̃i]←M ;P puts the result of M in the variable x[̃i], and
continues by executing P . A conditional statement if M then P else P ′ executes
P if M evaluates to true and P ′ otherwise.

An insert statement insert Tbl(M1, . . . ,Mk);P inserts the result of M1, . . . ,
Mk into the table Tbl . Tables are lists of tuples, used for example to store
tables of keys. Each table Tbl has a type T1 × · · · × Tk, which means that
Tbl contains k-tuples a1, . . . , ak such that aj is of type Tj for all j ≤ k. A
get statement get Tbl(x1 [̃i], . . . , xk [̃i]) suchthat M in P else P ′ searches for an
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element a1, . . . , ak in the table Tbl such that the term M evaluates to true
when x1 [̃i] = a1, . . . , xk [̃i] = ak. If there is no such element, we continue by
executing P ′, and otherwise we choose almost-uniformly one of the elements
that correspond, store it in the variables x1 [̃i], . . . , xk [̃i], then execute P . An
event statement event ev(M1, . . . ,Mk);P is used to log events. Events serve for
specifying security properties of protocols, but do not change the execution of
the process.

An oracle call let (x1 [̃i] : T1, . . . , xk′ [̃i] : Tk′) = O[M1, . . . ,Ml](M
′
1, . . . ,M

′
k)

in P else P ′ calls oracle O[M1, . . . ,Ml] with arguments M ′1, . . . ,M ′k, stores its
returned values in the variables x1 [̃i], . . . , xk′ [̃i], and continues by executing P
if the oracle terminates with a return statement, or continues by executing P ′ if
the oracle terminates with end.

A loop let x[̃i] : T = loop O[M1, . . . ,Ml](M
′) in P else P ′ calls oracle O in

a loop. Oracle O takes a unique argument (the internal state of the loop) and
returns a pair containing the modified internal state of the loop and a boolean b
indicating whether the loop should continue or not. For clarity, we use continue
as a synonym for true and stop for false in this context. O[M1, . . . ,Ml](M

′) is
first called. If it returns (a1, continue), O[M1 + 1,M2, . . . ,Ml](a1) is called. If
it returns (a2, continue), O[M1 + 2,M2, . . . ,Ml](a2) is called, and so on, until
O[M1 + k,M2, . . . ,Ml](ak) returns (ak+1, stop). Then we run P with x[̃i] set
to ak+1. If O terminates with end, we run P ′. Oracle call and loop statements
cannot appear in the CryptoVerif process representing the protocol, but are
used for representing the adversary. Some protocols use loops or recursion, for
instance for certificate checking; such protocols could in principle be encoded
in our language by using replicated processes and transmitting internal state
from one iteration to the next using a table or an encrypted message. However,
this idea leads to contrived encodings and a native loop construct would be
more convenient. Including loops in protocols would not cause major problems
for generating implementations, but would considerably complicate the prover
CryptoVerif itself, since it would have to discover loop invariants. That is why
we leave the inclusion of loops in protocols for future work.

Example 4.1 Let us consider a simple protocol in which the first participant
Alice generates a nonce m, sends it to the second participant Bob with a sig-
nature of the nonce under Alice’s signature key sk . Bob then verifies that the
signature is correct using Alice’s public key pk . This protocol can be described
by the following CryptoVerif process:

Okeygen() :=

rk
R← keyseed ; pk ← pkgen(rk); sk ← skgen(rk);

return(pk); (foreach i1 ≤ N1 do PA | foreach i2 ≤ N2 do PB)

PA
def
= OA() :=

m
R← nonce; s

R← seed ; event Asends(m); return(m, sign(m, sk , s))
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PB
def
= OB(m′ : nonce, s′ : signature) :=

if check(m′, pk , s′) then (event Baccepts(m′); return()) else end

The only callable oracle at the beginning is the oracle Okeygen, which generates
the signature key pair (pk , sk) by first generating a random seed rk and applying
the key generation algorithms pkgen and skgen to it. We return to the attacker
the public key, so that the attacker can check whether a signature signed with
the signature key sk is correct. When the oracle Okeygen returns, one can call
the oracle OA N1 times, and the oracle OB N2 times.

The oracle OA generates a random nonce m and a random seed s. Then, it
executes the event Asends(m). This event just records that A sends the nonce
m, without changing the execution of the process; we use it below to specify
a security property. Finally, OA returns the nonce m and the signature of the
nonce m under the signature key sk with the random seed s.

The oracle OB takes as arguments a nonce m′ and a signature s′, which
should be the elements returned by a call to oracle OA, and checks using the
function check whether the signature s′ is indeed a correct signature of the
message m′ under the signature key sk by using the public key pk . If the
signature is correct, the oracle executes the event Baccepts(m′) and returns
normally. Otherwise, the oracle terminates with end.

The goal of this protocol is to guarantee that, with high probability, if B
accepts a noncem′, then A sent this noncem′, that is, if event Baccepts(m′) has
been executed, then event Asends(m′) has also been executed. This property is
proved by CryptoVerif when signatures are unforgeable under chosen-message
attacks (UF-CMA), as detailed in Example 4.9 below.

Example 4.2 The previous toy example is not very realistic, in particular be-
cause B accepts messages only from A. In a more realistic setting, B could be
a server that would process messages coming from several different clients. B
would then use a table of keys to relate the identity of each client to its public
key. We would then use the following process:

Okeygen() :=

rk
R← keyseed ; pk ← pkgen(rk); sk ← skgen(rk);

insert KeyTbl(A, pk); return(pk);

(foreach i1 ≤ N1 do PA | foreach i2 ≤ N2 do PB | foreach i3 ≤ N3 do PR)

PA
def
= OA() :=

m
R← nonce; s

R← seed ; event Asends(m); return(A,m, sign(m, sk , s))

PB
def
= OB(h′ : host ,m′ : nonce, s′ : signature) :=

get KeyTbl(h, pkh) suchthat h′ = h in

if check(m′, pkh, s′) then (event Baccepts(h′,m′); return()) else end

PR
def
= OR(h : host , pkh : pkey) :=

if h 6= A then insert KeyTbl(h, pkh)
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When A’s key pair is created, the pair (A, pk) is added to the key table KeyTbl ,
to record that pk is the public key of A. The additional oracle OR allows the
adversary to record its own public keys in the key table for any host name other
than the honest host A. Hence, the model allows B to interact both with the
honest participant A and with any other dishonest participants. The message
sent by A additionally contains the host name A, and B uses the host name
h′ to get the corresponding key pkh, which he uses to verify the signature.
The event Baccepts also contains h′ as additional argument: it means that B
accepts the message m′ coming from h′. The desired security property is that,
with high probability, if B accepts the message m′ coming from A, then A sent
the message m′, that is, if event Baccepts(A,m′) has been executed, then event
Asends(m′) has also been executed.

Tables of keys appear in many realistic protocols. For instance, the SSH
client stores a table that contains the public keys and the names of the servers
it connected to.

4.2 Formal Semantics
We present the semantics of the language in Figures 3 and 4. The semantics is
defined as a reduction relation on semantic configurations, which are tuples of
the form C = E,P, T ,Q,S, E .

• The environment E is a mapping from array cells x[ã] to their contents,
where x is a variable, ã gives the value of its replication indices, and the
contents of x[ã] is a bitstring value. The environment keeps every binding
ever bound, thanks to replication indices, so it is ever increasing.

• The oracle body P is the oracle body currently running.

• The mapping T maps table names to their contents, which is the list of
elements inserted in the table.

• The set Q contains the set of the callable oracle definitions.

• The list S is the call stack, which consists of triplets containing the vari-
ables with which the result should be bound and two oracle bodies, the
first will be executed if the oracle returns a result with a return state-
ment, and the second will be executed if the oracle terminates with an end
statement.

• The list E is the list of events ev(a1, . . . , ak) executed so far, by the con-
struct event ev(M1, . . . ,Mk).

During execution, terms may be reduced into constant bitstrings, so we add
constant bitstrings a to the grammar of terms M . The notation E · M ⇓ a
means that the term M evaluates to the bitstring a under the environment E.
This relation is defined by rules (Cst), (Var), and (Fun) in Figure 3.
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Terms:

E · a ⇓ a (Cst)

x[a1, . . . , am] ∈ Dom(E)

E · x[a1, . . . , am] ⇓ E(x[a1, . . . , am])
(Var)

∀j ≤ m,E ·Mj ⇓ aj f : T1 × · · · × Tm → T
∀j ≤ m, aj ∈ Tj

E · f(M1, . . . ,Mm) ⇓ f(a1, . . . , am)
(Fun)

Oracle bodies (1):

T fixed-length type a ∈ T

E, x[ã′]
R← T ;P, T ,Q,S, E → 1

|T |
E[x[ã′] 7→ a], P, T ,Q,S, E

(New)

E ·M ⇓ a
E, x[ã′]←M ;P, T ,Q,S, E →1 E[x[ã′] 7→ a], P, T ,Q,S, E

(Let)

E ·M ⇓ true

E, if M then P elseP ′, T ,Q,S, E →1 E,P, T ,Q,S, E
(If1)

E ·M ⇓ false

E, if M then P elseP ′, T ,Q,S, E →1 E,P ′, T ,Q,S, E
(If2)

∀j ≤ k,E ·Mj ⇓ aj
E, insert Tbl(M1, . . . ,Mk);P, T ,Q,S, E →1

E,P, T [Tbl 7→ (a1, . . . , ak) :: T (Tbl)],Q,S, E

(Insert)

l = [(a1, . . . , ak) ∈ T (Tbl) | E[x1[ã′] 7→ a1, . . . , xk[ã′] 7→ ak] ·M ⇓ true]
(a01, . . . , a

0
k) ∈ l

S = {1 ≤ j ≤ |l| | nth(l, j) = (a01, . . . , a
0
k)}

E, get Tbl(x1[ã′], . . . , xk[ã′]) suchthat M in P else P ′, T ,Q,S, E
→∑

j∈S almostunif ({1,...,|l|},j)

E[x1[ã′] 7→ a01, . . . , xk[ã
′] 7→ a0k], P, T ,Q,S, E

(Get1)

[(a1, . . . , ak) ∈ T (Tbl) | E[x1[ã′] 7→ a1, . . . , xk[ã′] 7→ ak] ·M ⇓ true] = [ ]

E, get Tbl(x1[ã′], . . . , xk[ã′]) suchthat M in P else P ′, T ,Q,S, E →1

E,P ′, T ,Q,S, E
(Get2)

Figure 3: Semantics (1)
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Oracle bodies (2):

∀i ≤ l, E ·Mi ⇓ a′i ã′ = a′1, . . . , a
′
l ∀j ≤ k,E ·Nj ⇓ bj

∃x′1, . . . , x′k, P ′′ such that
Q0 = (O[ã′](x′1[ã

′] : T ′1, . . . , x
′
k[ã
′] : T ′k) := P ′′) ∈ Q

E′ = E[x′1[ã
′] 7→ b1, . . . , x

′
k[ã
′] 7→ bk]

E, let (x1[ã] : T1, . . . , xk′ [ã] : Tk′) = O[M1, . . . ,Ml](N1, . . . , Nk)
in P else P ′, T ,Q,S, E →1

E′, P ′′, T ,Q \ {Q0}, ((x1[ã], . . . , xk′ [ã]), P, P ′) :: S, E

(Call)

∀j ≤ k,E ·Nj ⇓ bj Q′ = oracledefset(Q′′)

E, return(N1, . . . , Nk);Q
′′,Q, ((x1[ã], . . . , xk[ã]), P, P ′) :: S, E

→1 E[x1[ã] 7→ b1, . . . , xk[ã] 7→ bk], P, T ,Q∪Q′,S, E

(Return)

E, end, T ,Q, ((x1[ã], . . . , xk′ [ã]), P, P ′) :: S, E →1 E,P
′, T ,Q,S, E (End)

∀j ≤ l, E ·Mj ⇓ aj
E, event ev(M1, . . . ,Ml);P, T ,Q,S, E →1 E,P, T ,Q,S, ev(a1, . . . , al) :: E

(Event)

∀i ≤ l, E ·Mi ⇓ a′i E ·M ′ ⇓ c
the last replication above the definition of O is foreach i1 ≤ N1 a′1 ≤ N1

E, let r[ã] : T = loop O[M1, . . . ,Ml](M
′) in P else P ′, T ,Q,S, E

→1 E,
(let (r′a′1,r

[ã] : T, ba′1,r[ã] : bool) = O[a′1, . . . , a
′
l](c) in

if ba′1,r[ã] then
(let r[ã] : T = loop O[a′1 + 1, a′2, . . . , a

′
l](r
′
a′1,r

[ã] : T )

in P else P ′)
else r[ã]← r′a′1,r

[ã];P

else P ′), T ,Q,S, E
(Loop1)

∀i ≤ l, E ·Mi ⇓ a′i E ·M ′ ⇓ c
the last replication above the definition of O is foreach i1 ≤ N1 a′1 > N1

E, let r[ã] : T = loop O[M1, . . . ,Ml](M
′) in P else P ′, T ,Q,S, E

→1 E,P
′, T ,Q,S, E

(Loop2)

Figure 4: Semantics (2)
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The semantics is defined by probabilistic reduction rules between configura-
tions: C →p C′ means that C reduces into C′ with probability p. This relation is
defined in the part “Oracle bodies (1)” of Figure 3 and in Figure 4.

The rule (New) evaluates x[ã′] R← T by choosing an element a ∈ T and
storing it in E(x[ã′]). The element a ∈ T is chosen uniformly, so the probability
of each choice is 1/|T | and this is possible only when T is a fixed-length type.
The rule (Let) evaluates the term M and stores its value in E(x[ã′]). The rules
(If1) and (If2) are straightforward.

The rules (Insert), (Get1), and (Get2) deal with tables of keys. The rule
(Insert) evaluates the inserted element and adds it to the table Tbl , by adding it
to the list T (Tbl). The rules (Get1) and (Get2) compute the list of elements that
satisfy the condition of the get. When this list is empty, the else branch is taken
by rule (Get2). When this list is not empty, the rule (Get1) chooses an element
of this list l, stores it in E(x1[ã′]), . . . , E(xk[ã′]), and takes the in branch. The
j-th element of the list l is chosen with probability almostunif ({1, . . . , |l|}, j). In
case the same element a01, . . . , a0k occurs several times in the list l, the probability
of choosing that element is the sum of the probabilities of all its occurrences.
The probability of choosing a01, . . . , a0k is then close to m/|l|, where m is the
number of times this element appears in l.

The rule (Call) implements the oracle call let (x1[ã] : T1, . . . , xk′ [ã] : Tk′) =
O[M1, . . . ,Ml](N1, . . . , Nk) in P else P ′. It evaluates the indices M1, . . . ,Ml

of the oracle to call into ã′ and its arguments N1, . . . , Nk into b1, . . . , bk; after
evaluation, we want to call the oracle O[ã′](b1, . . . , bk). Then, it looks for the
definition Q0 of the oracle O[ã′] in the callable oracles Q. It calls Q0 by re-
moving it from the callable oracles, storing b1, . . . , bk in the arguments of Q0,
and running its body P ′′. The element (x1[ã], . . . , xk′ [ã]), P, P

′) is pushed on
the stack S: x1[ã], . . . , xk′ [ã] are the variables in which the return value of Q0

should be stored, P is the process to execute when Q0 returns, and P ′ is the
process to execute when Q0 terminates with end.

The rule (Return) pops an element ((x1[ã], . . . , xk′ [ã]), P, P ′) from the stack,
stores the return value in x1[ã], . . . , xk′ [ã], and executes P . It adds to the set
of callable oracles Q the oracles Q′ defined in the oracle definition Q′′ located
after the return statement. The set oracledefset(Q) contains all oracle definitions
provided by the oracle definition Q, with replication indices instantiated to all
their possible values, defined as follows:

oracledefset(0)
def
= ∅ (Nil)

oracledefset(Q1 | Q2)
def
= oracledefset(Q1) ∪ oracledefset(Q2) (Par)

oracledefset(foreach i ≤ n do Q)
def
=

n⋃
a=1

oracledefset(Q{a/i}) (Repl)

oracledefset(O[̃i](x1 [̃i] : T1, . . . , xk [̃i] : Tk) := P )
def
=

{(O[̃i](x1 [̃i] : T1, . . . , xk [̃i] : Tk) := P}
(Oracle)

The notation Q{a/i} means that we replace all occurrences of i by a in Q.
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The rule (End) also pops an element ((x1[ã], . . . , xk′ [ã]), P, P
′) from the

stack, but executes the process P ′. The rule (Event) adds the executed event
to the list of events E .

The rules (Loop1) and (Loop2) implement the loop statement. The rule
(Loop1) performs one iteration of the loop. To that effect, it creates two fresh
variable names r′a′1,r and ba′1,r, calls the oracle O and stores its return values in
these variables. When the value ba′1,r[ã] returned by O is stop, that is, false, it
ends the loop and continues by executing P with the result r[ã] bound to the
value of r′a′1,r[ã]. When ba′1,r[ã] is continue, that is, true, it reruns the loop. If
the oracle O terminates with an end statement, it ends the loop and continues
by executing P ′. The rule (Loop2) handles the case in which the loop stops by
reaching the bound N1 of the loop index.

The initial configuration for running the oracle definition Q0 is Ci(Q0)
def
=

∅, let x[ ] : bitstring = Ostart() in return(x) else end, T0, oracledefset(Q0), ∅, [ ],
where T0(Tbl) = [ ] for all tables Tbl . This configuration starts by calling oracle
Ostart. The oracle definition Q0 typically contains a protocol in parallel with an
adversary.

CryptoVerif verifies the following requirements on Q0:

Property 4.3 Variables are renamed so that each variable has a single defini-
tion. The indices ĩ of a variable x[̃i] are always the indices of replications above
the definition of x.

Property 4.3 makes sure that a distinct array cell is used in each copy of a
process, so that all values of the variables during execution are kept in memory.
(This helps in cryptographic proofs.)

Property 4.4 The processes are well-typed. (In particular, functions and ora-
cles receive arguments of their expected types. For brevity, we do not detail the
type system; see [6] for a similar type system.)

Property 4.4 requires the adversary to be well-typed. This requirement does not
restrict its computing power, because well-typed processes are Turing-complete,
since primitives can implement any deterministic Turing machine. The type
system also does not restrict the class of protocols that we consider, since the
protocol may contain type-cast functions f : T → T ′ to bypass the type system.
The type system just makes explicit which set of bitstrings may appear at each
point of the protocol.

Property 4.5 We define types of oracles as follows. The type of a return(M1,
. . . ,Mk);Q statement consists of the types of M1, . . . ,Mk and the list of types of
the oracle definitions at the beginning of Q, ordered from left to right. The type
of an oracle definition consists of the oracle name, the bounds of the replications
above that oracle definition, the types of the arguments of the oracle, and the
common type of its return statements.

An oracle may have several return statements, but they must be of the same
type. When there are several definitions of an oracle with the same name O,
they must be of the same type.
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Property 4.5 guarantees that the various definitions of an oracle are consistent,
and can in fact be compiled into a single function in OCaml. The oracles at
the beginning of Q are the oracles found in Q without recursively looking into
oracle definitions.

Property 4.6 Oracles with the same name can be defined only in different
branches of an if or get construct. In an oracle definition O[̃i](x1 [̃i] : T1, . . . ,

xk [̃i] : Tk) := P , the indices ĩ are always the indices of replications above that
oracle definition.

Property 4.6 guarantees that there exists a single callable definition for each ora-
cle. This property is formalized by the following lemma, proved in Appendix A.

Lemma 4.7 (Oracle name and indices unicity) If the configuration C =
E,P, T ,Q,S, E is reachable from the initial configuration Ci(Q0) by reductions
→p, then the set of callable oracles Q contains at most one oracle with a given
name O and given replication indices ã.

This lemma proves that the rule (Call) is deterministic. Therefore, all rules are
deterministic, except the rules (New) and (Get1) which may make probabilistic
choices.

As a consequence, if a configuration C is non-blocking (that is, C →p C′ for
some p and C′), then the sum of the probabilities of all the possible reductions
from C is 1: ∑

{C′|C→p(C′)C′}

p(C′) = 1 .

Definition 4.8 (Traces) Let us denote traces with the symbol CT . A trace is
a sequence of reductions CT = C0 →p1 · · · →pn Cn where C0, . . . , Cn are semantic
configurations such that Ci →pi+1 Ci+1 for i = 0, . . . , n− 1.

A complete trace is a trace whose last configuration is blocking.
The probability of the trace CT is Pr[CT ] = p1 × · · · × pn. When no trace in

a set of traces CT S is a prefix of another, the probability of CT S is the sum of
the probabilities of its elements.

The notation C →∗p C′ means that there exists a trace beginning at C and
ending at C′, and p is the probability of the set of all traces beginning at C and
stopping at their first occurrence of C′.

The notation C →+
p C′ means that C →∗p C′ and C 6= C′, that is, all traces

from C to C′ have at least one step.
The notation C →∗ C′ means C →∗1 C′. We denote the number of steps in

the trace CT as |CT | = n.

Intuitively, when no trace in CT S is a prefix of another, the traces in CT S
correspond to disjoint cases, so the probability of CT S is the sum of probabilities
of the traces in CT S. (When CT is a prefix of CT ′, the trace CT ′ is a particular
case of CT .) In the notation C →∗p C′, we consider the set CT S of all traces
beginning at C and stopping at their first occurrence of C′. No trace in this set
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is a prefix of another: if a trace CT 1 was a prefix of CT 2 with both traces in
CT S, then CT 2 would contain C′ in the middle, at the end of the prefix CT 1, so
it would not stop at the first occurrence of C′, which contradicts the definition
of CT S. Therefore, the probability p = Pr[CT S] is well defined.

In CryptoVerif, since for every reduction with a probabilistic choice, the
environment E is modified so that we can determine from E which reduction
was used, and one cannot remove elements from E, there will be at most one
trace from one configuration to another. However, the notations of Definition 4.8
are also used for OCaml where there could be several configurations reducing
to the same configuration, so they support this situation.

Finally, the security properties are defined using distinguishers D which are
functions that take a list of events E and return true or false. We denote by
Pr[C :(CV) D] the probability of the set of complete CryptoVerif traces start-
ing at C and such that the list of events E in their last configuration satisfies
D(E) = true. We define D such that D(E) = true if and only if E does not
satisfy the desired security property. We represent the adversary for Q0 by any
CryptoVerif process Qadv that does not contain events nor variables that occur
in Q0. Then CryptoVerif bounds the probability Pr[Ci(Q0 | Qadv) :

(CV) D], that
is, the probability that the adversary Qadv breaks the desired security property
in Q0, for any adversary Qadv for Q0.

Example 4.9 To show that the protocol Q0 of Example 4.1 satisfies the cor-
respondence c “for all m′, if Baccepts(m′) has been executed, then Asends(m′)
has also been executed”, we define Dc by Dc(E) = true if and only if the corre-
spondence does not hold, that is, E contains Baccepts(m′) but not Asends(m′)
for some m′. Then CryptoVerif shows that for all Qadv,

Pr[Ci(Q0 | Qadv) :
(CV) Dc] ≤ Succuf−cma

sign (t+ (N2 − 1)tcheck, N1)

where t is the execution time of the adversary Qadv, tcheck is the maximum exe-
cution time of a call to check, N1 is the maximum number of calls to oracle OA,
N2 is the maximum number of calls to oracle OB, and Succuf−cma

sign (t′, n′) is the
probability of forging a signature in time t′ with at most n′ calls to the signature
oracle. When the signatures are UF-CMA, the probability Succuf−cma

sign (t′, n′) is
small for reasonable values of t′ and n′, then so is Pr[Ci(Q0 | Qadv) :

(CV) Dc], so
the desired security property holds.

We can also define secrecy using events and distinguishers [7].

4.3 Annotations
In order to compile a CryptoVerif process into an implementation, we added
annotations to the language, to specify implementation details.

First, we separate the parts of the process that correspond to different roles,
such as client and server, which will be included in different OCaml programs
in the generated implementation. We annotate processes to specify roles: the
beginning of a role role is specified by adding the annotation role{ just before
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the oracle definition Q that starts role, where role is the name of a role, such
as alice or bob; the end of the role role is specified by a closing brace } between
a return(. . .) and its following oracle definition Q′. We denote by Q(role) the
part of the process corresponding to the role role. A role can contain several
oracles, and can thus represent a protocol participant that receives or sends
several messages, for instance as follows:

role {O1(x1 : T1) := . . . return(M2);O2(x3 : T3) := . . . return(M4)} .

In this example, the role role receives x1, replies with M2, then receives x3 and
replies with M4. The adversary schedules this exchange by calling O1(M1),
getting M2 as answer, then calling O2(M3), and getting M4 as answer.

The process for a role Q(role) may have free variables, but CryptoVerif re-
quires that these free variables be defined under no replication, so that they can
be passed from the process that defines them to the process Q(role), which uses
them, simply by storing each variable in a file. (There must be a single value to
store, not one for each value of the replication indices. Storing variables in files
is useful for variables that are communicated across roles, for example long-term
keys that are set in a key generation program and later used by client and server
programs. Using files is not the only possible implementation: we only need an
implementation that provides persistent storage and guarantees that only our
generated code has access to stored data. In particular, the adversary must not
have access to stored data.) The user must also declare, for each free variable
x[ ] in a role, the file file in which the variable will be stored. Let Files be the
set of these pairs (x[ ],file). Let also Tables be the set of pairs (Tbl ,file) such
that the table Tbl will be stored in file file.

Example 4.10 Let us annotate the protocol of Example 4.1.

keygen[pk > pkfile, sk > skfile]{ Okeygen() :=

rk
R← keyseed ; pk ← pkgen(rk); sk ← skgen(rk);

return(pk) }; (foreach i1 ≤ N1 do PA | foreach i2 ≤ N2 do PB)

PA
def
= alice{ OA() :=

m
R← nonce; s

R← seed ; event Asends(m); return(m, sign(m, sk , s))

PB
def
= bob{ OB(m′ : nonce, s′ : signature) :=

if check(m′, pk , s′) then (event Baccepts(m′); return()) else end

We divide this process into three parts. First, the key generation part is rep-
resented by the role keygen, which contains just the oracle Okeygen. The an-
notation pk > pkfile, sk > skfile means that we store the public key pk in the
file pkfile so that all replications of oracle OB can access it, and analogously, we
store the secret key sk in the file skfile so that all replications of oracle OA can
access it. In order words, Files = {(pk [ ], pkfile), (sk [ ], skfile)}.

The role alice, which contains the oracle OA, corresponds to the role of Alice
and the role bob, which contains the oracle OB, corresponds to the role of Bob.
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For these two roles, there is no need to write the closing braces } because there
is nothing after them.

Finally, the user annotations provide, for each CryptoVerif type T , the cor-
responding OCaml type GT(T ) as well as several OCaml functions:

• The function Grandom(T ) : unit → GT(T ) generates random numbers uni-
formly in T (when T is used in a random number generation).

• The serialization function Gser(T ) : GT(T )→ string converts an element of
type GT(T ) to an OCaml string. The deserialization function Gdeser(T ) :
string → GT(T ) performs the inverse operation. When deserialization
fails, it must raise the exception Bad_file; this exception is raised only
when a file has been corrupted. These functions are present when values
of type T are written or read from tables and files.

• The predicate function Gpred(T ) : GT(T ) → bool returns true if its argu-
ment corresponds to an element of type T and false otherwise (when T is
present in the interface of the oracle definitions).

The user annotations also provide, for each CryptoVerif function f : T1 × · · · ×
Tm → T , a corresponding OCaml function Gf(f) : GT(T1) × · · · × GT(Tm) →
GT(T ). We assume that these functions are all provided in an OCaml module
µprim.

CryptoVerif verifies the following properties:

Property 4.11 There is a single occurrence of each role role. If a role is defined
after an oracle O, this oracle O must have globally at most one return, and must
be in a role.

This property guarantees that we know which process to compile for a given
role, and which roles start after the return from a given oracle.

Property 4.12 There are no nested roles.

Furthermore, for simplicity, we also assume the following points:

Assumption 4.13 All oracle definitions are included in a role.

This assumption is relaxed in the implementation: we accept all processes in
which all oracles in a role are not preceded by oracles not in a role. In practice,
oracles outside a role serve in representing features, such as corruption of proto-
col participants or registration of dishonest participants, that are needed in the
proof of the security property but not in the implementation of the protocol.
For instance, in Example 4.2, the oracle OR would typically not be included
in a role. To extend our proof to the general case, if the process Q0 does not
satisfy Assumption 4.13, we transform it into a process Q′0 that satisfies As-
sumption 4.13 by adding roles or by continuing existing roles till the end of the
process instead of terminating them. The generated OCaml modules for Q′0
contain unused OCaml code, which is not generated for Q0. It is fairly obvious
that removing this code preserves the security of the implementation.
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Assumption 4.14 No replication occurs above a parallel composition or a repli-
cation. When the definition of a role role is under replication foreach i ≤
N do role{Q, its contents Q consists of an oracle definition O[̃i](. . .) := . . .
or of a parallel composition of such oracle definitions (without replication).

A process can be transformed so that no replication occurs above a paral-
lel composition by distributing the replications into the parallel compositions:
foreach i ≤ N do (Q1 | Q2) can be transformed into (foreach i1 ≤ N do Q1) |
(foreach i2 ≤ N do Q2): both processes allow calling the oracles defined in Q1

and Q2 at most N times. We can encode nested replications by adding a dummy
oracle between the two replications: the process foreach i ≤ N do foreach j ≤
N ′ do Q can be transformed into foreach i ≤ N do O() := return(); foreach j ≤
N ′ do Q.

By Properties 4.6, 4.5, and 4.11, there cannot be, in the same process, a
definition of an oracle O directly under replication and another definition of the
same oracle O not directly under replication. Hence, we can use the phrase “O
is under replication” unambiguously. Moreover, by Property 4.5, the bound of
the replication above a definition of an oracle O is the same for all definitions
of O.

Assumption 4.15 For each oracle O under replication, we let NO be the bound
of the replication above the definition of O. For each role role under replication,
we let Nrole be the bound of the replication above the definition of role. All these
bounds NO and Nrole are pairwise distinct.

After transforming the process so that it satisfies Assumption 4.14, we can trans-
form it into a process that satisfies Assumption 4.15 by renaming the bounds of
replications above distinct roles or oracles to distinct bounds. For instance,
(foreach i1 ≤ N do Q1) | (foreach i2 ≤ N do Q2) becomes (foreach i1 ≤
N1 do Q1) | (foreach i2 ≤ N2 do Q2). Using distinct bounds for each oracle
and role allows us to be more precise when counting the number of times an
oracle has been called.

Assumption 4.14 and 4.15 are relaxed in our implementation: we warn the
user when the process does not satisfy them, but we accept the process. Not
heeding these warnings will lead to CryptoVerif returning imprecise, but sound,
probabilities of security. We use these assumptions because they simplify the
proof without losing much generality. Our result can be extended to the general
case as follows: if the process Q0 does not satisfy Assumption 4.14 or 4.15, we
transform it into a process Q′0 that satisfies these assumptions as outlined after
each assumption. We apply our theorem to Q′0 and argue that the implemen-
tation generated from Q0 is also secure since it is basically the same as the one
generated from Q′0.

5 The OCaml Language
This section presents the OCaml language, the target language of our compiler,
by giving its syntax and semantics. We omit some constructs, such as loops
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and type constructors, which are not used by our compiler. The subset that
we consider is still Turing complete, so we do not lose expressivity by removing
these constructs. To define the formal semantics, we adapted the small step
operational semantics of the core part of OCaml by Scott Owens et al. [17, 18].

5.1 Syntax and Informal Semantics
Figure 5 summarizes the syntax of our subset of OCaml. For brevity, we ignore
types in this syntax.

Pattern-matching is a central feature of OCaml. A pattern pat describes the
form of a value to be matched. When we match a value v with a pattern pat ,
if the value is of the correct form, then we bind each variable x occurring in
the pattern pat to the corresponding part of v. Patterns must be linear, that
is, no variable can occur more than once inside a pattern. When we match a
value v with the pattern matching pat1 → e1 | . . . | patn → en, we match v
sequentially to the patterns pat1, . . . , patn. If the first pattern that matches v is
pat i, then we evaluate ei. If no pattern matches v, then we raise the exception
Match_failure.

The basic operations of the language are implemented by primitives prim.
We write binary primitives in infix notation: for example, we write v1 = v2
rather than (=) v1 v2. We consider the following primitives: not is the boolean
negation, (=) is the equality test, raise e raises the exception e. We use prim-
itives to manage references, which are mutable memory cells. We represent
memory cells by locations l; we also use special locations to represent files. The
reference creation ref v creates a new location l, store the value v in l, and re-
turns the location l. The assignment l := v replaces the contents of the location
l with the value v. The dereference !l returns the contents of the location l. We
also introduce a primitive for random number generation: random () returns a
random boolean, true or false, with equal probability. This primitive was not
present in [17, 18]. It formalizes Assumption A1 that our implementation uses
a perfect random number generator. It makes the semantics probabilistic. The
language also includes primitives to manage other native types such as integers
(e.g., addition and multiplication) and strings (e.g., concatenation, extraction
of substrings, and conversion between integers in {0, . . . , 255} and one-character
strings). Strings are immutable values in our semantics. In contrast, in OCaml,
values of type string are mutable. Our strings could be implemented in OCaml
as an abstract type, on which only operations that do not mutate strings are
implemented.

Most expressions are standard. Constants c can be integers, strings, boolean
values true or false, the empty list [ ], the unit constant (), exceptions, and
constant constructors. The expression function pm defines a function. When
this function is applied to a value v, it matches that value using the pattern
matching pm. The application e1 e2 applies the function e1 to the argument
e2. The sequence operation e1; e2 evaluates e1, ignoring its result (but ob-
viously keeping its side effects), then evaluates e2. The matching operation
match e with pm evaluates e and matches the result of e using the pat-
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pat ::= pattern
x variable
_ universal pattern
(pat1, . . . , patn) tuple
pat1 :: pat2 list constructor

pm ::= pattern matching
pat1 → e1 | . . . | patn → en pattern matching

e ::= expression
prim primitive
x variable
l location
c constant ([ ], (), 0, false, . . . )
(e1, . . . , en) tuple
e1 :: e2 list constructor
function pm function
e1 e2 application
e1; e2 sequence
if e1 then e2 else e3 if
match e with pm pattern matching
try e with pm try
let pat = e1 in e2 let
let rec x1 = function pm1 and . . . and xn = function pmn in e

let rec
function[env , pm] closure
letrec[env , {x1 7→ function pm1, . . . , xn 7→ function pmn} in xi]

let rec closure, 1 ≤ i ≤ n
addthread(program) addition of a thread
schedule(e) schedule

d ::= definition
let pat = e let
let rec x1 = function pm1 and . . . and xn = function pmn

letrec

definitions ::= definitions
ε empty definition list
d;; definitions definition list

program ::= program
definitions list of definitions
raise e exception

Figure 5: OCaml syntax
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v ::= value
prim v1 . . . vj partially applied primitives

(prim is n-ary and 0 ≤ j < n)
c constant ([ ], (), 0, false, . . . )
l location
(v1, . . . , vn) tuple
v1 :: v2 list constructor
function[env , pm] closure
letrec[env , {x1 7→ function pm1, . . . , xn 7→ function pmn} in xi]

let rec closure

Figure 6: OCaml values

tern matching pm. The try construct try e with pm returns the result of e
if e does not raise exceptions; if e raises an exception v matched by a pat-
tern in pm, it returns the result of match v with pm; if e raises an ex-
ception v that is not matched by a pattern in pm, it also raises the excep-
tion v. The let binding let pat = e1 in e2 evaluates e1, matches the result
with the pattern pat , which binds the variables in pat , and finally evaluates
e2. When the pattern matching fails, it raises the exception Match_failure.
This construct is equivalent to match e1 with pat → e2. The let rec binding
let rec x1 = function pm1 and . . . and xn = function pmn in e defines
n mutually recursive functions x1, . . . , xn, and evaluates the expression e using
these functions.

Closures are not present in the initial program, but they serve to represent
functional values internally. The closure function[env , pm] comes from the
function function pm. It contains the code of the function (pm), and an envi-
ronment env that maps the free variables of pm to their values. Closures allow
one to evaluate functions using the values that the free variables of the function
had at the definition of the function. (In other words, OCaml uses static vari-
able binding.) The let rec closure letrec[env , {x1 7→ function pm1, . . . , xn 7→
function pmn} in xi] is similar, but for mutually recursive functions. It records
several mutually recursive bindings together.

A security protocol typically involves several programs running in parallel
on different machines. We model this situation by considering several threads.
To manage threads, we introduce two new expressions, addthread(program)
and schedule(e). The expression addthread(program) creates a new thread
that runs the program program. The expression schedule(e) stops execution of
the current thread and continues execution of the thread number e. (Threads
are designated by integer numbers. The initial thread, started at the beginning
of the program, has number 1. The threads created by subsequent calls to
addthread have numbers starting at 2 and increasing by one each time a new
thread is created.)

We define the list expression [e1; e2; . . . ; en] as syntactic sugar for e1 :: (e2 ::
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v matches x . {x 7→ v} (Variable)

v matches _ . ∅ (Any)

∀1 ≤ i ≤ n, vi matches pat i . env i
(v1, . . . , vn) matches (pat1, . . . , patn) .

⊕n
i=1 env i

(Tuple)

v1 matches pat1 . env1 v2 matches pat2 . env2

v1 :: v2 matches pat1 :: pat2 . env1 ⊕ env2
(List)

Figure 7: Matches predicate

. . . :: (en :: [ ]) . . .). The expression e&& e′ is syntactic sugar for if e then e′

else false, and e || e′ is syntactic sugar for if e then true else e′.
A program is a list of top level definitions d, or the raising of an exception.

We omit the final ε in a sequence of definitions when it is not empty.
Expressions reduce into values or exceptional values. As summarized in

Figure 6, the values v are functional values like closures, constants c, locations
l, and tuples and lists of values. An exceptional value is raise v, where v is an
exception value (a constant).

5.2 Formal Semantics
We define step by step the semantics of the various constructs of the language.

5.2.1 Pattern matching

We define the predicate matches in Figure 7: we have v matches pat .env when
the value v matches the pattern pat , and the environment env is a mapping from
the variables of pat to their values, computed by the pattern matching. The
operation env ⊕ env ′

def
= env

Dom(env ′)
∪ env ′ adds the bindings of env ′ to those

of env ; when a variable is bound in both environments, the binding of env ′ is
kept. Since patterns are linear, in Figure 7, the operation env ⊕ env ′ is always
used with environments env and env ′ that have disjoint domains; the general
case is used below. We also define v matches pat as ∃env , v matches pat . env .

5.2.2 Primitives

The semantics of primitives is defined in Figure 8. This semantics is defined
by rules of the form prim v1 . . . vn

L−−→p e where prim is an n-ary primitive.
Such a rule means that prim v1 . . . vn reduces to e with probability p. In
contrast to [17, 18], the semantics is probabilistic, because of the presence of
the primitive random. The probability p is omitted when it is 1. The label
L is used to reflect the operations on locations. It is empty when locations are
unaffected. The label ref v = l means that a new location l is created, with
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contents v. The label !l = v means that the current contents of location l is v.
The label l := v means that the contents of the location l is changed into v.
The rules are straightforward; they reflect the semantics defined informally in
Section 5.1. One is not allowed to test equality between functional values, so
we use the predicate funval , also defined in Figure 8, to test whether a value
is functional, and raise the exception Invalid_argument when we try to test
equality between functional values. There is no rule for the primitive raise:
raise v is an exceptional value, it does not reduce.

5.2.3 Expressions and Programs

The semantics of [17, 18] substitutes variables with their values. Instead, we
define an environment env that maps variables to their values. This way, it is
easier to relate the OCaml state to the CryptoVerif state which also contains an
environment. Because of this change, we also need to add an explicit call stack
stack . The stack is a list of pairs (env , Cm), where Cm is a minimal evaluation
context, that is, an expression with a hole [·], such that the expression inside the
hole can be immediately evaluated. We define a minimal evaluation context as:

Cme ::= minimal expression evaluation context
e [·] apply
[·] v apply function
let pat = [·] in e let
[·]; e sequence
if [·] then e1 else e2 if
match [·] with pm match
try [·] with pm try
(e1, . . . , ei−1, [·], vi+1, . . . , vn) tuple
e :: [·] cons1
[·] :: v cons2
schedule([·]) schedule

Cmp ::= minimal program evaluation context
let pat = [·];; definitions let

For example, we evaluate the argument of applications first, and when it be-
comes a value, we evaluate the function, so e [·] and [·] v are evaluation contexts.
Tuples and lists are evaluated from right to left. We denote by Cme[e] the context
Cme with the hole [·] replaced by e, and similarly for Cmp. The stack contains
a minimal program evaluation context Cmp in the last element of the list and
expression evaluation contexts Cme in the other elements if it is non-empty.

Hence, we evaluate expressions and programs by reducing triples env , pe,
stack , where pe means program program or expression e. The reduction rules
env , pe, stack

L−−→p env ′, pe ′, stack ′ are defined in Figures 9 and 10 for expres-
sions and Figure 11 for programs. The label L is defined above in Section 5.2.2.
These reductions are probabilistic; the probability p is omitted when it is 1.
Most rules are straightforward. In order to evaluate an expression Cme[e], we
need to reduce e under the context Cme. To do that, we push the context
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Functional values:

prim is an n-ary primitive 0 ≤ j < n

funval(prim v1 . . . vj)
(Primitive)

funval(function[env , pm]) (Function)

funval(letrec[env , {x1 7→ function pm1, . . . , xn 7→ function pmn} in xi])
(Let rec)

Primitives:

not

 not false −→ true (Not1)

not true −→ false (Not2)

(=)



funval(v) or funval(v′)

v = v′ −→ raise Invalid_argument
(Funval)

c = c −→ true (Constant1)

c 6= c′

c = c′ −→ false
(Constant2)

v1 :: v2 = v′1 :: v′2 −→ v1 = v′1 && v2 = v′2 (List1)

v1 :: v2 = [ ] −→ false (List2)

[ ] = v′1 :: v′2 −→ false (List3)

(v1, . . . , vn) = (v′1, . . . , v
′
n) −→ v1 = v′1 && . . . && vn = v′n

(Tuples)

ref

{
ref v

ref v=l−−−−−−→ l (New ref)

(:=)

{
l := v

l:=v−−−−→ () (Assign)

!

{
!l

!l=v−−−−→ v (Dereference)

random

 a ∈ {true, false}
random () −→1/2 a

(Random)

Figure 8: Rules for OCaml primitives
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Cme on the stack with the current environment by rule (Context in), evalu-
ate the expression e until it becomes a value v, and finally pop the context
Cme from the stack by rule (Context out), inserting the obtained value v in
Cme, yielding Cme[v]. In case the expression e raises an exception v, we use
rules (Context raise1) and (Context raise2). If the context Cme is not a try
context, the result of Cme[e] is also raise v by (Context raise1). If Cme is
a try context, we evaluate that try by (Context raise2), followed by (Try2).
The rules (Let ctx in), (Let ctx out), and (Let ctx raise) play the same role
as (Context in), (Context out), and (Context raise1) respectively, for programs
instead of expressions: they allow reducing under the minimal program eval-
uation context let pat = [·];; definitions. There is no rule corresponding
to (Context raise2) for programs because there is no try program context.

Example 5.1 Let us present as an example the reduction of a simple program
in an empty environment and an empty stack:

∅, let x = if random () then 0 else 1;; , [ ] .

We first reduce the expression part of the let, by keeping in the stack the fact
that the expression is under the context let x = [·]. This expression reduces
eventually to a value, and at this point we insert this value back into the context.
So we first reduce the previous configuration by (Let ctx in) into:

∅, if random () then 0 else 1, [(∅, let x = [·];; )]
By (Context in), we prepare to reduce the condition of the if :

∅, random (), [(∅, if [·] then 0 else 1); (∅, let x = [·];; )]
By (Random), random () reduces to true with probability 1/2 and false with
probability 1/2. For the purpose of the example, let us consider the case where
random () reduces to true. By (Primitives), the configuration reduces with
probability 1/2 into

∅, true, [(∅, if [·] then 0 else 1); (∅, let x = [·];; )]
By (Context out), we insert the value of the condition back into the if :

∅, if true then 0 else 1, [(∅, let x = [·];; )]
By (If1), we evaluate the if :

∅, 0, [(∅, let x = [·];; )]
By (Let ctx out), we insert the obtained value back into the context let x = [·];;

∅, let x = 0;; , [ ]

By (Variable), we have that 0 matches x . {x 7→ 0}. So, by (Let match1), the
configuration reduces into the following last configuration:

{x 7→ 0}, ε, [ ]
The expressions addthread(program) and schedule(e) are treated specially

because they alter parts of the semantic configuration other than env , pe, stack .
Their treatment is detailed in Section 5.2.5.
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env , x, stack −→ env , env(x), stack (Env)

prim v1 . . . vn
L−−→p e

env , prim v1 . . . vn, stack
L−−→p env , e, stack

(Primitives)

e is not a value
and, when Cme is a try context, e is not an exceptional value

env , Cme[e], stack −→ env , e, (env , Cme) :: stack
(Context in)

env ′, v, (env , Cme) :: stack −→ env , Cme[v], stack (Context out)

Cme is not a try context
env ′, raise v, (env , Cme) :: stack −→ env , raise v, stack

(Context raise1)

Cme is a try context
env ′, raise v, (env , Cme) :: stack −→ env , Cme[raise v], stack

(Context raise2)

env , function pm, stack −→ env , function[env , pm], stack (Closure)

env , function[env ′, pm] v0, stack −→ env ′,match v0 with pm, stack
(Expr apply)

env , v; e, stack −→ env , e, stack (Sequence)

env , if true then e1 else e2, stack −→ env , e1, stack (If1)

env , if false then e1 else e2, stack −→ env , e2, stack (If2)

v matches pat . env ′

env ,match v with pat → e | pat1 → e1 | . . . | patn → en, stack −→
env ⊕ env ′, e, stack

(Match1)

¬(v matches pat)

env ,match v with pat → e | pat1 → e1 | . . . | patn → en, stack −→
env ,match v with pat1 → e1 | . . . | patn → en, stack

(Match2)

¬(v matches pat)

env ,match v with pat → e, stack −→ env , raise Match_failure, stack
(Match fail)

env , try v with pm, stack −→ env , v, stack (Try1)

env , try raise v with pm, stack −→
env ,match v with pm | _→ raise v, stack

(Try2)

Figure 9: Rules for expressions
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v matches pat . env ′

env , let pat = v in e, stack −→ env ⊕ env ′, e, stack
(Let1)

¬(v matches pat)

env , let pat = v in e, stack −→ env , raise Match_failure, stack
(Let2)

letrecenv = {x1 7→ function pm1, . . . , xn 7→ function pmn}
env , let rec x1 = function pm1 and . . . and xn = function pmn in e, stack
−→ env [x1 7→ letrec[env , letrecenv in x1],

. . . ,
xn 7→ letrec[env , letrecenv in xn]], e, stack

(Closure let rec)

letrecenv = {x1 7→ function pm1, . . . , xn 7→ function pmn}
env , letrec[env ′, letrecenv in xi] v0, stack −→

env ′[x1 7→ letrec[env ′, letrecenv in x1],
. . . ,
xn 7→ letrec[env ′, letrecenv in xn]],

match v0 with pmi, stack

(Expr letrec apply)

Figure 10: Rules for expressions (continued)

5.2.4 Store

As usual, the contents of locations are stored in a store, which maps locations
to their current values. Figure 12 defines the relation store

L−−→ store ′. If a
program or an expression reduces by env , pe, stack

L−−→p env ′, pe ′, stack ′, then
the store store will be updated into store ′ such that store

L−−→ store ′. When L
is empty, the store is unchanged by rule (Store empty). When L is !l = v, the
store is also unchanged, but the reduction succeeds only when the contents of
l is v, by rule (Store lookup). When L is l := v, the store is updated so that
l contains v, by rule (Store assign). When L is ref v = l, a new location l is
created with contents v, so the contents of l must not be defined in the initial
store, by rule (Store alloc).

5.2.5 Toplevel Reduction

As mentioned in Section 5.1, and in contrast to [17, 18], we consider several
threads running in parallel. Each thread has a configuration thi = 〈env i, pei,
stack i, storei〉 that contains the current env i, pei, stack i as explained in Sec-
tion 5.2.3, as well as the contents of locations local to this thread, in a store
storei, as explained in Section 5.2.4. The complete semantic configuration is
then

C = [th1, . . . , thn], globalstore, tj
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e is not a value
env , let pat = e;; definitions, [ ] −→ env , e, [env , let pat = [·];; definitions]

(Let ctx in)

env ′, v, [env , let pat = [·];; definitions] −→ env , let pat = v;; definitions, [ ]
(Let ctx out)

env ′, raise v, [env , let pat = [·];; definitions] −→ env , raise v, [ ]
(Let ctx raise)

v matches pat . env ′

env , let pat = v;; definitions, [ ] −→ env ⊕ env ′, definitions, [ ]
(Let match1)

¬(v matches pat)

env , let pat = v;; definitions, [ ] −→ env , raise Match_failure, [ ]
(Let match2)

letrecenv = {x1 7→ function pm1, . . . , xn 7→ function pmn}
env , let rec x1 = function pm1 and . . . and xn = function pmn;;

definitions, [ ] −→ env [x1 7→ letrec[env , letrecenv in x1],
. . . ,
xn 7→ letrec[env , letrecenv in xn]], definitions, [ ]

(Closure let rec)

Figure 11: Rules for programs

store −→ store (Store empty)

store(l) = v

store
!l=v−−−−→ store

(Store lookup)

l ∈ Dom(store)

store
l:=v−−−−→ store[l 7→ v]

(Store assign)

l /∈ Dom(store)

store
ref v=l−−−−−−→ store[l 7→ v]

(Store alloc)

Figure 12: Store rules
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where tj is the number of the thread currently being executed, and globalstore is
a store for locations shared between threads. We use it to model the communi-
cation between threads by storing messages in global locations, and to store the
files containing private data from the CryptoVerif process (free variables of roles
and tables). In practice, these files may be copied from one machine to another
by the user, so they are actually shared between several threads. The values in
the global store contain no closure and no reference. (In OCaml, closures and
references can be written to a file only by marshalling, but marshalling is ruled
out by Assumption A5, since it may bypass the type system.) The global store
contains locations in a set Locg, while the local stores contain locations in an
infinite set Loc`, with Locg ∩ Loc` = ∅.

The reduction rules for semantic configurations C are defined in Figure 13.
Actually, this figure defines three relations. The relation th →p th ′, defined by
rule (Thread), handles all operations that deal with the current thread only.
It updates the store using the same label L as the one used for evaluating the
program or the expression, and it checks that this label concerns the local store
of the thread. (The location l, if any, must be in Loc`.)

Second, the relation th, globalstore →p th ′, globalstore ′, defined by rules
(Globalstore1) and (Globalstore2), handles all operations local to one thread
and the global store operations. By rule (Globalstore1), it uses the relation
th →p th ′ to handle the operations local to one thread. By rule (Globalstore2),
it handles the global store operations. It updates the global store using the
same label L as the one used for evaluating the program or the expression, and
it checks that this label concerns the global store. The location l must be in
Locg, and the creation of a location in the global store is forbidden. (Other-
wise, one would need a way to tell the system whether a new location should
be created in the local or in the global store, and to communicate the global
locations to the other threads.) We assume that all locations of the global store
are initialized at the beginning of the program.

Finally, the relation C→p C′, defined by the last four rules of Figure 13, gives
the semantics of the full language. Rule (Toplevel) runs the current thread tj , us-
ing the relation th, globalstore →p th ′, globalstore ′. Rule (Toplevel add thread)
defines the semantics of addthread(program): it creates a new thread that
runs the program program, with empty environment, stack, and store. Rules
(Toplevel schedule1) and (Toplevel schedule2) define the semantics of schedule:
schedule(tj ′) schedules thread number tj ′ when this thread exists, and other-
wise it raises the exception Invalid_argument.

Splitting the definition of the semantics into three relations allows us to
lighten notations in proofs: we can use the reduction on a thread, or on a
thread and the global store, without mentioning the other components when
they are not affected.

The construct addthread does not allow using the same local store in sev-
eral threads, which corresponds to forbidding fork in the middle of a role, as
mentioned in Assumption A7. Moreover, we reduce only the active thread, and
we change threads only with schedule. Since neither the primitives nor the gen-
erated modules use schedule, thread scheduling is entirely under the control of
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the adversary. This seemingly restrictive semantics, in which only one thread
is active at a time and oracle calls cannot be interleaved with other threads, is
justified for two reasons.

• First, it is sufficient to represent all program executions under the weaker
assumption that two threads that read or write the same file are not
run concurrently. Indeed, two oracles can interfere with each other only
through files, and such interferences are forbidden by this assumption.
Hence, by swapping execution steps, a trace that obeys this assumption
with any interleaving of the oracle calls can be transformed into an equiv-
alent trace in which the oracle calls are never interrupted, that is, a trace
that can be scheduled in our semantics.

• Second, it resembles the CryptoVerif semantics, which also has a single
active thread and processes one oracle call after the other. This point
facilitates the proof of our compiler.

5.2.6 Modules

OCaml programs typically contain several modules. We adopt a very sim-
ple model of modules. A module named µ consists of an OCaml program
program(µ) and its interface interface(µ) that is the set of OCaml identifiers de-
fined in µ and usable in other modules. The program program(µ) initializes the
module µ and makes available the identifiers defined in the interface of the mod-
ule µ. When needed to distinguish identifiers coming from different modules,
we use identifiers of the form µ.x for variables defined in module µ. A correct
OCaml program is then of the form program = program(µ1);; . . . ;; program(µn);;,
where, for all i ≤ n, the free variables of program(µi) are defined in the interfaces
of µj with j < i, and program(µi) is a list of definitions. (The initial program
of a module is never raise e, but it may reduce into raise e during execution.)

Such a program is run by using the previous reduction rules from the initial
configuration

C0(program) = [〈∅, program, [ ], ∅〉], globalstore0, 1

where globalstore0 = {l 7→ initval l | l ∈ Locg} is the initial value of the global
store, and initval l is the default value for location l: the empty list [ ] for lists,
the empty string "" for strings, 0 for integers, false for booleans. Values in the
global store cannot contain locations and closures, so we do not define a default
value for them. The program program does not contain closures nor locations
in Loc`, but may contain locations in Locg. (Closures are created by function
and let rec; locations in Loc` are created by ref .)

Although we ignore types is our syntax, we suppose that our OCaml pro-
grams are well-typed, which is checked by the OCaml compiler, and we use the
guarantee that well-typed programs do not go wrong: a program stops only
when the current thread has been reduced into the empty definition list or an
exception raise v (with the empty stack).
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store
L−−→ store ′

L is empty or L is !l = v, l := v, or ref v = l with l ∈ Loc`

env , pe, stack
L−−→p env ′, pe ′, stack ′

〈env , pe, stack , store〉 −→p 〈env ′, pe ′, stack ′, store ′〉
(Thread)

th −→p th ′

th, globalstore −→p th ′, globalstore
(Globalstore1)

globalstore
L−−→ globalstore ′

L is !l = v or l := v with l ∈ Locg

env , pe, stack
L−−→p env ′, pe ′, stack ′

〈env , pe, stack , store〉, globalstore −→p 〈env ′, pe ′, stack ′, store〉, globalstore ′

(Globalstore2)

th, globalstore −→p th ′, globalstore ′

[th1, . . . , thtj−1, th, thtj+1, . . . , thn], globalstore, tj −→p

[th1, . . . , thtj−1, th
′, thtj+1, . . . , thn], globalstore ′, tj

(Toplevel)

[th1, . . . , thtj−1, 〈env ,addthread(program), stack , store〉, thtj+1, . . . , thn],
globalstore, tj −→

[th1, . . . , thtj−1, 〈env , (), stack , store〉, thtj+1, . . . , thn, 〈∅, program, [ ], ∅〉],
globalstore, tj

(Toplevel add thread)

1 ≤ tj ′ ≤ n
[th1, . . . , thtj−1, 〈env , schedule(tj ′), stack , store〉, thtj+1, . . . , thn],

globalstore, tj −→
[th1, . . . , thtj−1, 〈env , (), stack , store〉, thtj+1, . . . , thn], globalstore, tj ′

(Toplevel schedule1)

tj ′ < 1 or tj ′ > n

[th1, . . . , thtj−1, 〈env , schedule(tj ′), stack , store〉, thtj+1, . . . , thn],
globalstore, tj −→

[th1, . . . , thtj−1, 〈env , raise Invalid_argument, stack , store〉, thtj+1, . . . , thn],
globalstore, tj

(Toplevel schedule2)

Figure 13: Top level rules
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5.2.7 Equivalence Modulo Renaming of Locations

The rule (Store alloc) is non-deterministic, since the new location l can be any
unused location in Loc`. To remove this non-determinism, we consider equiva-
lence classes of OCaml semantic configurations modulo renaming of locations in
Loc`. We still denote these equivalence classes as OCaml configurations C, and
denote an equivalence class by one of its members. On these equivalence classes,
the semantics is purely probabilistic. (There is no non-deterministic choice.) If
a configuration C can reduce, then the sum of the probabilities of all possible
reductions is 1: ∑

{C′|C→p(C′)C′}

p(C′) = 1

Moreover, for each reduction C→p C′, we have p > 0.
We will also use notations similar to Definition 4.8 for the OCaml semantics.

We denote by CT an OCaml trace, CTS a set of OCaml traces, and we also use
the notation →∗ for reductions with several steps.

6 Instrumentation of the OCaml Semantics
In order to prove the correctness of our compiler, we instrument OCaml code
in three ways; this section details this instrumentation and proves that it does
not alter the semantics of OCaml.

First, we add a new kind of functions and closures tagfunction that be-
have exactly in the same way as regular functions and closures, but are la-
beled with additional tags. We use these tagged functions to differentiate func-
tions coming from our generated code and functions coming from the adver-
sary. Hence, we add two new expressions tagfunctiont pm for tagged func-
tions and tagfunctiont,τ [env , pm] for the corresponding closures. We also add
tagfunctiont,τ [env , pm] to the values. The tag t indicates the origin of the
function or closure; it will be an oracle name or a role name, indicating that
the function implements this oracle or role. The tag τ is a fresh tag generated
when the function is reduced into a closure: each new closure gets a different
tag, so that two closures are the same if and only if they have the same tag.
This property will be used in Section 8 to count the number of calls to the same
closure. The semantic rules for tagged functions are given in Figure 14. They
are the same as those for ordinary functions, except for the addition of tags.
Much like for locations, we consider traces modulo renaming of tags τ , so that
the choice of a fresh tag τ in (Tagged closure) does not lead to non-determinism.
The condition that τ is fresh in this rule means that τ is distinct from all tags
previously used in the considered trace.

Second, we need to be able to match CryptoVerif events, so we add to
the semantic configuration an element events that contains the list of the
events executed until now. We add the expression event ev(e1, . . . , ek) that
adds the event ev(v1, . . . , vk) to events when e1, . . . , ek evaluate to the val-
ues v1, . . . , vk respectively. We consider a new minimal expression evaluation
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funval(tagfunctiont,τ [env , pm]) (Tagged funval)

τ fresh
env , tagfunctiont pm, stack −→ env , tagfunctiont,τ [env , pm], stack

(Tagged closure)

env , tagfunctiont,τ [env ′, pm] v0, stack −→ env ′,match v0 with pm, stack
(Tagged expr apply)

Figure 14: Semantics of tagged functions

context event ev(e1, . . . , ei−1, [·], vi+1, . . . , vn), for evaluating the arguments of
events via rules (Context in) and (Context out), and for handling exceptions
inside events via rule (Context raise1). Events serve in specifying security prop-
erties of protocols, so they appear in generated code, but cannot be used by the
adversary.

Third, the roles of a CryptoVerif process cannot be executed in any order: if
a role is defined after the return from an oracle, it can be executed only after the
previous oracle has returned. For instance, we can run a server only after gen-
erating its keys. We need to enforce this constraint also in the OCaml program.
Each CryptoVerif role role is translated by our compiler into an OCaml module
µrole. We add to the OCaml configuration the multiset of callable modules MI
that contains pairs (µrole, γ) of a module µrole and a flag γ ∈ {Once,Any}, in-
dicating, if Once, that the module can be called only once and if Any that the
module can be called any number of times. Hence, the instrumented semantic
configuration is

CI = [th1, . . . , thn], globalstore, tj ,MI, events

We adapt the toplevel semantic rules to this configuration as shown in Figure 15.
The instrumented semantic rules (New toplevel), (New toplevel schedule1),
and (New toplevel schedule2) are straightforwardly adapted from the corre-
sponding rules in the non-instrumented semantics by adding the components
MI, events. The rule (Toplevel event) gives the semantics of event: it adds
its argument ev(v1, . . . , vn) to the list events in the configuration and returns
(v1, . . . , vn). The rule (New toplevel add thread) gives the instrumented seman-
tics of addthread: the addthread construct is modified to reject new programs
that contain a module that cannot be called. We let Mg be the set of generated
modules. The programs spawned by addthread can be of two forms. Either
they are attacker programs that contain neither the module corresponding to the
primitives µprim nor any generated module in Mg, or they are protocol programs
that first contain the module corresponding to the primitives µprim, then the
necessary generated modules µ1, . . . , µl in Mg, and finally any non-generated
program program ′. (We require this order on the modules for simplicity.) The
generated modules µ1, . . . , µl must be callable according to the value of MI. The
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th, globalstore −→p th ′, globalstore ′

[th1, . . . , thtj−1, th, thtj+1, . . . , thn], globalstore, tj ,MI, events −→p

[th1, . . . , thtj−1, th
′, thtj+1, . . . , thn], globalstore ′, tj ,MI, events

(New toplevel)

program = program(µprim);; program(µ1);; . . . ;; program(µl);; program ′

program ′ does not contain program(µprim) nor any program(µ) for µ ∈Mg

M = {µ1, . . . , µl} ⊆Mg

∀µ ∈M,∃γ, (µ, γ) ∈MI
MI′ = {(µ,Once) | µ ∈M ∧ (µ,Once) ∈MI}
or
program does not contain program(µprim) nor any program(µ) for µ ∈Mg

M = ∅,MI′ = ∅
[th1, . . . , thtj−1, 〈env ,addthread(program), stack , store〉, thtj+1, . . . , thn],

globalstore, tj ,MI, events −→
[th1, . . . , thtj−1, 〈env , (), stack , store〉, thtj+1, . . . , thn, 〈∅, program, [ ], ∅〉],

globalstore, tj ,MI \MI′, events
(New toplevel add thread)

1 ≤ tj ′ ≤ n
[th1, . . . , thtj−1, 〈env , schedule(tj ′), stack , store〉, thtj+1, . . . , thn],

globalstore, tj ,MI, events −→
[th1, . . . , thtj−1, 〈env , (), stack , store〉, thtj+1, . . . , thn],

globalstore, tj ′,MI, events
(New toplevel schedule1)

tj ′ < 1 or tj ′ > n

[th1, . . . , thtj−1, 〈env , schedule(tj ′), stack , store〉, thtj+1, . . . , thn],
globalstore, tj ,MI, events −→

[th1, . . . , thtj−1, 〈env , raise Invalid_argument, stack , store〉, thtj+1, . . . , thn],
globalstore, tj ,MI, events

(New toplevel schedule2)

[th1, . . . , thtj−1, 〈env , return(MI′, v), stack , store〉, thtj+1, . . . , thn],
globalstore, tj ,MI, events −→

[th1, . . . , thtj−1, 〈env , v, stack , store〉, thtj+1, . . . , thn],
globalstore, tj ,MI ∪MI′, events

(Toplevel return)

[th1, . . . , thtj−1, 〈env , event ev(v1, . . . , vn), stack , store〉, thtj+1, . . . , thn],
globalstore, tj ,MI, events −→

[th1, . . . , thtj−1, 〈env , (v1, . . . , vn), stack , store〉, thtj+1, . . . , thn],
globalstore, tj ,MI, ev(v1, . . . , vn) :: events

(Toplevel event)

Figure 15: Updated toplevel rules for the instrumented semantics
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modules µ1, . . . , µl that can be called only once are removed from the callable
modules by removing the multiset MI′ from MI.

We also add the expression return(MI′, e) that adds to the multiset MI the
generated modules present in MI′, and returns the result of e, as defined by
rule (Toplevel return). This expression is useful to add modules newly defined
at the return from an oracle. We also add the minimal expression evaluation
context return(MI, [·]) to be able to evaluate the second argument of return.

Let us now show that this instrumentation does not alter the semantics of
OCaml: an instrumented program behaves exactly in the same way as that
program with the instrumentation deleted, provided only allowed roles are exe-
cuted, as assumed by Assumption A3. This assumption is formalized as follows:

Assumption 6.1 (Only allowed roles) The instrumented addthread rule
(New toplevel add thread) never fails.

We first show that, when a program or expression is a value v or an excep-
tional value raise v, the environment does not matter. To prove this property,
we define the following equivalence.

Definition 6.2 We define the equivalence ≈vth on threads by

〈env , pe, stack , store〉 ≈vth 〈env ′, pe ′, stack ′, store ′〉

if and only if pe, stack , store = pe ′, stack ′, store ′, and if pe is not a value v or
an exceptional value raise v, then env = env ′.

We extend this equivalence to non-instrumented configurations C and C′ by
C ≈v C′ if and only if

• C = [th1, . . . , thn], globalstore, tj ,

• C′ = [th ′1, . . . , th
′
n], globalstore, tj ,

• ∀tj ′ ≤ n, thtj ′ ≈vth th ′tj ′ .

We first show that configurations equivalent by ≈v reduce in the same way.

Lemma 6.3 If C ≈v C′ and C→p C′′, then C′ →p C′′′ and C′′ ≈v C′′′.

We prove this lemma in Appendix B.
Let us now define the function noinstrCI that takes a configuration in the

instrumented semantics and returns the corresponding configuration in the non-
instrumented semantics.

Definition 6.4 The function noinstr th1 applied to a thread replaces

1. every return(MI, e) with e,

2. every event ev(e1, . . . , en) with (e1, . . . , en),

3. and all tagfunction functions and closures with regular ones
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in this thread.
The function noinstr th2 modifies the stack of the thread by

• removing any pair of the form (env , return(MI, [·])),

• and transforming each pair of the form (env , event ev(e1, . . . , ei−1, [·],
vi+1, . . . , vn)) into the pair (env , (e1, . . . , ei−1, [·], vi+1, . . . , vn)).

Let noinstr th
def
= noinstr th1 ◦ noinstr th2.

Finally, let us define

noinstrCI([th1, . . . , thn], globalstore, tj ,MI, events)
def
=

[noinstr th(th1), . . . ,noinstr th(thn)], globalstore, tj

We do not need to replace elements of the global store, as they cannot contain
closures: event, return, and tagged functions cannot appear in them.

The next proposition shows that, with Assumption 6.1, there is a weak
bisimulation between the non-instrumented semantics and the instrumented se-
mantics, that is, the reductions match in the two semantics, but the number of
steps may differ. Indeed, the return and event expressions introduce an addi-
tional transition in the instrumented semantics. All other constructs reduce in
the same number of steps in both semantics. Hence, the instrumentation does
not alter the semantics of the language. This result is proved in Appendix B.

Proposition 6.5 1. If C ≈v noinstrCI(CI) and C1, . . . ,Cn are pairwise dis-
tinct configurations such that for all i ≤ n, we have C →pi Ci with∑
i≤n pi = 1, then there exist pairwise distinct instrumented configura-

tions CI1, . . . ,CIn such that for all i ≤ n, we have CI →∗pi CIi and
Ci ≈v noinstrCI(CIi).

2. If C ≈v noinstrCI(CI) and CI1, . . . ,CIn are pairwise distinct instrumented
configurations such that for all i ≤ n, we have CI→pi CIi with

∑
i≤n pi =

1, then there exist pairwise distinct configurations C1, . . . ,Cn such that for
all i ≤ n, we have C→∗pi Ci and Ci ≈v noinstrCI(CIi).

In the rest of the paper, we use only the instrumented semantics. Further-
more, we denote instrumented configurations by C to lighten notations.

7 Translation
In this section, we describe how our compiler translates an annotated Cryp-
toVerif process. It translates each CryptoVerif role role into an OCaml module
µrole and each CryptoVerif oracle into a function. Let Gvar be an injective func-
tion that takes a CryptoVerif variable name and returns an OCaml variable
name.

Let us recall that the function Gf(f), defined in Section 4.3, returns the
name of the OCaml function corresponding to the CryptoVerif function f . The
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function GM transforms a CryptoVerif termM into an OCaml term. It is defined
as follows:

GM(x[̃i])
def
= Gvar(x) (Variable)

GM(f(M1, . . . ,Mm))
def
= Gf(f) (GM(M1)), . . . , (GM(Mm)) (Function call)

The OCaml code generated by this definition matches the semantics of Cryp-
toVerif terms given in Figure 3.

Before defining the translation of an oracle, let us first introduce some no-
tations. For each CryptoVerif variable x, we denote by Tx the type of x, and
by extension, for each CryptoVerif term M , we denote by TM the type of M .
More precisely, if M is the variable x, then TM

def
= Tx, and if M is a function

application with a function of type T1 × · · · × Tn → T , then TM
def
= T .

We say that an oracle or role definition occurs at the beginning of Q when it
is found in Q just under replication or parallel composition, without recursively
looking into oracle definitions. We define the function oracledeflist that returns
a description of the oracles made available by an oracle definition Q. In more
detail, oracledeflist(Q) is a list [(Q1, γ1), . . . , (Ql, γl)] such that Q1, . . . , Ql are
the oracle definitions at the beginning of Q, from left to right, and γl is Any when
Ql is under replication, and Once otherwise. In this function, the replication
indices ĩ can be partially instantiated into integer values. In contrast to the
function oracledefset , oracledeflist(foreach i ≤ n do Q) does not instantiate the
replication index i.

oracledeflist(0)
def
= [ ] (Nil)

oracledeflist(Q1 | Q2)
def
= oracledeflist(Q1)@ oracledeflist(Q2) (Par)

oracledeflist(foreach i ≤ n do Q)
def
= [(Q1,Any), . . . , (Ql,Any)]

when oracledeflist(Q) = [(Q1, γ1), . . . , (Ql, γl)] for some γ1, . . . , γl
(Repl)

oracledeflist(O[̃i](x1 [̃i], . . . , xk [̃i]) := P )
def
= [(O[̃i](x1 [̃i], . . . , xk [̃i]) := P,Once)]

(Oracle)

oracledeflist(role {Q)
def
= [ ] (Role)

The function oracledeflist takes processes Q that follow return statements that
do not end a role. By Assumption 4.13, we are inside a role, so by Property 4.12,
the construct role {Q′ cannot appear in Q before a return statement that ends
the current oracle. So, the function oracledeflist will never be called on role {Q′.

We also define the function GgetMI that returns a description of the modules
that correspond to roles defined at the beginning of an oracle definition Q. The
function GgetMI is similar to the function oracledeflist above: it returns pairs
containing the module generated for the role and a boolean indicating whether
the role is under replication or not. In contrast to oracledeflist , it returns a set
and not a list.

GgetMI(0)
def
= ∅ (Nil)
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GgetMI(Q1 | Q2)
def
= GgetMI(Q1) ∪GgetMI(Q2) (Par)

GgetMI(foreach i ≤ n do Q)
def
= {(µ,Any) | ∃γ, (µ, γ) ∈ GgetMI(Q)} (Repl)

GgetMI(O[̃i](x1 [̃i], . . . , xk [̃i]) := P )
def
= ∅ (Oracle)

GgetMI(role {Q)
def
= {(µrole,Once)} (Role)

The function GgetMI takes processes Q that follow return statements that end the
current role. By Assumption 4.13, there cannot be an oracle definition outside
a role {Q′ in Q. So the function GgetMI will never be called on oracle definitions.

To translate an oracle, we translate the body of the oracle using the function
G defined in Figure 16. Most cases are straightforward: the function G generates
OCaml code that encodes the semantics of oracle bodies given in Figures 3 and 4.
After defining a variable, we store it in a file if needed, using Gfile(x[̃i]), defined
by Gfile(x[̃i])

def
= (f := Gser(Tx) Gvar(x)) if (x[̃i], f) ∈ Files and Gfile(x[̃i])

def
= ()

otherwise. A file is modeled by a global store location.
For the return case, if the return is not at the end of a role (i.e., there is an

oracle in the same role following it), we return the closures corresponding to
the oracles defined after the return, as defined in (Return1). (The function GO

is defined below, in Figure 17.) Otherwise, we update the set of available roles
using the return expression introduced in Section 6, as defined in (Return2).

In the insert case, we add the inserted element to the considered table Tbl
contained in the global store location f . In the get case, we read the table by
read_table, keeping only the elements that satisfy the required condition (which
is tested by Gtest). These elements are stored in the list l. If l is empty, we run
P ′; otherwise, we choose a random element in l and run P with that element. To
choose that element, we use a function random` such that random` l returns
a random element of the list l, such that the probability of returning the j-
th element of l is almostunif ({1, . . . , |l|}, j). We assume that this function is
programmed using the OCaml primitive random, and is present in the module
for cryptographic primitives µprim.

An oracle O(x1, . . . , xn) := P is transformed into a closure by the function
GO as shown in Figure 17. When the oracle O is not under replication (the
second argument of GO is Once, in (Oracle1)), we use a token token to make
sure that it can be called only once. This token can take the values Callable
and Invalid. It is initially set to Callable, and it is set to Invalid in the
first call. In subsequent calls, the exception Bad_Call will be raised. The
translation of an oracle always checks that the arguments are correct values for
their CryptoVerif types, and stores them in files if necessary by calling Gfile.

Finally, we generate an OCaml module µrole for each role role in the Cryp-
toVerif process. This module provides a single function init , which returns the
functions implementing the oracles defined at the beginning of Q(role), so its
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G(x[̃i]
R← T ;P )

def
= let Gvar(x) = Grandom(T ) () in Gfile(x[̃i]);G(P ) (New)

G(x[̃i]←M ;P )
def
= let Gvar(x) = GM(M) in Gfile(x[̃i]);G(P ) (Let)

G(if M then P else P ′)
def
= if GM(M) then G(P ) else G(P ′) (If)

[(Q1, γ1), . . . , (Ql, γl)]
def
= oracledeflist(Q)

G(return(N1, . . . , Nk);Q)
def
= (GO(Q1, γ1), . . . ,GO(Ql, γl),GM(N1), . . . ,GM(Nk))

(Return1)

G(return(N1, . . . , Nk)};Q)
def
= (return(GgetMI(Q), (GM(N1), . . . ,GM(Nk))))

(Return2)

G(end)
def
= (raise Match_failure) (End)

G(event ev(M1, . . . ,Mk);P )
def
= event ev(GM(M1), . . . ,GM(Mk));G(P )

(Event)

(Tbl , f) ∈ Tables

G(insert Tbl(M1, . . . ,Mk);P )
def
=

(f := (Gser(TM1
) GM(M1), . . . ,Gser(TMk

) GM(Mk)) :: (!f);G(P ))

(Insert)

Gtest((x1, . . . , xk),M)
def
=

(function (Gvar(x1), . . . ,Gvar(xk))→
let Gvar(x1) = Gdeser(Tx1

) Gvar(x1) in . . .
let Gvar(xk) = Gdeser(Txk

) Gvar(xk) in
if (GM(M)) then (Gvar(x1), . . . ,Gvar(xk))

else raise Match_failure
| _→ raise Bad_file)

(Test)

Gfold
def
= f → function a→ function [ ]→ a | x :: l→ f (fold f a l) x

(Fold)

read_table(f, c)
def
= let rec fold = function Gfold in

fold (function a→ function x→
(try (c x) :: a with

Match_failure→ a)) [ ] !f

(Read table)

(Tbl , f) ∈ Tables

G(get Tbl(x1 [̃i], . . . , xk [̃i]) suchthat M in P else P ′)
def
=

let l = read_table(f,Gtest((x1, . . . , xk),M)) in
if l = [ ] then G(P ′)

else let (Gvar(x1), . . . ,Gvar(xk)) = random` l in

(Gfile(x1 [̃i]); . . . ;Gfile(xk [̃i]);G(P ))

(Get)

Figure 16: Translation function G of an oracle body in OCaml
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GO(Q,Once)
def
= let token = ref Callable in tagfunctionO pmOnce(Q)

where pmOnce(O[̃i](x1 [̃i] : T1, . . . , xk [̃i] : Tk) := P )
def
=

(Gvar(x1), . . . ,Gvar(xk))→
if (!token = Callable)&&

(Gpred(T1) Gvar(x1))&& . . . &&(Gpred(Tk) Gvar(xk))

then (token := Invalid;Gfile(x1 [̃i]); . . . ;Gfile(xk [̃i]);G(P ))
else raise Bad_Call

(Oracle1)

GO(Q,Any)
def
= tagfunctionO pmAny(Q)

where pmAny(O[̃i](x1 [̃i] : T1, . . . , xk [̃i] : Tk) := P )
def
=

(Gvar(x1), . . . ,Gvar(xk))→
if (Gpred(T1) Gvar(x1))&& . . . &&(Gpred(Tk) Gvar(xk))

then (Gfile(x1 [̃i]); . . . ;Gfile(xk [̃i]);G(P ))
else raise Bad_Call

(Oracle2)

Figure 17: Translation of an oracle

interface is interface(µrole)
def
= {µrole.init} and its program is

program(µrole)
def
=

let µrole.init = let token = ref Callable in tagfunctionrole pm role

where pm role
def
= ()→

if (!token = Callable) then
(token := Invalid;
Gread(x1[ ]) in . . . in Gread(xm[ ]) in
(GO(Q1, γ1), . . . ,GO(Qk, γk)))

else raise Bad_Call

where [(Q1, γ1), . . . , (Qk, γk)] = oracledeflist(Q(role)) and x1[ ], . . . , xm[ ] are the
free variables of Q(role), which are the variables we need to retrieve from the
files. The function Gread(x[ ]), which reads the contents of the file associated to
x[ ], is defined by Gread(x[ ])

def
= let Gvar(x) = Gdeser(Tx) (!f) if (x[ ], f) ∈ Files.

Example 7.1 Let us explain the translation of the role keygen described in
Examples 4.1 and 4.10. This role contains the following oracle

Okeygen() := rk
R← keyseed ; pk ← pkgen(rk); sk ← skgen(rk); return(pk)

This role is translated into the module µkeygen. Its program program(µkeygen)
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is:

1 let µkeygen.init = let token = ref Callable in tagfunctionkeygen ()→
2 if (!token = Callable) then
3 (token := Invalid;

4 let token = ref Callable in tagfunctionOkeygen ()→
5 if (!token = Callable) then
6 (token := Invalid;
7 let Gvar(rk) = Grandom(keyseed) () in
8 let Gvar(pk) = G(pkgen) Gvar(rk) in
9 pkfile := Gser(Tpk ) Gvar(pk);

10 let Gvar(sk) = G(skgen) Gvar(rk) in
11 skfile := Gser(Tsk ) Gvar(sk);
12 return({(µalice,Any), (µbob,Any)},Gvar(pk)))
13 else raise Bad_Call)
14 else raise Bad_Call

This program defines the function µkeygen.init , which expects () as argument
and returns the function that implements oracle Okeygen. This function itself
expects () as argument and returns the OCaml representation of the public key
pk returned by Okeygen.

The function µkeygen.init can be called only once, which is guaranteed using
a reference token to either Callable or Invalid. If token is already Invalid,
then this function has already been called, so we raise the exception Bad_Call.
Otherwise, we set token to Invalid and we continue by the translation of the
CryptoVerif oracle Okeygen. The oracle Okeygen can also be called only once.
So we define a new reference token, to guarantee this property, and define the
function that implements Okeygen. When this function is called for the first
time, it sets this second token to Invalid, creates a new key seed Gvar(rk),
computes the keys pk and sk and stores them into files, modeled by the global
store references pkfile and skfile. Finally, it returns the public key Gvar(pk).
Since the oracle Okeygen ends the role keygen, and is followed by the roles
alice and bob, we update the set of callable modules MI with the newly defined
modules µalice and µbob, which can be called any number of times, using the
return expression. When this function is called again, it raises the exception
Bad_Call.

To call the translation of oracle Okeygen, one can execute:

µkeygen.init () ()

This code first initializes the role by calling µkeygen.init (), which returns a closure
corresponding to the translation of Okeygen, and then calls this closure.

The generated modules Mg (µrole for each role in the CryptoVerif pro-
cess) are included in manually-written programs that represent the full im-
plementation of the protocol, for instance a client and a server. In par-
ticular, these programs are responsible for sending the result of oracles to
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the network and receiving messages to be passed as arguments to oracles.
These programs interact with an adversary that we model as an OCaml pro-
gram program0. We consider that the programs of the protocol are launched
by the adversary program0 using the addthread construct. The generated
modules depend only on the module containing the cryptographic primitives
µprim, so when the program of a thread uses the primitives or the gener-
ated modules, we can order the programs of the modules in the argument of
addthread in the order program(µprim);; program(µrole1);; . . . ;; program(µrolek);;
program ′ where program ′ contains no generated module, as required by the in-
strumented semantics of addthread (New toplevel add thread). We assume
that program0 uses the generated modules only inside addthread. Moreover,
the network code is well-typed by Assumption A5. Well-typed OCaml with
random is probabilistic Turing complete, so the adversary itself can be im-
plemented by a well-typed OCaml program. Therefore, we can assume that
program0 is a well-typed OCaml program. (Our OCaml programs include
random and exclude type-casting and other constructs that allow to bypass
the type system, as defined in Section 5.) Only the generated modules use
events, tagged functions, and return. The adversary must not use events,
which serve for specifying security properties of the protocol, nor return, which
serves for updating the set of callable generated modules. He uses regular
functions rather than tagged functions. Moreover, as mentioned in Assump-
tion A4, we suppose that only the generated modules access files that con-
tain private CryptoVerif data (free variables of roles and tables). So we let
Locpriv

def
= {f | (x[ ], f) ∈ Files or (Tbl , f) ∈ Tables} ⊆ Locg be the set of global

locations reserved for private CryptoVerif data, and we have the following as-
sumption:

Assumption 7.2 The locations in Locpriv occur only in the programs of gener-
ated modules; they do not occur elsewhere in program0.

The program program0 is run in the initial (instrumented) OCaml configuration
C0(Q0, program0) defined as follows:

C0(Q0, program0)
def
= [〈∅, program0, [ ], ∅〉], globalstore0, 1,GgetMI(Q0), [ ]

where GgetMI(Q0) is the set of modules available at the beginning of the exe-
cution and globalstore0

def
= {l 7→ initval l | l ∈ Locg} is the initial value of the

global store as defined in Section 5.2. Tables are represented by lists, and their
initial value initval l is the empty list [ ], representing that the tables are initially
empty. Files that contain free variables of roles are represented by strings, and
their initial value initval l is the empty string "". For other elements, the initial
value initval l is the default value for the type of location l.

Example 7.3 Let us consider the following toy OCaml program program0,
which uses the translation from Example 7.1 of the process given in Exam-
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ple 4.10.

let _ =
addthread(program(µprim);; program(µkeygen);;

let _ = pkg := µkeygen.init () (); schedule(1);; );
schedule(2);;

This example only creates a thread for key generation, then schedules it by
schedule(2). This thread stores the public key returned by the oracle Okeygen
in the global store location pkg , and returns control to the initial thread by
schedule(1).

Following the annotations of Example 4.10, this example uses two private
global store locations, skfile and pkfile, to store the private and public keys, so
Locpriv = {skfile, pkfile}. It also uses the global store location pkg , so Locg =
Locpriv ∪ {pkg}. Assuming keys are represented by strings, the initial global
store is globalstore0 = {skfile 7→ "", pkfile 7→ "", pkg 7→ ""}. The initial set
of available modules is MI0 = GgetMI(Q0) = {(µkeygen,Once)}, and the initial
configuration is C0(Q0, program0) = [〈∅, program0, [ ], ∅〉], globalstore0, 1,MI0, [ ].

Detailing the reductions of this configuration would take too much space,
but we still give some information on the configuration obtained after evalu-
ating µkeygen.init (). We use this configuration in other examples below. This
configuration is obtained after launching the thread for key generation, so it
has 2 threads, the active thread is thread 2, and no event has been executed,
hence it is C1

def
= [th1, th2], globalstore1, 2,MI1, events1 with events1 = [ ]. The

second thread uses the module µkeygen given in Example 7.1. After evaluating
µkeygen.init (), we obtain th2

def
= 〈env2, pe2, stack2, store2〉, where

envprim is the environment after evaluating program(µprim) ,

env2
def
= envprim ⊕ {µkeygen.init 7→ tagfunctionkeygen,τ1 [envprim ∪ {token 7→ l1},

()→ (lines 2 to 14 of Example 7.1)]} ,

pe2
def
= tagfunctionOkeygen,τ2 [env2 ⊕ {token 7→ l2},

()→ (lines 5 to 13 of Example 7.1)] () ,

stack2
def
= [(env2, pkg := [·]); (env2, [·]; schedule(1)); (env2, let _ = [·];; )] ,

store2
def
= {l1 7→ Invalid, l2 7→ Callable} .

Thread 2 first initializes the module µprim, which creates the environment envprim.
Next, it initializes the module µkeygen: it creates the store location l1 for the to-
ken of µkeygen.init and defines µkeygen.init , which leads to the environment env2.
Then it goes into evaluation contexts to evaluate µkeygen.init (), which leads to
the stack stack2. The evaluation of µkeygen.init () sets the token of µkeygen.init ,
in location l1, to Invalid, creates the location l2 initialized to Callable for
the token of oracle Okeygen, and replaces µkeygen.init () with the corresponding
closure, which leads to the current expression pe2.

The code executed until configuration C1 does not alter the global store,
so globalstore1 = globalstore0. The execution of the addthread expression
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removes (µkeygen,Once) from the set of available modules, since it can be used
only once. Hence MI1 = ∅.

8 Proof of Security
This section presents the proof of correctness of our compiler. We give ourselves
a CryptoVerif process Q0 that corresponds to a cryptographic protocol. Using
our compiler, we generate modulesMg that correspond to the roles present inside
Q0, as explained in the previous section. We consider an adversary interacting
with the protocol implementation, modeled as an OCaml program program0

that uses the generated modules in Mg. As explained in Section 2, when Cryp-
toVerif shows that Q0 satisfies a certain security property, it shows that for any
CryptoVerif adversary Qadv, the probability that Q0 | Qadv breaks the security
property is bounded by a certain bound, which CryptoVerif computes. Our goal
is to show that the same probability bound also applies to the generated imple-
mentation, that is, the probability that program0 breaks the security property is
bounded by the same bound. To prove this property, we build from the OCaml
adversary program0 a CryptoVerif adversary Qadv(Q0, program0) that simulates
program0. We prove that Qadv(Q0, program0) | Q0 and program0 using Mg be-
have similarly, hence they have the same probability of breaking the security
property. To achieve this goal, we need to prove, firstly, that the translations
of the oracles behave in the same way as the CryptoVerif oracles, and secondly,
that our simulation is sound.

In Section 8.1, we state our assumptions on the cryptographic primitives,
and show that the primitives behave correctly independently of the rest of the
program. In Section 8.2, we prove that the OCaml translation of a CryptoVerif
oracle behaves like the oracle. In Section 8.3, we define the CryptoVerif ad-
versary that simulates the OCaml adversary program0. Finally, in Section 8.4,
we prove that the CryptoVerif adversary interacting with Q0 behaves like the
OCaml adversary interacting with the generated implementation. This result
shows the desired correctness of our compiler.

8.1 Correctness of Cryptographic Primitives
Let us first formalize the assumptions we make about the implementation of
cryptographic primitives. Let programprim

def
= program(µprim) be the program of

the module that defines the primitives and interfaceprim
def
= interface(µprim) be

its interface. The interface interfaceprim consists of the function random`, the
functions Gf(f) for each CryptoVerif function f , and the functions Grandom(T ),
Gser(T ), Gdeser(T ), and Gpred(T ) for each CryptoVerif type T for which these
functions are used in the translation, as described in Section 4.3. (The functions
Gser(T ) and Gdeser(T ) are either both present or both absent in interfaceprim.)
We rely on the following assumptions.

Assumption 8.1 There are no schedule, addthread, return, nor event
operations and no global store locations in programprim.
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An OCaml semantic configuration in which the current thread does not use
addthread, return, event, schedule operations, nor global store locations
reduces by using the (Thread) reduction rule th −→p th ′, so we can reduce it
by considering as configuration only a thread th. We denote by TT traces over
threads.

Let ths0
def
= 〈∅, programprim;; , [ ], ∅〉 be a thread configuration that evaluates

only the implementation of the cryptographic primitives module.

Assumption 8.2 There exists a unique complete thread trace TT beginning at
the configuration ths0 and there exists envprim such that the last configuration of
the trace TT is:

th = 〈envprim, ε, [ ], ∅〉

This assumption means that there are no uncaught exceptions, no access to
the store, and no random operations in the initialization of the module µprim,
so that the environment envprim is always the same. Typically, the initialization
just defines functions, so this assumption is not restrictive. Random choices
and a limited access to the store explained below are allowed during calls to
primitives. By definition of a module, we have interfaceprim ⊆ Dom(envprim).

Assumption 8.3 For each CryptoVerif type T , OCaml values of the corre-
sponding type GT(T ) do not contain closures nor store or global store locations.

This assumption formalizes that data passed to or received from generated
code is immutable, as mentioned in Assumption A6: such data does not contain
locations.

To establish the correspondence between CryptoVerif values and OCaml val-
ues, we define a function GvalT , which maps each CryptoVerif bitstring a to its
associated value v in OCaml. For a given type T , GvalT must be a bijection be-
tween T and the set of OCaml values of typeGT(T ) satisfying the predicate func-
tion Gpred(T ). Furthermore, the OCaml value true and the CryptoVerif value
true are such that Gvalbool(true) = true, and the same goes for false. We extend
this function to events by Gev(ev(a1, . . . , aj)) = ev(GvalT1

(a1), . . . ,GvalTj
(aj)) if

ev is of type T1×· · ·×Tj . This function is naturally extended to lists of events.
The next assumption states that the primitives have been correctly imple-

mented, following Assumption A2: the implementation of the cryptographic
primitives in interfaceprim emulates the corresponding behavior of CryptoVerif,
as explained below.

Assumption 8.4 (Correct primitives) 1. For each CryptoVerif function
f of type T1 × · · · × Tn → T , for each CryptoVerif values a1, . . . , an of
types T1, . . . , Tn, there exist env and store such that

〈∅, envprim(Gf(f)) (GvalT1
(a1), . . . ,GvalTn

(an)), [ ], ∅〉 →∗
〈env ,GvalT (f(a1, . . . , an)), [ ], store〉 .
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2. For each CryptoVerif type T such that the function Grandom(T ) is in
interfaceprim, for each CryptoVerif value a ∈ T , there exist env and store
such that

〈∅, envprim(Grandom(T )) (), [ ], ∅〉 →∗1/|T | 〈env ,GvalT (a), [ ], store〉 .

3. For each CryptoVerif type T such that the function Gpred(T ) is in
interfaceprim, for each value v of the OCaml type GT(T ), there exist env
and store such that

〈∅, envprim(Gpred(T )) v, [ ], ∅〉 →∗ 〈env , v′, [ ], store〉

where v′ = true when G−1valT (v) exists, and v
′ = false otherwise.

4. For each CryptoVerif type T such that the functions Gser(T ) and Gdeser(T )
are in interfaceprim, for each CryptoVerif value a ∈ T , there exists an
OCaml string value ser(T, a), such that there exist env and store such
that

〈∅, envprim(Gser(T )) GvalT (a), [ ], ∅〉 →∗ 〈env , ser(T, a), [ ], store〉

and there exist env and store such that

〈∅, envprim(Gdeser(T )) ser(T, a), [ ], ∅〉 →∗ 〈env ,GvalT (a), [ ], store〉 .

5. If v is a non-empty list, then for each a ∈ v, there exist env and store
such that

〈∅, envprim(random`) v, [ ], ∅〉 →∗∑
j∈S almostunif ({1,...,|v|},j) 〈env , a, [ ], store〉

where S def
= {1 ≤ j ≤ |v| | nth(v, j) = a}.

Item 1 states that the implementation Gf(f) of the cryptographic primitive
f emulates f : it returns a result that matches the result of f via the mapping
GvalT from CryptoVerif values to OCaml values. In particular, Gf(f) does not
raise exceptions when its arguments correspond to CryptoVerif values of the
expected type. Since at the CryptoVerif level, f can be any function that sat-
isfies the assumptions given in the CryptoVerif specification, Item 1 just means
that the implementation of f satisfies the assumptions given in the CryptoVerif
specification, as mentioned in Assumption A2. Item 2 means that the func-
tion Grandom(T ) returns a uniformly distributed random element of T . Item 3
means that Gpred(T ) returns true when its argument corresponds to an element
of type T , and false otherwise. Item 4 specifies the correctness of the serial-
ization and deserialization functions, using an auxiliary function ser such that
ser(T, a) is the serialized representation of the CryptoVerif value a, of type T .
Finally, Item 5 guarantees that random` is programmed correctly: random` v
returns a random element of the list v, such that the probability of returning
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the j-th element of v is almostunif ({1, . . . , |v|}, j). In case the same element
occurs several times in v, the probability of that element is then the sum of the
probabilities of all its occurrences.

In contrast to the conference version [10], in this paper, we allow the cryp-
tographic primitives to use the store for their internal computations (which
often happens in practice); the store created by the primitives appears on the
right-hand side of reductions in Assumption 8.4. However, we still assume that
the cryptographic primitives are pure functions: their usage of the store should
not have any visible side effect, so the primitives cannot communicate across
calls or communicate data to the adversary or to the rest of the code using the
store. This assumption is modeled in Assumption 8.4 by considering that the
primitives are initially called in an empty store. Hence, they cannot access pre-
existing locations (there are none), and since their return value does not contain
locations, the store at the end of the call will be unreachable. We show below,
in Proposition 8.5, that when the primitives are called with a non-empty initial
store, the primitives still execute in the same way as with an empty initial store:
the only difference is that the unmodified initial store is added to the current
store. Therefore, the primitives still do not access the initial store and the part
of the store created during the execution of the primitive becomes unreachable
when the primitive returns.

In general, when primitives make probabilistic choices, they might return
the same result in several traces with a different environment and store. To
simplify notations, Assumption 8.4 states that this does not happen, so that we
have the same environment and store in all final configurations that yield the
same result. Our proof could easily be extended to the general case if desired.

The next proposition shows that the primitives always return correct results,
when they are called inside an OCaml program, so possibly with a non-empty
store and a non-empty stack. We prove it in Appendix C. It is a consequence
of Assumption 8.4.

Proposition 8.5 (Correct behavior of the primitives) Let us consider a
thread th

def
= 〈env , envprim(s) v, stack , store〉.

• If s = Gf(f), f is a CryptoVerif function of type T1 × · · · × Tn → T , and
v = (GvalT1(a1), . . . ,GvalTn(an)) for some CryptoVerif values a1, . . . , an of
types T1, . . . , Tn, then there exist env ′ and store ′ such that

th →∗ 〈env ′,GvalT (f(a1, . . . , an)), stack , store ′〉 .

• If s = Grandom(T ) and v = (), then for each CryptoVerif value a ∈ T , there
exist env ′ and store ′ such that

th →∗1/|T | 〈env ′,GvalT (a), stack , store ′〉 .

• If s = Gpred(T ), then there exist env ′ and store ′ such that

th →∗ 〈env ′, v′, stack , store ′〉

where v′ = true when G−1valT (v) exists, and v
′ = false otherwise.
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• If s = Gser(T ) and v = GvalT (a), then there exist env ′ and store ′ such that

th →∗ 〈env ′, ser(T, a), stack , store ′〉 .

• If s = Gdeser(T ) and v = ser(T, a), then there exist env ′ and store ′ such
that

th →∗ 〈env ′,GvalT (a), stack , store ′〉 .

• If s = random` and v is a non-empty list, then for each a ∈ v, there exist
env ′ and store ′ such that

th →∗∑
j∈S almostunif ({1,...,|v|},j) 〈env ′, a, stack , store ′〉

where S def
= {1 ≤ j ≤ |v| | nth(v, j) = a}.

In all cases, we have store ′ ⊇ store.

8.2 Correctness of the Translation of Oracle Bodies
In this section, we show the correctness of the translation of oracle bodies in our
compiler: we show a correspondence between the semantics of the oracle body
in CryptoVerif and the semantics of its translation into OCaml.

Let fv(M), fv(P ), fv(Q) be the sets of free variables of the CryptoVerif
term M and processes P and Q, respectively. These sets are defined as usual,
except that each variable comes with its indices: for example, the free variables
of the term x[̃i] are fv(x[̃i])

def
= {x[̃i]}. We extend this definition to terms and

processes in which the replication indices ĩ have been instantiated to bitstrings:
for example, fv(x[ã]) = {x[ã]}. We extend this definition to sets of processes by
fv(Q) =

⋃
Q∈Q fv(Q) and to stacks by fv(S) =

⋃
((x1[ã],...,xk[ã]),P1,P2)∈S fv(P1) \

{x1[ã], . . . , xk[ã]} ∪ fv(P2).
Next, we define the OCaml value corresponding to a CryptoVerif table, and

we use this definition to define the OCaml environment and global store corre-
sponding to a CryptoVerif environment and to CryptoVerif tables.

Definition 8.6 (CryptoVerif table to OCaml list) Let us consider a table
Tbl of type T1 × · · · × Tl. The serialized OCaml value that corresponds to an
element of this table is

Gtblel(Tbl , (b1, . . . , bl))
def
= (ser(T1,GvalT1(b1)), . . . , ser(Tl,GvalTl

(bl))) .

Let t = [a1; . . . ; ak] be the contents of the table Tbl : each ai is an element of the
table. Let us denote

Gtbl(Tbl , t)
def
= [Gtblel(Tbl , a1); . . . ;Gtblel(Tbl , ak)]

the OCaml list corresponding to t.
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Definition 8.7 (Minimal environment and global store)

env(E,P )
def
= {Gvar(x) 7→ GvalTx(E(x[ã])) | x[ã] ∈ fv(P )} (Environment)

globalstore(E, T ) def
= {f 7→ Gtbl(Tbl , T (Tbl)) | (Tbl , f) ∈ Tables}
∪ {f 7→ ser(Tx, a) | (x[ ], f) ∈ Files, E(x[ ]) = a}
∪ {f 7→ "" | (x[ ], f) ∈ Files, x not defined in E}

(Globalstore)

We define env(E,M) and env(E,Q) in the same way.

The globalstore function defined above returns the global store in which the
contents of the files and the tables is correct with respect to the CryptoVerif
configuration elements E and T . The env function returns the environment
corresponding to E for the free variables in P (or M , or Q).

First, we show a correspondence between a CryptoVerif term and its OCaml
translation.

Lemma 8.8 (Term reduction) Let M be a CryptoVerif term of type T . If

th = 〈env ,GM(M), stack , store〉 with env ⊇ envprim ∪ env(E,M) ,

and E ·M ⇓ a, then th →∗ th ′ where th ′
def
= 〈env ′,GvalT (a), stack , store ′〉 for

some env ′ and store ′ such that store ′ ⊇ store.

In this lemma, we consider an OCaml thread that evaluates the translation
GM(M) of the CryptoVerif term M . We assume that its environment contains
the cryptographic primitives and the minimal environment for M , as defined
in Definition 8.7. We also assume that, in CryptoVerif, M evaluates to a, and
we show that correspondingly, in OCaml, GM(M) evaluates to GvalT (a). The
final store is an extension of the initial one, since primitives may create store
locations internally. We prove this result by induction on the syntax of terms
and by using Proposition 8.5 for the evaluation of cryptographic primitives.

Let us now introduce some notations that allow us to designate the various
parts of OCaml semantic configurations.

Definition 8.9 (Helper functions) For an OCaml configuration

C = [th1, . . . , thn], globalstore, tj ′,MI, events

with thtj = 〈env tj , petj , stack tj , storetj 〉 for all tj ≤ n, let us define the following
functions:

Cpe(C)
def
= petj ′ , Cth(C)

def
= thtj ′ ,

Cglobalstore(C)
def
= globalstore , Cevents(C)

def
= events .

We also define

C[th 7→ th ′, globalstore 7→ globalstore ′,MI 7→MI′, events 7→ events ′]
def
=

[th1, . . . , thtj ′−1, th
′, thtj ′+1, . . . , thn], globalstore ′, tj ′,MI′, events ′ .
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In this notation, one can omit globalstore, MI, or events. When omitted, we
keep the corresponding element of the configuration C.

The notation Cpe(C) denotes the current program or expression of C, Cth(C) de-
notes its current thread, Cglobalstore(C) its global store, and Cevents(C) its list of
events. The notation C[th 7→ th ′, globalstore 7→ globalstore ′,MI 7→MI′, events 7→
events ′] allows us to modify some elements of the configuration C.

Next, we prove that the CryptoVerif oracle bodies P are correctly translated
into OCaml as G(P ). We extend the translation G(P ) to processes in which
some replication indices have been instantiated into their values, using the for-
mulas of Section 7 where replication indices i may be replaced with their value
a. It is easy to see that G(P{a/i}) = G(P ).

Lemma 8.10 (Inner reduction) Let C be a CryptoVerif configuration. Sup-
pose that the program part P of C is not in a return, end, call, or loop form.
Suppose that we have n possible reductions beginning at this configuration:

C = E,P, T ,Q,S, E →pi Ci = Ei, Pi,Q, Ti,S, Ei
for i ≤ n. Let C be an OCaml configuration such that

Cth(C) = 〈env ,G(P ), stack , store〉 with env ⊇ envprim ∪ env(E,P ) ,

Cglobalstore(C) ⊇ globalstore(E, T ) ,
Cevents(C) = Gev(E) .

Then there exist n disjoint sets of OCaml traces CTS1, . . . ,CTSn all starting at
C such that none of these traces is a prefix of another of these traces, Pr[CTSi] =
pi for all i ≤ n, and if C′ is the last configuration of a trace in CTSi, then we
have C′ = C[th 7→ th ′, globalstore 7→ globalstore ′, events 7→ events ′] where

th ′ = 〈env ′,G(Pi), stack , store ′〉
with env ′ ⊇ envprim ∪ env(Ei, Pi) and store ′ ⊇ store ,

globalstore ′ ⊇ globalstore(Ei, Ti) ,
globalstore ′(l) = Cglobalstore(C)(l) for all l 6∈ Locpriv ,

events ′ = Gev(Ei) .

The proof of this lemma can be found in Appendix D. This lemma is proved
by cases on the process P . We use Lemma 8.8 when we need to evaluate a
term. The cases end and return will be handled when we prove the invariant
for the whole system; the oracle bodies that we translate into OCaml do not
contain calls nor loops. This lemma shows that the following invariants are
preserved during the evaluation of oracle bodies: the OCaml environment and
global store contain the minimal environment and global store corresponding
to the CryptoVerif configuration; the public part of the global store does not
change; the OCaml and CryptoVerif events match. Locations may be added in
the store, but the contents of existing locations does not change. We use sets of
traces on the OCaml side, because the OCaml implementation of primitives may
make internal random choices, leading to several traces for the same arguments
and the same result, which all correspond to the same CryptoVerif trace.
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1 Qadv(Q0, program0) = Qstart(Q0, program0) | Qc(Q0, program0)

2 Qstart(Q0, program0) = Ostart() :=
3 s0 : TCS ← s0(Q0, program0);
4 let r : TCS = loop Oloop(s0) in end else end
5 Qc(Q0, program0) = foreach i′ ≤ Nrand+calls do
6 Oloop[i

′](s : TCS) :=
7 let (s′ : TCS, o : To, i : bitstring , args : bitstring) = simulateML(s) in
8 if o = oS then
9 returns′, stop

10 else if o = o1 then
11 let (a1,1 : T1,1, . . . , a1,m1

: T1,m1
) = args in

12 let (i1,1 : [1, N1,1], . . . , i1,n1
: [1, N1,n1

]) = i in
13 let (r1,1 : T ′1,1, . . . , r1,m′

1
: T ′1,m′

1
) = O1[i1,1, . . . , i1,n1 ](a1,1, . . . , a1,m1) in

14 return(simulateretO1
(s′, (r1,1, . . . , r1,m′

1
)), continue)

15 else return(simulateendO1(s
′), continue)

16 elseif o = o2 then

17
...

18 elseif o = oR then

19 bR
R← bool ;

20 return(simulateR(s
′, bR), continue)

Figure 18: The program Qadv(Q0, program0)

8.3 Simulation of the OCaml Adversary
In this section, we show how to simulate in CryptoVerif any OCaml program
program0 that corresponds to an adversary interacting with the protocol imple-
mentation generated from the CryptoVerif process Q0. Basically, we run the
OCaml program program0 inside the CryptoVerif function simulateML (which is
possible since these functions can represent any deterministic Turing machine).
When program0 needs to call an oracle of Q0, the function returns and the call
is made by CryptoVerif. When program0 needs to generate a random number,
this generation is performed by CryptoVerif.

In more detail, from the OCaml program program0, we define a Cryp-
toVerif adversary Qadv(Q0, program0) given in Figure 18. We will prove that
this process, when executed in parallel with Q0, has the same behavior as
the OCaml program program0. The initial CryptoVerif configuration is then
C0(Q0, program0) = Ci(Q0 | Qadv(Q0, program0)). Informally, in Figure 18, the
state s is a bitstring representation of the current OCaml semantic configura-
tion. The oracle Ostart iterates the oracle Oloop with initial state s0 = s0(Q0,
program0), which is a bitstring representation of the initial OCaml configura-
tion in which program0 is executed. Inside Oloop(s), the function simulateML(s)
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basically runs the OCaml program from state s, following the OCaml semantics
with the following exceptions:

• When the OCaml program calls an oracle, simulateML returns (s′, o, i, args)
where s′ is a bitstring representation of the new OCaml semantic configu-
ration, o is a constant among o1, o2, . . . that encodes which oracle is called,
i is the tuple of indices with which the oracle is called, and args is the
tuple of arguments of the oracle. In this case, Oloop calls the correspond-
ing oracle O (lines 10–17). If the oracle call succeeds, it uses the function
simulateretO, which replaces the oracle call with the result ri,1, . . . , ri,m′

i

of the oracle in the OCaml configuration s′ (see Definition 8.13 below).
If the oracle call fails, the call raises the exception Match_failure in
OCaml; the function simulateendO then replaces the oracle call with this
exception in the OCaml configuration s′ (see Definition 8.13 below). The
execution of the program then continues with the new configuration in the
next iteration.

• When the OCaml program chooses a random bit, simulateML returns (s′,
oR, (), ()) where s′ is again a bitstring representation of the current OCaml
semantic configuration. In this case, Oloop chooses a random bit (lines 18–
20) and uses the function simulateR (see Definition 8.14 below) to integrate
that random bit into the OCaml configuration s′. The execution of the
program continues with the new configuration in the next iteration.

• When the OCaml program terminates, simulateML returns (s′, oS, (), ()),
and the CryptoVerif adversary also terminates. (The second element re-
turned by Oloop is stop, which stops the iteration.)

The rest of this section is devoted to the formal definition of all elements used
in Figure 18.

We assume that the OCaml program program0 runs in bounded time, so
makes a bounded number of oracle calls. By Assumption 4.15, when an oracle
O (resp. role role) is under replication, this replication has bound NO (resp.
Nrole). When oracle O is under replication, we let NO be the maximum number
of calls to the same closure tagfunctionO,τ [env , pm] corresponding to oracle
O. When a role role is under replication, we let Nrole be the maximum number
of executions of addthread(program) for some program that contains µrole.
These replication bounds are chosen such that the OCaml program program0

never exhausts the number of oracle calls allowed by the CryptoVerif process.
We let Nrand+calls be the maximum number of oracle calls and random number
generations that the OCaml program program0 can make plus one. We let
Nsteps be the maximum number of reduction steps of the program program0 in
the semantics of OCaml. Formally, we use the following definition:

Definition 8.11 The number of calls to the closure with tag O, τ in a trace CT,
denoted Ncalls(O, τ,CT), is the number of configurations C such that Cpe(C) =
tagfunctionO,τ [env , pm] v in CT excluding its last configuration.
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The number of executions of role role in a trace CT, denoted Nexec(role,CT),
is the number of configurations C such that Cpe(C) = addthread(program)
where program contains program(µrole) in CT excluding its last configuration.

The number of random number generations in a trace CT, denoted Nrand(CT),
is the number of configurations C such that Cpe(C) = random () in CT exclud-
ing its last configuration.

We define

NO
def
= max

CT,τ
Ncalls(O, τ,CT)

Nrole
def
= max

CT
Nexec(role,CT)

Nrand+calls
def
= max

CT

Nrand(CT) +
∑
O,τ

Ncalls(O, τ,CT)

+ 1

Nsteps
def
= max

CT
|CT|

where CT ranges over traces that begin with the configuration C0(Q0, program0).

While NO is an optimal bound, Nrole is not optimal. Consider for instance
a process of the form

foreach i ≤ NO do O() := . . .} foreach j ≤ Nrole do role {. . .

By distributing the instantiations of role on every available index i, the optimal
bound of the replication j is the maximum during all executions of program0 of
the number of instantiations of role divided by the number of calls to O made
before these instantiations of role. To get this optimal bound, we would need
to associate each new instantiation of role to the index i with the least number
of associated instantiations of role. Since a role is often under at most one
replication, we decided not to complicate the proof with details needed to get
the optimal bound.

In Figure 18, we use a let construct with pattern matching, which can be
defined as follows. We define the function tupleT1,...,Tj

: T1×· · ·×Tj → bitstring
that creates a tuple with j elements (for instance by concatenating the j bit-
strings with information on their length, so that they can be unambiguously re-
covered), and the associated projections πk,T1,...,Tj : bitstring → Tk with k ≤ j
(which may return any value when their argument is not a tuple with j ele-
ments). The construct let (x1 : T1, . . . , xj : Tj) = M in P is an abbreviation
for:

x←M ;x1 ← π1,T1,...,Tj
(x); . . . ;xj ← πj,T1,...,Tj

(x);

if x = tupleT1,...,Tj
(x1, . . . , xj) then P else end

where x is a fresh variable. The CryptoVerif term (M1, . . . ,Mj) is an abbrevia-
tion for tupleT1,...,Tj

(M1, . . . ,Mj), where T1, . . . , Tj are the types ofM1, . . . ,Mj ,
respectively.
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Let O1, . . . , On be the oracle names in Q0. We define n constants o1, . . . , on
which are used to designate the oracles O1, . . . , On respectively, oR which corre-
sponds to a random choice, and oS which corresponds to the end of the OCaml
program. We define the CryptoVerif type To

def
= {oR, oS, o1, . . . , on}, which con-

tains all these bitstring constants.
The adversary is mainly encoded by the function simulateML. This func-

tion takes as argument the bitstring representation s = repr(CS) of a simulator
configuration CS. The configuration CS consists of a non-instrumented OCaml
configuration C (with some extensions to the syntax described later) and sets
RI and I that finitely represent the callable oracles Q of the CryptoVerif con-
figuration:

CS = ([th1, . . . , thn], globalstore, i)︸ ︷︷ ︸
C

,RI, I .

The function repr is injective. We denote its inverse by repr−1. We also define
a CryptoVerif type TCS that consists of all bitstrings in the image of repr , that
is, all bitstrings that correspond to simulator configurations CS. We also use
the notations of Definition 8.9 for simulator configurations.

When we call an oracle or instantiate a role under replication, we must choose
an unused replication index for this replication, and call the oracle or instantiate
the role with that replication index. In this simulation, we will always choose the
smallest replication index that has not been used yet, so that the used indices
form an interval [1, a − 1] and the unused indices are in [a,N ] where N is the
bound of the considered replication. The sets RI and I represent the sets of
callable roles and oracles, by storing the smallest index a that is not used yet.

More precisely, the set RI represents the set of callable roles with their
replication indices. Elements of RI are either:

• of the form role
[
[a,+∞[, ã′

]
. Intuitively, this element represents all roles

role[a′′, ã′] for a′′ ≥ a, which we represent by the interval [a,+∞[. When
role
[
[a,+∞[, ã′

]
is in RI, the role role is under replication, the roles role[1,

ã′] to role[a− 1, ã′] have been used, and the roles role[a, ã′] to role[Nrole, ã′]
are usable.

• or of the form role[ã], which means that role is not under replication and
the role role is callable with the replication indices ã.

The set RI never contains simultaneously role
[
[a,+∞[, ã′

]
and role[ã′′] for the

same role and any a, ã′, ã′′, and it never contains simultaneously role
[
[a,+∞[, ã′

]
and role

[
[a′′,+∞[, ã′

]
with a 6= a′′ for the same role and ã′.

The set I represents the set of callable oracles with their replication indices.
Elements of I are either:

• of the form O
[
[a,+∞[, ã′

]
, which means that the oracle O is under replica-

tion and the oracles O[1, ã′] to O[a−1, ã′] have been used, and the oracles
O[a, ã′] to O[NO, ã′] are usable,
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• or of the form O[ã] which means that O is an oracle not under replication
that can be called with the replication indices ã.

The set I never contains simultaneously O
[
[a,+∞[, ã′

]
and O[ã′′] for the same

O and any a, ã′, ã′′, and it never contains simultaneously O
[
[a,+∞[, ã′

]
and

O
[
[a′′,+∞[, ã′

]
with a 6= a′′ for the same O and ã′.

Next, we define functions that manipulate these sets of oracles and roles.
We define the subtraction operation I−O[ã] on sets of oracles.

• If O
[
[a,+∞[, ã′

]
is in I, then

I− (O[a, ã′])
def
= I \ {O

[
[a,+∞[, ã′

]
} ∪ {O

[
[a+ 1,+∞[, ã′

]
} .

• If O[ã] is in I, then
I− (O[ã])

def
= I \ {O[ã]} .

We define similarly the subtraction on sets of roles RI−role[ã]. We also generalize
this operator to sets:

RI− {role1[ã1], . . . , rolek[ãk]}
def
= (. . . (RI− role1[ã1])− . . .)− rolek[ãk] .

We let smallest(RI, role) be the smallest indices present for the role role in RI:
when ã = smallest(RI, role), we have role[ã] ∈ RI or there exist a′ and ã′ such
that ã = a′, ã′ and role

[
[a′,+∞[, ã′

]
∈ RI.

Let us define the function oraclelist , which is similar to oracledeflist but
just returns the oracle name and its replication indices ĩ (which can be partly
instantiated to values), instead of returning the entire oracle definition:

oraclelist(0)
def
= [ ] (Nil)

oraclelist(Q1 | Q2)
def
= oraclelist(Q1)@ oraclelist(Q2) (Par)

oraclelist(foreach i′ ≤ n do Q)
def
=
[
O1[_, ĩ], . . . , Ol[_, ĩ]

]
when

oraclelist(Q) =
[
O1[i

′, ĩ], . . . , Ol[i
′, ĩ]
]

(Repl)

oraclelist(role {Q)
def
= [ ] (Role)

oraclelist(O[̃i](x1 [̃i], . . . , xk [̃i]) := P )
def
=
[
O[̃i]

]
(Oracle)

This function returns elements of the form O[̃i] for oracles that are not directly
under replication and O[_, ĩ] for oracles directly under replication. Similarly
to oracledeflist , this function returns an empty list when encountering a role
definition.

Let us consider a process Q′ = foreach i′ ≤ n do Q. By Assumption 4.14,
there is no replication in Q, and so all oracles in Q are under the same replica-
tions and have exactly the same replication indices i′, ĩ, where the indices ĩ are
the replication indices of replications above Q′. So, by rule (Repl), oraclelist(Q′)
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produces the list of callable oracles in Q where we replace the replication index
i′ with _.

By Property 4.5, an oracle with a certain name O always takes arguments
of the same types and always returns values of the same types. So we can
say that the oracle Oi takes mi arguments of types Ti,1, . . . , Ti,mi

, and returns
m′i bitstrings of types T ′i,1, . . . , T ′i,m′

i
. We can also define returnoracles(O[̃i])

def
=

oraclelist(Q) where Q is an oracle definition located after a return statement in a
body of the oracle O[̃i] in Q0. This definition is correct because, by Property 4.5,
the structure of the processes Q after any return statement of a given oracle O
is always the same, so the list oraclelist(Q) will be the same for each of these Q.
The function returnoracles can take an oracle with its replication indices partly
instantiated to values: returnoracles(O[ã])

def
= returnoracles(O[̃i]){ã/̃i}.

Let us recall that we denote by Q(role) the subprocess of Q0 that corresponds
to the role role. For a subprocess Q of Q0 that is under replication indices ĩ
in Q0, we denote Q[ã] the process Q where we substituted elements of ĩ by the
respective elements of ã.

Definition 8.12 (First oracle) The first oracles of a role role are the oracles
that can be called when we are at the beginning of the subprocess corresponding
to the role, that is, oraclelist(Q(role)).

We define add(I,RI) as the addition of the first oracles present in RI to I:

add(I,RI) def
= I ∪ {O[ã] | role[ã] ∈ RI, O[ã] ∈ oraclelist(Q(role)[ã])} ∪

{O
[
[1,+∞[, ã

]
| role[ã] ∈ RI, O[_, ã] ∈ oraclelist(Q(role)[ã])}

The syntax of the language of the simulator is almost the same as the lan-
guage we described in Section 5, with the addition of tagged functions intro-
duced in Section 6. We add the functional values call(O[ã]) and call(O[_, ã])
that replace our generated closures for the oracle O. The value call(O[ã]) is
used when O is not directly under replication; call(O[_, ã]) is used when O is
directly under replication.

We present the semantics followed by our simulator in Figure 19. When we
encounter a configuration containing a successful call to an oracle (by call) or a
random operation, we cannot reduce. These operations are executed, but not in-
side the simulator: we stop the simulator in its current state, and in CryptoVerif,
we call the requested oracle with the requested arguments, or generate a random
bit. Otherwise, when the simulator configuration reduces into another configu-
ration in the OCaml semantics, by rule (Simulator toplevel), we also reduce in
the same way. By rules (FailedCall1) and (FailedCall2), we raise the exception
Bad_Call when the call to the oracle is invalid, as our generated code does in
this case. Notice that, in the OCaml implementation, the adversary can test
whether an oracle call succeeds or not, by catching the exception Bad_Call. In
CryptoVerif, failed calls can happen only when the called oracle is not available,
and in this case, the reduction blocks. This different behavior does not give ad-
ditional power to the OCaml adversary, because the adversary can test before
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O[ã] 6∈ I
or O does not have k arguments
or O has k arguments of type T1, . . . , Tk and ∃i, 6 ∃ai, vi = GvalTi

(ai)

env , call(O[ã]) (v1, . . . , vk), stack −→ env , raise Bad_Call, stack
(FailedCall1)

∀a′, O
[
[a′,+∞[, ã

]
6∈ I

or O does not have k arguments
or O has k arguments of type T1, . . . , Tk and ∃i, 6 ∃ai, vi = GvalTi

(ai)

env , call(O[_, ã]) (v1, . . . , vk), stack −→ env , raise Bad_Call, stack
(FailedCall2)

C→ C′ using the rules of Figures 7–14, (FailedCall1), and (FailedCall2)
but not (Random) and (Toplevel add thread)

C,RI, I→ C′,RI, I
(Simulator toplevel)

programa = programprim;; program(µrole1);; . . . ;; program(µrolel);; program ′

program ′ does not contain program(µprim) nor any program(µ) for µ ∈Mg

{µrole1 , . . . , µrolel} ⊆Mg

ã1 = smallest(RI, role1), . . . , ãl = smallest(RI, rolel)
RI′′ = {role1[ã1], . . . , rolel[ãl]} RI′ = RI− RI′′ I′ = add(I,RI′′)
programb = programprim;; program ′(role1[ã1]);; . . . ;; program ′(rolel[ãl]);;

program ′

or
programa does not contain program(µprim) nor any program(µ) for µ ∈Mg

RI′′ = ∅ RI′ = RI I′ = I programb = programa

[th1, . . . , thtj−1, 〈env ,addthread(programa), stack , store〉, thtj+1, . . . , thn],
globalstore, tj ,RI, I −→

[th1, . . . , thtj−1, 〈env , (), stack , store〉, thtj+1, . . . , thn, 〈∅, programb, [ ], ∅〉],
globalstore, tj ,RI′, I′

(Simulator add thread)

Figure 19: Semantics followed by the simulator
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performing the call whether it will succeed or not. The rules (FailedCall1)
and (FailedCall2) implement this test. By rule (Simulator add thread), we
modify the behavior of the addthread construct to transform references to
our generated modules program(µrole) into references to the corresponding role
program ′(role[ã]) where ã are the replication indices we chose for this particular
reference and

program ′(role[ã])
def
=

let µrole.init = let token = ref Callable in tagfunctionrole pm ′role[ã]

where pm ′role[ã]

def
= ()→

if (!token = Callable)
then (token := Invalid; (call(O1[ã1]), . . . , call(Ok[ãk])))
else raise Bad_Call

where oraclelist(Q(role)[ã]) = [O1[ã1], . . . , Ok[ãk]], and the ãj are either ã or
_, ã. In particular, the initialization function defined in program ′(role[ã]) returns
oracles represented by call values instead of closures.

The CryptoVerif function simulateML : TCS → bitstring follows the simulator
semantics defined in Figure 19: formally, we define simulateML(repr(CS)) def

=
simreturn(CS′) where CS′ is the configuration such that either CS reduces into
CS′ in at most Nsteps reductions and CS′ does not reduce, or CS reduces into CS′
in exactly Nsteps reductions, by the semantics of Figure 19, and simreturn(CS′)
is defined below. (We need to bound the number of reductions to make sure
that simulateML is always defined. The proof of the simulation between OCaml
and CryptoVerif, presented in the next section, shows that the simulator con-
figuration always blocks after at most Nsteps reductions, so that we are always
in the first case.)

• If Cpe(CS′) = call(O[ã]) (v1, . . . , vl), let T1, . . . , Tl be the type of the
arguments of the oracle O and let o be the constant associated to O. We
define

simreturn(CS′) def
= (repr(CS′), o, ã, (G−1valT1

(v1), . . . ,G−1valTl
(vl))) .

• If Cpe(CS′) = call(O[_, ã]) (v1, . . . , vl), let T1, . . . , Tl be the type of the
arguments of the oracle O, let o be the constant associated to O, and let a′
be the value such that O

[
[a′,+∞[, ã

]
is in the set I where CS′ = C,RI, I.

We define

simreturn(CS′) def
= (repr(CS′), o, (a′, ã), (G−1valT1

(v1), . . . ,G−1valTl
(vl))) .

• If Cpe(CS′) = random (), we define

simreturn(CS′) def
= (repr(CS′), oR, (), ()) .

• Otherwise, we define

simreturn(CS′) def
= (repr(CS′), oS, (), ()) .
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The function simulateML can be implemented by a deterministic Turing machine
(since the random choices are handled outside simulateML), so it can be used as
a CryptoVerif function.

When simulateML returns (repr(CS′), o, ã, (a1, . . . , al)), the CryptoVerif pro-
cess Qc(Q0, program0) performs the corresponding oracle call O[ã](a1, . . . , al)
(lines 10–17 of Figure 18). Similarly, when simulateML returns (repr(CS′), oR, (),
()), the process Qc(Q0, program0) performs a random choice (lines 18–20), and
when simulateML returns (repr(CS′), oS, (), ()), the process Qc(Q0, program0)
terminates (lines 8–9; the corresponding OCaml program also terminates).

The functions simulateretO and simulateendO replace, in the simulator config-
uration, the call expression with the result returned by the oracle, and raise the
Match_failure exception, respectively. The function simulateretO handles the
situation in which an oracle returns a result by return; the function simulateendO

handles the situation in which the oracle terminates with end. Formally, these
functions are defined as follows.

Definition 8.13 (Simulation of oracle return) Let us consider a simulator
configuration CS = C,RI, I, with

Cpe(CS) = call(O[ã]) (v1, . . . , vl) or call(O[_, ã′]) (v1, . . . , vl) .

When Cpe(CS) is of the second form, we denote by ã the indices a′′, ã′ where a′′

is such that O
[
[a′′,+∞[, ã′

]
∈ I. Let I′ def

= I− (O[ã]).
We define the CryptoVerif function simulateretO : TCS × bitstring → TCS as

follows.

1. If the returns in oracle O end the current role, then by Property 4.11, there
is only one return statement in O; let Q be the oracle definition following
this statement, and let

RI′ def
= {role[ã] | (µrole,Once) ∈ GgetMI(Q)}
∪ {role

[
[1,+∞[, ã

]
| (µrole,Any) ∈ GgetMI(Q)} .

Let T1, . . . , Tn be the types of the return value of O. We define:

simulateretO(repr(C,RI, I), (r1, . . . , rn))
def
= repr(C′,RI ∪ RI′, I′)

where C′ is the configuration C in which the current expression is replaced
with the translated result: (GvalT1

(r1), . . . ,GvalTn
(rn)).

2. If the returns in oracle O do not end the current role, then let us define
O def

= returnoracles(O[ã]). Let I′′ be the set I′ to which we added the oracles
present in O:

I′′ def
= I′ ∪ {O′

[
[1,+∞[, ã

]
| O′[_, ã] ∈ O} ∪ {O′[ã] | O′[ã] ∈ O} .

We define:

simulateretO(repr(C,RI, I), (r1, . . . , rn))
def
= repr(C′,RI, I′′)
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where C′ is the configuration C in which the current expression is re-
placed with the translated result: (call(O1[ã1]), . . . , call(Ol[ãl]),GvalT1(r1),
. . . ,GvalTn

(rn)), with O = {O1[ã1], . . . , Ol[ãl]} and the ãj are either ã or
_, ã.

3. In all other cases (that is, CS is not of the form mentioned above or a is
not a tuple of n bitstrings of types T1, . . . , Tn), simulateretO(repr(CS), a)
can take any value, since these cases are in fact not used.

Finally, we define the CryptoVerif function simulateendO : TCS → TCS by:

simulateendO(repr(C,RI, I)) def
= repr(C′′,RI, I′)

where C′′ is the configuration C in which the current expression is replaced
with raise Match_failure. In all other cases (that is, CS is not of the form
mentioned above), simulateendO(repr(CS)) can take any value, since these cases
are in fact not used.

When the returns in oracle O end the current role, the function simulateretO

does not return the oracles following the current oracle, but adds the corre-
sponding roles to the role set RI. The programs that contain these roles can
then be launched by addthread.

Definition 8.14 (Random simulation) We define the CryptoVerif function
simulateR : TCS × bool → TCS by

simulateR(repr(C,RI, I), b) def
= repr(C′(b),RI, I)

where C′(b) is the configuration C in which the current expression is replaced
with the OCaml boolean value Gvalbool(b).

Let us finally define the initial state of the simulator. Let RI0 be the set of
initially callable roles of Q0 with their replication indices: RI0

def
= {role[ ] | (µrole,

Once) ∈ GgetMI(Q0)} ∪ {role
[
[1,+∞[

]
| (µrole,Any) ∈ GgetMI(Q0)}. We define:

s0(Q0, program0)
def
= repr(([〈∅, program0, [ ], ∅〉], globalstore0, 1),RI0, ∅)

Let us introduce notations for subprocesses of Figure 18, used in the next
example and in Definition 8.32.

Definition 8.15 (Processes) We use the following notations:

Ploop is the process from line 7 to line 20 in Figure 18.

Qloop
def
= Oloop[i

′](s : TCS) := Ploop .

Preturn-loop(α)
def
= if bα,r[ ] then

let r[ ] : TCS = loop Oloop[α+ 1](r′α,r[ ]) in end else end

else r[ ]← r′α,r[ ]; end .

Sloop(α)
def
= [((r′α,r[ ], bα,r[ ]), Preturn-loop(α), end), (x[ ], return(x[ ]), end)] .
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These notations are useful to represent the CryptoVerif configuration when
CryptoVerif calls simulateML, at line 7 of Figure 18: in iteration α of oracle Oloop,
the current process is Ploop{α/i′}, the available Oloop oracles are Qloop{a/i′} for
α < a ≤ Nrand+calls, and the CryptoVerif stack is Sloop(α).

Example 8.16 Let us consider again the OCaml program program0 of Exam-
ple 7.3 and the process Q0 of Example 4.10. The initial state of the simulator
is then s0(Q0, program0) = repr(CS0) with

CS0
def
= ([〈∅, program0, [ ], ∅〉], globalstore0, 1),RI0, I0

where RI0
def
= {keygen[ ]}, I0

def
= ∅, and globalstore0 is defined in Example 7.3.

We execute the simulator of Figure 18 with that value of s0(Q0, program0);
in this example, the oracles O1, O2, . . . are Okeygen, OA, and OB. CryptoVerif
calls oracle Ostart, which iterates Oloop. It first calls Oloop[1](s0(Q0, program0)),
which calls simulateML(s0(Q0, program0)) (Figure 18, line 7). This function
starts running the simulator semantics. In the execution of the addthread
expression, role1 = keygen, ã is empty, RI′′ = {keygen[ ]}, so keygen[ ] is removed
from RI, which becomes RI1 = ∅, and the corresponding oracle Okeygen[ ] is
added to I, which becomes I1 = {Okeygen[ ]}: this oracle can now be called. In
the added thread, program(µkeygen) is replaced with

program ′(keygen[ ])
def
=

let µkeygen.init = let token = ref Callable in tagfunctionkeygen ()→
if (!token = Callable)
then (token := Invalid; call(Okeygen[ ]))
else raise Bad_Call

After the evaluation of µkeygen.init (), the simulator configuration is CS1
def
=

([ths
1, th

s
2], globalstores

1, 2),RI1, I1 where

ths
2

def
= 〈env s

2, pes
2, stack s

2, stores
2〉 ,

env s
2

def
= envprim ⊕ {µkeygen.init 7→

tagfunctionkeygen,τ1 [envprim ∪ {token 7→ l1}, pm ′keygen[ ]]} ,

pes
2

def
= call(Okeygen[ ]) () ,

stack s
2

def
= [(env s

2, pkg := [·]); (env s
2, [·]; schedule(1)); (env s

2, let _ = [·];; )] ,

stores
2

def
= {l1 7→ Invalid} .

The execution of this thread in the simulator is fairly similar to the one in
OCaml, discussed in Example 7.3. It first initializes the module µprim, which
creates the environment envprim. Next, it initializes the module µkeygen: it creates
the store location l1 for the token of µkeygen.init and defines µkeygen.init , which
leads to the environment env s

2. Then it goes into evaluation contexts to evaluate
µkeygen.init () (), which leads to the stack stack s

2. The evaluation of µkeygen.init ()
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sets the token of µkeygen.init , in location l1, to Invalid and replaces µkeygen.init ()
with the corresponding call value, which leads to the current expression pes

2.
In contrast to the OCaml execution, no token is created for oracle Okeygen, so
location l2 does not appear. The global store remains unchanged: globalstores

1 =
globalstore0.

At this configuration, the function simulateML stops and returns to Cryp-
toVerif to evaluate the call to oracle Okeygen[ ]. The CryptoVerif configura-
tion at this point is C1 = E1, Ploop{1/i′}, T1,Q1,Sloop(1), E1 where T1 = ∅ since
this example does not use tables; Q1 = {Qloop{a/i′} | 1 < a ≤ Nrand+calls} ∪
{Okeygen[ ]() := . . . (as in Q0)} since Oloop has been called with index 1 and is
still available for larger indices, Okeygen has not been called yet, so it is avail-
able, OA and OB will become available only after the return from Okeygen;
E1 = [ ] since no events have been executed so far.

8.4 Correspondence between the CryptoVerif and OCaml
Systems

In this section, we prove our main security theorem by relating the CryptoVerif
and OCaml systems.

Similarly to the definition of Pr[C :(CV) D] in Section 4.2, we define the proba-
bility of breaking the security property associated to D in OCaml: Pr[C :(ML) D]
is the probability of the set of complete OCaml traces starting at C and such that
the list of events events in their last configuration satisfies D(G−1ev (events)) =
true. Our goal is to prove that, for all protocolsQ0, OCaml adversaries program0,
and distinguishers D, we have

Pr[C0(Q0, program0) :
(CV) D] = Pr[C0(Q0, program0) :

(ML) D] .

As explained in Section 2, this result shows the correctness of our compiler.
To that order, we first introduce an intermediate semantics for CryptoVerif

that decomposes the evaluation of the function simulateML into several small
steps. We easily relate this semantics to the semantics of CryptoVerif. Next,
in Section 8.4.2, we relate the intermediate semantics to the OCaml semantics.
For this purpose, we introduce a relation between intermediate semantic config-
urations and OCaml traces, that, in particular, ensures that the events are the
same on both sides and we prove that this relation is preserved by reduction.
Finally, in Section 8.4.3, we use these results to prove our main theorem.

8.4.1 Intermediate Semantics

We introduce extended CryptoVerif configurations Ccs, which are configurations
of the form C or C, steps,CS, where CS is a simulator configuration and steps
is the maximum number of reductions of CS that can still be performed. (We
use the field steps to guarantee termination.) The configurations C, steps,CS
serve to represent the state of the system during the evaluation of the function
simulateML. We define a reduction relation  on the extended configurations
Ccs.
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Definition 8.17 Let us define the reduction relation  such that:

E,P, T ,Q,S, E →p C′
P is not of the form x[a]← simulateML(s[a]);P

′ for any x, a, P ′

E,P, T ,Q,S, E  p C′
(CryptoVerif)

E(s[a]) = repr(CS)
E, x[a]← simulateML(s[a]);P

′, T ,Q,S, E  
E, x[a]← simulateML(s[a]);P

′, T ,Q,S, E , Nsteps,CS

(Enter Simulator)

CS→ CS′ steps > 0

E,P, T ,Q,S, E , steps,CS E,P, T ,Q,S, E , steps − 1,CS′
(Simulator)

CS does not reduce or steps = 0

E, x[a]← simulateML(s[a]);P
′, T ,Q,S, E , steps,CS 

E[x[a] 7→ simreturn(CS)], P ′, T ,Q,S, E

(Leave Simulator)

When encountering a configuration C = E,P, T ,Q,S, E such that P is of
the form x[a]← simulateML(s[a]);P

′ and E(s[a]) = repr(CS), we reduce C into
an extended configuration C, Nsteps,CS by (Enter Simulator). We reduce CS
by (Simulator) until it blocks or the number of allowed reductions Nsteps is ex-
hausted, and then we resume the CryptoVerif reductions by (Leave Simulator).

In the next lemma and proposition, we relate traces using  to traces using
→, to prove that all events have the same probability in these two semantics.
These results are proved in Appendix E.

Lemma 8.18 Let C be a CryptoVerif configuration.

• If C →p C′, then there is a trace C  ∗p C′ and all intermediate configura-
tions in this trace (if any) are of the form C, steps,CS.

• If C does not reduce by →, then it does not reduce by  either.

We denote by Pr[Ccs :( ) D] the probability of the set of complete Cryp-
toVerif traces using  starting at Ccs and such that the list of events E in
their last configuration satisfies D(E) = true. The next proposition shows that
all events have the same probability in the intermediate semantics as in the
CryptoVerif semantics.

Proposition 8.19 Pr[C :( ) D] = Pr[C :(CV) D].

Proof sketch We partition the set of complete traces using → and beginning
at C into two: the traces CT Strue that verify D and the traces CT S false that
do not verify D. By using Lemma 8.18, we convert these sets into two sets of
traces using  , CT Scs

true and CT Scs
false. Traces in CT Scs

true verify D, and traces
in CT Scs

false do not verify D, and Pr[CT Sb] = Pr[CT Scs
b ] for b ∈ {true, false}.

These two sets form a partition of the set of complete traces using  . �

67



8.4.2 Relation between the Intermediate Semantics and the OCaml
Semantics

In this section, we first define a relation between the intermediate semantics and
the OCaml semantics. Then, we prove that this relation holds, which implies
that Pr[C0(Q0, program0) :

( ) D] = Pr[C0(Q0, program0) :
(ML) D].

Since the definition of the relation is fairly complex, we proceed in several
steps. We first define an invariant on the simulator configurations, which in-
tuitively means that each oracle is in a single status (possibly available in the
future, available for immediate calls, already called) and that oracles available
in different threads are distinct. To formalize this invariant, we first define the
sets of oracles represented by I and RI.

Definition 8.20 (Concretization of I and RI) Let us define the sets of or-
acles O∞(I) and O∞(RI) represented by I and RI respectively:

O∞(I) def
= {O[b, ã′] | O

[
[a,+∞[, ã′

]
∈ I, a ≤ b} ∪ {O[ã] | O[ã] ∈ I}

O∞(RI) def
= {O[b, ã] | role[ã] ∈ RI, O[_, ã] ∈ oraclelist(Q(role)[ã]), 1 ≤ b}
∪ {O[ã] | role[ã] ∈ RI, O[ã] ∈ oraclelist(Q(role)[ã])}

∪ {O[b, ã′] | role
[
[a,+∞[, ã′

]
∈ RI,

O[b, ã′] ∈ oraclelist(Q(role)[b, ã′]), a ≤ b}

The definition of O∞(I) and O∞(RI) ignores the replication bounds and allows
the indices of oracles to go to infinity. Using unbounded indices is helpful in
Definition 8.22 below. By Assumption 4.14, when O is a first oracle of a role
role under replication, O cannot be under replication in Q(role). So the last
component of O∞(RI) cannot contain oracles under replication.

Next, we define several sets of oracles and roles, which allow us to determine
which oracles and roles are in which state (callable immediately, available later)
in a simulator configuration.

Definition 8.21 (Oracle sets) Let Ocall(th) be the set of oracles O[ã] not
under replication that occur in call constructs in the thread th, without entering
tagged functions and closures.

Let Ocall-repl(th) be the set of oracles O[a, ã] such that O is under replication,
a > NO, and call(O[_, ã]) occurs in the thread th, without entering tagged
functions and closures.

Let Rinit-closure(th) be the set of roles role[ã] such that there exists env such
that a closure tagfunctionrole,τ [env , pm ′role[ã]] is present in the thread th, and
such that env(token) is bound in its store to Callable.

Let Rinit-function(th) be the set of roles role[ã] such that the initialization func-
tion program ′(role[ã]) is present in the thread th.

Let Ocall(CS), Rinit-closure(CS), and Rinit-function(CS) be the unions of the cor-
responding sets for all threads of the configuration.

Let CS = C,RI, I. Let willbeavailable(CS) be the set of oracles that can even-
tually become available. This set is defined as follows. We denote the callable

68



set of oracles:

callable(CS) def
= O∞(I) ∪ O∞(RI) ∪ O∞(Rinit-closure(CS) ∪Rinit-function(CS))

We let oracleset(Q) (resp. oracleset(P )) be the set of oracles that may be defined
by the process Q (resp. P ), defined as follows:

oracleset(0)
def
= ∅

oracleset(Q1 | Q2)
def
= oracleset(Q1) ∪ oracleset(Q2)

oracleset(foreach i′ ≤ n do Q)
def
=

n⋃
b=1

oracleset(Q{b/i′})

oracleset(role {Q)
def
= oracleset(Q)

oracleset(O[ã](x1[ã], . . . , xk[ã]) := P )
def
= {O[ã]} ∪ oracleset(P )

oracleset(P )
def
= oracleset(Q) where Q is an oracle

definition located after a return in P ,
or ∅ if there is no return in P .

By Property 4.5, the result is independent of the chosen return statement in the
last formula.

We let returnoracles ′(O[ã])
def
= oracleset(P{ã/̃i}) where oracle O is defined

by O[̃i](x1 [̃i], . . . , xk [̃i]) := P in Q0. Finally, we define willbeavailable(CS) def
=⋃

O[ã]∈callable(CS) returnoracles ′(O[ã]).

The definition of Ocall-repl(th) may be surprising, as it considers O[a, ã] with a
greater than the replication bound NO. We have made this choice to guarantee
that Ocall-repl(th) is always included in O∞(I): the indices up to NO may have
been consumed by calls already made to the oracle, while the indices greater
than NO always remain, because we make at most NO calls to this oracle by
definition of NO. This property is exploited in Item O2 of Definition 8.22 below.

The sets Rinit-closure(CS) and Rinit-function(CS) are sets of roles with their repli-
cation indices, which can be seen as a role set RI. The set O∞(Rinit-closure(CS)∪
Rinit-function(CS)) is the set of the first oracles of roles present in Rinit-closure(CS)
and Rinit-function(CS).

Finally, we can define the desired invariant on simulator configurations:

Definition 8.22 (Oracles have distinct status) Let CS = ([th1, . . . , thn],
globalstore, tj ),RI, I be a simulator configuration. We say that the oracles of
CS have distinct status when:

O1. The sets O∞(I)∪Ocall(CS), O∞(RI), and willbeavailable(CS) are pairwise
disjoint.

O2. The 4n sets of oracles Ocall(thi), Ocall-repl(thi), O∞(Rinit-function(thi)), and
O∞(Rinit-closure(thi)) for i ≤ n are pairwise disjoint, and are all included
in O∞(I) ∪ Ocall(CS).
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To understand how all these oracle sets interact, let us present the flow of an
oracle not under replication O[ã] in these sets.

1. Initially, if the oracle occurs at the beginning of the process, it is in
O∞(RI); otherwise, it is in willbeavailable(CS).

2. For an oracle occurring at the beginning of a role, when the role containing
it is instantiated using addthread, the oracle moves from O∞(RI) to
O∞(Rinit-function(th)). It is also added into O∞(I).

3. When the initialization function of the role is reduced into a closure, the
oracle moves from O∞(Rinit-function(th)) to O∞(Rinit-closure(th)).

4. When the initialization function of the role is called, the oracle moves from
O∞(Rinit-closure(th)) to Ocall(th).

5. When the oracle itself is called, it is removed from O∞(I), and when
the call to the oracle disappears from the thread, it is removed from
Ocall(th). The oracles made available after the call are removed from
willbeavailable(CS) and added either to O∞(RI) if they start a role or to
O∞(I) and Ocall(th) if they do not start a role.

The case of an oracle under replication is fairly similar, using Ocall-repl(th) in-
stead of Ocall(th). Definition 8.22 ensures that an oracle cannot be simulta-
neously in two different sets. (We let indices go to infinity in O∞ to make
sure that we cannot have simultaneously O

[
[a′,+∞[, ã

]
∈ I with a′ > NO and

O[b, ã] ∈ willbeavailable(CS) for all b. Indeed, if we bounded the indices to NO,
no oracle would correspond to O

[
[a′,+∞[, ã

]
when a′ > NO, so this situation

would not be prevented by Item O1. It is prevented using O∞.)

Example 8.23 Let us show that the oracles of the initial simulator config-
uration CS0 of Example 8.16 have distinct status. We have O∞(I0) = ∅,
Ocall(CS0) = ∅, O∞(RI0) = {Okeygen[ ]}, and willbeavailable(CS0) = {OA[i] |
1 ≤ i ≤ N1} ∪ {OB[i] | 1 ≤ i ≤ N2}: the oracle Okeygen can be called immedi-
ately, just by starting the role keygen, the oracles OA and OB will be available
later. Hence Item O1 holds. All sets of Item O2 are empty, so that item holds
as well.

Let us also show that the oracles of the simulator configuration CS1
of Example 8.16 have distinct status. We have O∞(I1) = {Okeygen[ ]},
Ocall(CS) = {Okeygen[ ]} since the only call outside tagged functions and
closures is call(Okeygen[ ]) in ths

2, O∞(RI1) = ∅, and willbeavailable(CS1) =
willbeavailable(CS0): a call to oracle Okeygen[ ] occurs in the thread ths

2, and
that call is allowed as shown by I1; the oracles OA and OB will be avail-
able later. Hence Item O1 holds. The only non-empty set in Item O2 is
Ocall(th

s
2) = {Okeygen[ ]]}, so that item holds as well. (There is a closure

tagfunctionrole,τ [env , pm ′role[ã]] in ths
2, but its token is Invalid because it has

already been called.)
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As a second step in our definition of the relation between the intermediate
semantics and the OCaml semantics, we define an invariant of the intermedi-
ate semantics that shows how the sets I and RI of the simulator configuration
represent the contents of the set of callable oracle definitions Q.

Definition 8.24 (Relation between I, RI and Q) Let us define the sets of
oracles O(I) and O(RI) represented by I and RI respectively:

O(I) def
= {O[b, ã′] | O

[
[a,+∞[, ã′

]
∈ I, a ≤ b ≤ NO} ∪ {O[ã] | O[ã] ∈ I}

O(RI) def
= {O[b, ã] | role[ã] ∈ RI, O[_, ã] ∈ oraclelist(Q(role)[ã]), 1 ≤ b ≤ NO}
∪ {O[ã] | role[ã] ∈ RI, O[ã] ∈ oraclelist(Q(role)[ã])}

∪ {O[b, ã′] | role
[
[a,+∞[, ã′

]
∈ RI,

O[b, ã′] ∈ oraclelist(Q(role)[b, ã′]), a ≤ b ≤ Nrole}

We write Q ↔ RI, I when the following two properties hold:

• Q consists of exactly one element O[ã](x1[ã] : T1, . . . , xk[ã] : Tk) := P for
each O[ã] present in the set O(I) ∪ O(RI). We denote by Q(O[ã]) this
element of Q.

• If O
[
[a,+∞[, ã′

]
∈ I, then there exist a process Q and an index i such that i

does not occur in fv(Q) and for all b ∈ {a, . . . , NO}, we have Q(O[b, ã′]) =
Q{b/i}.

In contrast to the sets we defined in Definition 8.20, the indices of oracles
in Q are bounded by the replication bounds. So we redefine sets of oracles
O(RI) and O(I) that correspond to RI and I, but with indices bounded by NO
and Nrole as appropriate. The sets O(RI) and O(I) are included in O∞(RI)
and O∞(I), respectively. The set of processes Q corresponds to RI, I when it
contains exactly one definition for each oracle in O(I)∪O(RI). Furthermore, in
case an oracle is under replication, the corresponding elements of Q all have the
same form; they differ only by the value of the replication index. We enforce
this property in the last item of Definition 8.24.

Example 8.25 Let us consider the simulator configuration CS1 and the Cryp-
toVerif configuration C1 of Example 8.16. Let Q0 = {Okeygen[ ]() := . . .(as in
the process Q0 of Example 4.10)}. Since O(I1) = {Okeygen[ ]} and O(RI1) = ∅,
we have Q0 ↔ RI1, I1 and Q1 = {Qloop{a/i′} | 1 < a ≤ Nrand+calls} ∪ Q0.
Hence, the sets RI1 and I1 correctly represent the callable oracle definitions Q0

that come from the protocol under consideration. The set of all callable oracle
definitions Q1 additionally contains oracle definitions Qloop that come from the
simulator.

As a third step, we relate OCaml and simulator threads. To define this re-
lation, we start from a simulator thread. We first replace the simulator role ini-
tialization with the OCaml one using the function replaceinitpm (Definition 8.26
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below). Next, we replace call functional values with the corresponding closures
(defined in Definition 8.27) using the function replacecalls (Definition 8.28). Fi-
nally, we add the part of the store that contains the tokens (Definition 8.29) and
possibly an unreachable part of the store created during calls to cryptographic
primitives, and we obtain the corresponding OCaml thread. The full relation
between OCaml and simulator threads is defined in Definition 8.30.

Definition 8.26 (Replace initialization) The function replaceinitpm re-
places in its argument the pattern matchings corresponding to role initializa-
tion of the simulator with the OCaml module initialization: to be more precise,
replaceinitpm(th) replaces each occurrence of tagfunctionrole pm ′role[ã] in th with
tagfunctionrole pmµrole

and each occurrence of tagfunctionrole,τ [env , pm ′role[ã]]

in th with tagfunctionrole,τ [env , pmµrole
].

This function transforms every occurrence of the tagged closures correspond-
ing to role initialization in the simulator, which are added by the addthread
construct, into the corresponding tagged closures in OCaml.

Definition 8.27 (Correct closure) Assume that Q ↔ RI, I for some RI, E
is a CryptoVerif environment, ltok is a function that maps each oracle O[ã] to
the location of its token, and τO is a function that maps each oracle O[_, ã]
to the tag τ of the corresponding closure. We define the set of closures that
correspond to an oracle:

• for an oracle O[ã] ∈ I:

correctclosure(O[ã], I, E,Q, ltok, τO)
def
=

{tagfunctionO,τ [env , pmOnce(Q(O[ã]))] |
env ⊇ envprim ∪ env(E,Q(O[ã])), env(token) = ltok(O[ã])}

• for an oracle O[ã] 6∈ I:

correctclosure(O[ã], I, E,Q, ltok, τO)
def
=

{tagfunctionO,τ [env , pmOnce(Q)] | for any Q, env(token) = ltok(O[ã])}

• for an oracle O
[
[a′,+∞[, ã′′

]
∈ I with a′ ≤ NO,

correctclosure(O[_, ã′′], I, E,Q, ltok, τO)
def
=

{tagfunctionO,τ [env , pmAny(Q(O[a′, ã′′]))] |
τ = τO(O[_, ã′′]), env ⊇ envprim ∪ env(E,Q(O[a′, ã′′]))}

• for an oracle O
[
[a′,+∞[, ã′′

]
∈ I with a′ > NO,

correctclosure(O[_, ã′′], I, E,Q, ltok, τO)
def
=

{tagfunctionO,τ [env , pmAny(Q)] | τ = τO(O[_, ã′′]), for any Q, env}
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• for an oracle O
[
[a′,+∞[, ã′′

]
6∈ I:

correctclosure(O[_, ã′′], I, E,Q, ltok, τO)
def
= ∅

The function correctclosure serves to map calls call(R) in the simulator config-
uration into their corresponding closures in the OCaml configuration: call(R)
is mapped to an element of correctclosure(R, I, E,Q, ltok, τO) by the function
replacecalls defined below.

In the case O[ã] ∈ I, we map call(O[ã]) into the closure that translates the
process Q(O[ã]).

The case O[ã] 6∈ I may be used when the oracle O[ã] has been called but the
thread still contains a call to this oracle. If the oracle is called again, the call
will fail. The process Q(O[ã]) is removed from Q after execution, so we do not
know which process to translate to obtain the correct closure for O[ã], that is
why the correct closures for a call to an already called oracle can contain the
translation of any process Q. This translation will fail and raise the exception
Bad_Call regardless of the translated process Q.

Oracles under replication cannot disappear from I after having been added
to it: when one calls the oracle O[_, ã′′], we just increment the counter a′ of
the element O

[
[a′,+∞[, ã′′

]
present in I. We need to distinguish whether the

adversary has exhausted all the NO calls available for this oracle or not. If there
remains available calls, the process Q(O[a′, ã′′]) is defined, and we require that
call(O[_, ã′′]) is mapped into a closure that translates this process. Otherwise,
if all the calls are exhausted, a′ > NO, and Q(O[a′, ã′′]) is not defined, but we
know that the adversary will not call the oracle again, so call(O[_, ã′′]) can be
mapped to closures that translate any process.

The case O
[
[a′,+∞[, ã′′

]
6∈ I never happens: it would mean that the oracle

O[_, ã′′] can be called but there is no reference to it in the set I.

Definition 8.28 (Replace call) Let I, E,Q, ltok, τO be as in Definition 8.27.

replacecalls(〈env , pe, stack , store〉, I, E,Q, ltok, τO)
def
=

{〈env ′, σ(pe), σ(stack), σ(store)〉 | if pe is a value v or an exceptional
value raise v, then env ′ is any environment, else env ′ = σ(env), where
σ is a function that replaces, for each R, each occurrence of call(R) with
an element of correctclosure(R, I, E,Q, ltok, τO)}

The function replacecalls replaces in its argument each call call(O[ã]) with a
closure that corresponds to the oracle O[ã], computed by correctclosure. It
allows any environment when the current program or expression is a value or
an exceptional value, because in these cases, the environment is not used.

Definition 8.29 (Token part of the store) Let I and ltok be as in Defini-
tion 8.27. Let O be a set of oracles with indices of the form O[ã].

gettokens(I,O, ltok)
def
= {ltok(O[ã]) 7→ Callable | O[ã] ∈ O ∩ I}
∪ {ltok(O[ã]) 7→ Invalid | O[ã] ∈ O \ I}
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The function gettokens returns the part of the store corresponding to the tokens
of the closures of oracles not under replication.

In the following definitions, we use the exponent s for the elements of the
simulator configuration and the exponent o for the elements of the OCaml con-
figuration.

Definition 8.30 (Relation between simulator and OCaml threads) Let
ths = 〈env s, pes, stack s, stores〉 be a simulator thread, and tho = 〈envo, peo,
stacko, storeo〉 be an OCaml thread. Let I, E,Q, τO be as in Definition 8.27. We
say that tho matches ths knowing I, E,Q, τO when one of the following two cases
occurs:

T1. tho = replaceinitpm(ths) and ths = 〈∅, programprim;; program ′(role1[ã1]);;
. . . ;; program ′(rolel[ãl]);; program ′, [ ], ∅〉.
There is no closure, no tagged function tagfunctiont pm, no event,
and no return in program ′, except in program(µrole) in arguments of
addthread.

T2. The following properties hold:

(a) There exist store ′ and an injective function ltok that associates to each
O[ã] in Ocall(th

s) a store location that does not occur in ths such that

〈envo, peo, stacko, store ′〉
∈ replacecalls(replaceinitpm(ths), I, E,Q0, ltok, τO) ,

store ′ ∪ gettokens(I,Ocall(th
s), ltok) ⊆ storeo .

(b) There exists an injective function linit-tok that associates to each role
role[ã] such that a closure tagfunctionrole,τ [env , pm ′role[ã]] occurs in
the thread ths for some env and τ , a store location such that for
all closures tagfunctionrole,τ [env , pm ′role[ã]] present in ths, we have
linit-tok(role[ã]) = env(token).
The locations linit-tok(role[ã]) and ltok(O[ã′]) are distinct for every role
role[ã] and oracle O[ã′].
The locations linit-tok(role[ã]) occur only in Dom(stores) and in
env(token) where env is the environment of a tagged closure
tagfunctionrole,τ [env , pm ′role[ã]] in ths.

(c) For each tagged closure tagfunctiont,τ [env , pm] present in ths, the
tag t is a role role, envprim ⊆ env , and there exist indices ã such that
pm = pm ′role[ã].

(d) There is no tagged function tagfunctiont pm, no event, and no
return in ths except in program(µrole) in arguments of addthread.

This definition relates the threads of the simulator and of OCaml. A thread
can be in one of the following two states. If it satisfies Item T1, the thread is a
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protocol thread that was not scheduled yet. The simulator and OCaml threads
correspond by transforming the program program ′(role[ã]) present in the simu-
lator into the program of the module corresponding to the role, program(µrole).
Otherwise, the thread satisfies Item T2. In this case, Item T2(a) relates the con-
tents of the simulator thread and the OCaml thread by replacing program ′(role[ã])
with program(µrole) as above, and by replacing calls to oracles using call with a
corresponding tagged closure. The tokens that determine whether oracles can
be called are absent from the simulator: the value of these tokens is determined
from I by the function gettokens, and we require that they are present in the
OCaml store with their correct value. Item T2(b) ensures that all instances
of a closure of a given role initialization role[ã] share the same store location
for their tokens. This ensures that a role initialization closure is not called
twice. Item T2(b) also ensures that all locations used for the tokens of role
initialization are not accessible elsewhere. Item T2(c) ensures that every tagged
closure present in the simulator is a correct closure for the initialization of a role.
Item T2(d) is an invariant of the simulator that ensures that the adversary does
not have access to our OCaml instrumentation features.

Example 8.31 We use the notations I1, E1 of Example 8.16, Q0 of Exam-
ple 8.25, and let τO be any function. We verify that the thread th2 of Example 7.3
matches the thread ths

2 of Example 8.16 knowing I1, E1,Q0, τO, because they
satisfy Property T2. The function replaceinitpm replaces env s

2(µkeygen.init) with
env2(µkeygen.init). Let ltok = {Okeygen[ ] 7→ l2}. We have I1 = {Okeygen[ ]}, so

correctclosure(Okeygen[ ], I1, E1,Q0, ltok, τO) =

{tagfunctionOkeygen,τ [env , pmOnce(Q0(Okeygen[ ]))] |
env ⊇ envprim ∪ env(E1,Q0(Okeygen[ ])), env(token) = l2} .

The process Q0(Okeygen[ ]) is the definition of Okeygen[ ] in Example 4.10.
It has no free variables, so env(E1,Q0(Okeygen[ ])) = ∅. Therefore, we have
tagfunctionOkeygen,τ2 [env2 ⊕ {token 7→ l2}, () → (lines 5 to 13 of Exam-
ple 7.1)] ∈ correctclosure(Okeygen[ ], I1, E1,Q0, ltok, τO), that is, the OCaml clo-
sure that corresponds to Okeygen[ ] is correct, so replacecalls replaces pes

2 with
pe2, hence 〈env2, pe2, stack2, stores

2〉 ∈ replacecalls(replaceinitpm(ths
2), I1, E1,

Q0, ltok, τO). Moreover, Ocall(th
s
2) = {Okeygen[ ]}, so gettokens(I1,Ocall(th

s
2),

ltok) = {l2 7→ Callable}, so stores
2 ∪ gettokens(I1,Ocall(th

s
2), ltok) = store2: the

part of the store corresponding to tokens of oracles, here the token of Okeygen[ ],
is computed by gettokens; it is included in the OCaml store but not in the sim-
ulator store. Therefore, Property T2(a) holds.

The only closure of the form tagfunctionrole,τ [env , pm ′role[ã]] in ths
2 is

env s
2(µkeygen.init) = tagfunctionkeygen,τ1 [envprim ∪ {token 7→ l1}, pm ′keygen[ ]], so

we define linit-tok = {keygen[ ] 7→ l1} and easily verify Property T2(b). Prop-
erty T2(c) also concerns the same tagged closure, and is easily verified with ã
empty. There is no tagged function tagfunctiont pm, no event, and no return
in ths

2, so Property T2(d) holds, which concludes the verification of Property T2.
A similar verification can be done for th1 and ths

1; we leave it to the reader.
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Finally, we can define our relation between the intermediate and the OCaml
semantics.

Definition 8.32 (Relation between extended CryptoVerif configura-
tions and OCaml traces) Let Ccs be an extended CryptoVerif configuration
and CT be an OCaml trace that starts with the initial configuration C0(Q0,
program0) defined in Section 7. We say that Ccs ≡ CT when there exists an
injective function τO that maps oracles O[_, ã] such that O

[
[a′,+∞[, ã

]
∈ I for

some a′ to tags τ , such that the following properties are all true:

I1. Ccs = E,Ploop{α/i′}, T ,Q,Sloop(α), E , steps,CS.
CS = ([ths

1, . . . , th
s
n], globalstores, tj ),RI, I.

I2. C is the last configuration of CT.
C = [tho

1, . . . , th
o
n], globalstoreo, tj ,MI, events.

I3. Q = {Qloop{a/i′} | α < a ≤ Nrand+calls} ∪ Q0 and Q0 ↔ RI, I.

I4. fv(Ploop{α/i′}) ∪ fv(Q) ∪ fv(Sloop(α)) ⊆ Dom(E).

I5. For i ≤ n, all store locations in Loc` present in ths
i are in Dom(stores

i),
where ths

i = 〈env s
i, pes

i, stack s
i, stores

i〉.

I6. For i ≤ n, tho
i matches ths

i knowing I, E,Q, τO (Definition 8.30).

I7. For all locations l ∈ Locpriv, l does not occur in ths
1, . . . , th

s
n except in

program(µrole) in arguments of addthread.

I8. ∀l ∈ Locpriv, globalstores(l) = initval l.

I9. globalstore(E, T ) ⊆ globalstoreo.

I10. ∀l /∈ Locpriv, globalstores(l) = globalstoreo(l).

I11. MI = {(µrole,Once) | role[ã] ∈ RI} ∪ {(µrole,Any) | role
[
[a′,+∞[, ã

]
∈ RI}.

I12. events = Gev(E).

I13. The oracles of CS have distinct status (Definition 8.22).

I14. |CT|+ steps ≥ Nsteps.

I15. α ≤ Nrand(CT) +
∑
O,τ Ncalls(O, τ,CT) + 1.

I16. If O
[
[a′,+∞[, ã

]
∈ I, then a′ ≤ Ncalls(O, τO(O[_, ã]),CT) + 1.

I17. If role
[
[a′,+∞[, ã

]
∈ RI, then a′ ≤ Nexec(role,CT) + 1.
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The relation Ccs ≡ CT is our main tool to relate the CryptoVerif and OCaml
systems. This relation holds only when the CryptoVerif adversary is evaluating
the function simulateML (line 7 of Figure 18), as shown by the form of the
extended CryptoVerif configuration Ccs in Item I1. (The value α is the current
value of the index i′, that is, the number of iterations in the loop.) Items I1
and I2 also ensure that there is the same number of threads in the simulator
configuration CS and in the OCaml configuration C.

Item I3 is an invariant on the CryptoVerif side: it relates the available oracles
in Q to elements of the simulator configuration. This item ensures basically that
when the simulator calls an oracle present in I, it is also present in Q, and the
oracle call in the CryptoVerif adversary (line 13 of Figure 18) can proceed.
Item I4 is an invariant of the CryptoVerif semantics: the environment contains
bindings for every free variable present in the current configuration. Item I5
is an invariant of the simulator: each store location that occurs in a thread is
present in the domain of the store. (When a location is created, it is immediately
added to the store.)

Item I6 relates the threads of the simulator and of the OCaml semantics,
following Definition 8.30.

Items I7 to I10 relate the values of the global store in the simulator and in
the OCaml semantics. The public part of the global store is the same on both
sides (Item I10). The private part (files and tables) is empty in the simulator,
since this part is handled by CryptoVerif itself (Item I8) and cannot be accessed
by the adversary (Item I7). We require that the private part of the OCaml
global store corresponds to the CryptoVerif configuration (Item I9).

Item I11 relates the OCaml multiset of callable modules MI and the sim-
ulator set of callable roles RI. Item I12 relates the OCaml and CryptoVerif
events. Item I13 guarantees that the oracles have distinct status, following Def-
inition 8.22. This property allow us to prove that the injections ltok and linit-tok

of Items T2(a) and T2(b) of Definition 8.30 are kept. (These injections appear
in Item I6.)

Items I14 to I17 ensure that we never reach the limits on the number of sim-
ulator steps Nsteps (Item I14), the number of calls to the oracles (Item I15 for the
oracle Oloop and Item I16 for the other oracles), and the number of calls to roles
(Item I17), by making sure that the number of calls on the CryptoVerif side is at
most the number of calls on the OCaml side. The number of calls made to oracle
O[_, ã] in CryptoVerif, a′−1 such that O

[
[a′,+∞[, ã

]
∈ I, may be less than the

number of calls to that oracle in the OCaml trace, Ncalls(O, τO(O[_, ã]),CT),
because failed calls are not counted on the CryptoVerif side.

Example 8.33 We verify the relation Ccs
1 ≡ CT1 after evaluating µkeygen.init ()

in Example 7.3. The intermediate semantic configuration Ccs
1 is Ccs

1 = C1, steps,
CS1 where C1 and CS1 are defined in Example 8.16 and steps is Nsteps minus
the number of steps executed in the simulator. The OCaml trace CT1 ends
at the configuration C1 defined in Example 7.3. We use the notations of these
examples.

Properties I1 and I2 are obvious from the form of the configurations, with
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α = 1, n = 2, and tj = 2. Properties I3, I6, and I13 have been verified
in Examples 8.25, 8.31, and 8.23 respectively. Property I4 can be verified by
computing the value of E1; we leave this detail to the reader. There is no store
location in ths

1 and the only store location of ths
2 is l1, which is in Dom(stores

1),
so Property I5 holds.

The locations pkfile and skfile do not occur in ths
1 nor ths

2, so Property I7
holds. (They occur in program(µkeygen) in the argument of addthread in the
initial program program0, but they disappear when addthread is executed.)
For l ∈ {skfile, pkfile}, globalstores

1(l) = initval l so Property I8 holds. We have
globalstore(E1, T1) = ∅ because neither sk [ ] nor pk [ ] are defined in E1, so Prop-
erty I9 holds, and globalstores

1(pkg) = globalstore1(pkg), so Property I10 holds.
(The verification of the correspondence between the global stores is not very
interesting in this configuration. It is more interesting at the end of the exe-
cution of program0. At this point, globalstoreo = {skfile 7→ vsk , pkfile 7→ vpk ,
pkg 7→ vpk}, since skfile and pkfile are written by µkeygen.init () () and pkg is
written by program0, while globalstores = {skfile 7→ "", pkfile 7→ "", pkg 7→ vpk}
since the simulator calls Okeygen via CryptoVerif, which does not write into
files. The minimal global store globalstore(E, T ) contains values for skfile and
pkfile since sk [ ] and pk [ ] are defined in the CryptoVerif environment E after
calling Okeygen and they should be stored in the files skfile and pkfile respec-
tively. These values are indeed in globalstoreo, so Property I9 holds. However,
globalstores(l) still contains the initial values for l ∈ {skfile, pkfile}, so Prop-
erty I8 holds. The same value for pkg appears in globalstores and globalstoreo,
so Property I10 holds.)

We have MI1 = ∅ and RI1 = ∅, so Property I11 holds; events1 = [ ] and
E1 = [ ], so Property I12 holds. Property I14 can be verified by counting the
number of steps in OCaml and in the simulator. We omit this tedious but not
difficult point here. Property I15 holds because α = 1; there are no random
number generations nor oracle calls in CT1. Properties I16 and I17 hold because
neither I1 = {Okeygen[ ]} nor RI1 = ∅ contain oracles of the considered form.

The next two lemmas show that the relation Ccs ≡ CT is preserved during
execution. Lemma 8.34 shows that it holds at the beginning, as soon as the
simulator reaches line 7 of Figure 18.

Lemma 8.34 There exists a trace C0(Q0, program0)  
∗ Ccs where Ccs ≡ CT0

and CT0 = C0(Q0, program0).

Lemma 8.35 shows that the relation Ccs ≡ CT is preserved. More precisely,
the relation does not hold at all steps (in particular because it holds only when
the CryptoVerif adversary is executing simulateML), but if it holds at some
point, we can continue execution so that either it holds again at a later point,
or execution ends with matching events.

Lemma 8.35 Let Ccs be such that there exists a trace CT satisfying Ccs ≡ CT.

• Either there exist n configurations Ccs
1 , . . . , Ccs

n and n traces Ccs  +
p1 C

cs
1 ,

. . . , Ccs  +
pn C

cs
n such that none of these traces is a prefix of another,
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∑
i≤n pi = 1, and for each trace CT such that Ccs ≡ CT, there exist n

pairwise disjoint trace sets CTS1, . . . ,CTSn such that all traces in these
sets are extensions of CT, none of these traces is a prefix of another,
Pr[CTSi] = pi ·Pr[CT], and for each trace CT′ ∈ CTSi, we have Ccs

i ≡ CT′.

• Or for each trace CT such that Ccs ≡ CT, the last configuration C of CT
cannot reduce, Ccs →+ Ccs

1 , the configuration Ccs
1 cannot reduce, and the

event list E of Ccs
1 and the event list events of C satisfy events = Gev(E).

We prove these lemmas in Appendix F. Let us present a proof sketch of
Lemma 8.35.

Proof sketch Let us take an extended CryptoVerif configuration Ccs and an
OCaml trace CT such that Ccs ≡ CT. Let C be the last configuration of CT. Let
CS be the configuration of the simulator in Ccs and ths be the current thread of
CS.

Case 1: the current thread of CS verifies Item T1 of Definition 8.30, we
run the initialization of the module. The programs of the current threads of
CS and C are the same except that the occurrences of program ′(role[ã]) present
in CS are transformed into program(µrole). We show that after having reduced
the initialization of the primitives and the initialization of the roles on both
sides, the current threads verify Item T2. The oracles in O∞(Rinit-function(th

s))
that correspond to the roles implemented in this initialization are moved to
O∞(Rinit-closure(th

s)). We prove that the relation Ccs ≡ CT is preserved.
Case 2: the current thread of CS verifies Item T2. We distinguish cases on

the form of the simulator configuration CS.
Let us first look at the cases in which the configuration CS does not reduce.

We use the rule (Leave Simulator), thus finishing the evaluation of the function
simulateML.

• If the current expression of CS is call(Oj [ã]) v, then the result of simulateML

is such that o = oj , so the CryptoVerif adversary of Figure 18 calls the
oracle Oj at line 13 in the branch o = oj , ends one iteration of Oloop, and
starts the next iteration until it reaches line 7. We use Lemma 8.10 and we
exploit the definition of simulateretOj and simulateendOj to prove that the
OCaml configuration reduces similarly, by calling the OCaml function gen-
erated for oracle Oj . The oracle Oj [ã] is removed from O∞(I), and from
Ocall(th

s) if all occurrences of call(Oj [ã]) have disappeared. The newly
available oracles, added to sets O∞(RI) or Ocall(th

s) and Ocall-repl(th
s),

are removed from the set willbeavailable(CS). We prove that the relation
Ccs ≡ CT is preserved.

• If the current expression of CS is random (), then the result of simulateML

is such that o = oR, so the CryptoVerif adversary of Figure 18 samples
a random boolean at line 19, ends one iteration of Oloop, and starts the
next iteration until it reaches line 7. The current expression of CS is
replaced with true with probability 1/2 and false with probability 1/2.

79



The OCaml configuration reduces similarly: it samples a random boolean
by evaluating random (), and the relation Ccs ≡ CT is preserved.

• Otherwise, the configuration CS cannot reduce, and the corresponding
configuration C cannot reduce either. The result of simulateML is such
that o = oS, so the CryptoVerif adversary of Figure 18 ends the current
iteration of Oloop at line 9, and ends the loop at line 4, so it also stops.
The events in the final CryptoVerif and OCaml configurations match, so
the second case of the lemma holds.

If the current expression of CS is addthread(program), a new thread is
created on both sides. If program is a protocol program, then this new thread
satisfies Item T1 by definition of addthread in OCaml and in the simulator and
by definition of replaceinitpm. The roles added in this new thread th are removed
from RI and the corresponding oracles are added to O∞(Rinit-function(th)) and
to I. Otherwise, the new thread satisfies Item T2. We prove that the relation
Ccs ≡ CT is preserved.

If the current expression of CS is call(Oj [ã]) v and the configuration CS
reduces by (FailedCall1) or (FailedCall2), then the simulator raises Bad_Call,
and the corresponding tagged function in OCaml also raises Bad_Call (because
the tokens in OCaml correspond to I in the simulator by Item T2(a)). We prove
that the relation Ccs ≡ CT is preserved.

If the current expression of CS is tagfunctionrole,τ [env , pm ′role[ã]] (), then
the initialization function of role role is executed. This role is removed from
Rinit-closure(th

s), and the corresponding oracles are added to Ocall(th
s) and to

Ocall-repl(th
s). We prove that the relation Ccs ≡ CT is preserved.

The other cases are straightforward since the simulator mimics the OCaml
semantics. They all preserve the relation Ccs ≡ CT. �

From Lemmas 8.34 and 8.35, we can prove the following proposition, by
extending the traces using Lemma 8.35 until we get complete traces.

Proposition 8.36 Let CT 1, . . . , CT n be complete CryptoVerif traces starting
at C0(Q0, program0).

Then there exist disjoint sets of complete OCaml traces CTS1, . . . ,CTSn
all starting at C0(Q0, program0) such that for all i ≤ n, Pr[CT i] = Pr[CTSi],
and if C is the last configuration of CT i and C is the last configuration of a
trace in CTSi, then the event list E of C and the event list events of C satisfy
events = Gev(E).

We prove this proposition in more detail in Appendix G. As an immediate
consequence of this proposition, we obtain:

Proposition 8.37 Pr[C0(Q0, program0) :( ) D] = Pr[C0(Q0, program0) :(ML)

D].
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8.4.3 Security Result

By combining Propositions 8.19 and 8.37, we obtain the following theorem:

Theorem 8.38 (Security result)

Pr[C0(Q0, program0) :
(CV) D] = Pr[C0(Q0, program0) :

(ML) D] .

In other words, the adversary program0 against our generated OCaml modules
has the same probability of breaking the security property as the adversary
Qadv(Q0, program0) against the CryptoVerif process.

CryptoVerif bounds the probability that an adversary Q breaks the security
property D, that is, it finds a probability p that depends on the adversary such
that, for all CryptoVerif adversaries Q for Q0,

Pr[Ci(Q0 | Q) :(CV) D] ≤ p .

The adversaries Qadv(Q0, program0) are CryptoVerif adversaries for Q0, so for
all OCaml programs program that obey our assumptions,

Pr[C0(Q0, program) :(ML) D] = Pr[C0(Q0, program) :(CV) D] ≤ p

Hence, all considered OCaml adversaries program can break the security prop-
erty D with probability at most p.

The probability bound p returned by CryptoVerif is a function that depends
on many parameters, expressed on the CryptoVerif protocol specification. Let
us relate these parameters to the OCaml implementation. These parameters
are as follows:

• The maximum number of times the various oracles and roles have been
called, NO and Nrole. As shown by our proof and by Definition 8.11, NO
can be set to the maximum number of calls to the same closure represent-
ing oracle O in any trace of the OCaml program, and Nrole can be set to
the maximum number of instantiations of the role role in any trace of this
program.

• The size of the CryptoVerif types T . The corresponding OCaml type
GT(T ) is fixed by the annotations of the CryptoVerif specification. The
size of T can be set to the size of GT(T ). Similarly, the size of the Cryp-
toVerif values a (used when their type T has unbounded size) can be set
to the size of the corresponding OCaml value GvalT (a).

• The execution time of the cryptographic primitives and of various Cryp-
toVerif constructs. This time can be set to the execution time of the
corresponding OCaml implementation.

• The execution time of the adversary. Our proof shows that the func-
tion simulateML executes at most as many reduction steps as the OCaml
adversary. However, the CryptoVerif adversary shown in Figure 18 also
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includes additional steps and conversions between the OCaml semantic
configuration and its CryptoVerif bitstring representation. By using the
contents of the OCaml memory as bitstring representation of the semantic
configuration in CryptoVerif, we can obtain an efficient implementation of
the CryptoVerif adversary that does not take significantly more time than
the OCaml adversary.

From the probability bound given by CryptoVerif, we can then obtain a bound
on the probability of breaking the security properties in the generated OCaml
implementation of the protocol.

Example 8.39 For the protocol Q0 of Example 4.1, using Theorem 8.38 and
the probability bound computed by CryptoVerif in Example 4.9, we obtain that
our generated implementation satisfies

Pr[C0(Q0, program) :(ML) Dc] ≤ Succuf−cma
sign (t+ (N2 − 1)tcheck, N1)

where t is the execution time of the adversary program, tcheck is the maximum
execution time of a call to the implementation of check, N1 is the maximum
number of calls to oracle OA, N2 is the maximum number of calls to oracle OB,
and Succuf−cma

sign (t′, n′) is the probability of forging a signature in time t′ with at
most n′ calls to the signature oracle.

As detailed in [9], CryptoVerif shows that our model of the SSH Transport
Layer Protocol guarantees the authentication of the server to the client and the
secrecy of the session keys. By Theorem 8.38, our generated implementation of
this protocol satisfies the same properties, provided assumptions A1 to A7 hold.

9 Conclusion
We have proved that our compiler preserves security. Therefore, by using Cryp-
toVerif, we can prove the desired security properties on the protocol specifi-
cation, and then by using our compiler, we get a runnable implementation of
the protocol, which satisfies the same security properties as the specification.
Making such a proof is also useful because it clarifies the assumptions needed to
ensure that the implementation is secure (Assumptions A1 to A7 in our case).
The proof technique presented in this paper, simulating any adversary by a
CryptoVerif process, is also useful to show that any Turing machine can be
encoded as a CryptoVerif adversary, which is important for the validity of the
verification by CryptoVerif.

Our approach could obviously be used to generate implementations in lan-
guages other than OCaml. It should not be difficult to adapt our compiler to
another language. The structure of the proof should also remain the same, but
obviously the details will need to be adapted to the semantics of each program-
ming language. In a target language such as C, closures that we use to represent
oracles could be represented by records containing a function pointer. Since C
does not guarantee memory safety, an additional analysis of the network code
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should be performed to make sure that it does not access private data of our
generated code. To simplify the analysis, one may require that the generated
code and the network code belong to a clean subset of C. One might also go
all the way to the generation of certified machine code, by using a certified
compiler, as in [3].

Extending the specification language of CryptoVerif, for instance with loops
and mutable data structures, would be helpful to implement real, complex pro-
tocols. The main difficulty in this task does not lie in the generation of imple-
mentations, but in the extension of the prover CryptoVerif itself. Formalizing
our manual proof using a proof assistant (e.g. Coq) would also be interesting
future work. We believe that our detailed proof will be a good starting point for
that. It would also be interesting to extend our approach to support side chan-
nel attacks, such as timing attacks and power consumption attacks. Protection
against such attacks is important in practical protocols.
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Appendices

A Proof of Lemma 4.7
Proof (of Lemma 4.7) As usual, a multiset S is defined as a function from
elements to integers: S(x) is the number of occurrences of x in the multiset S.
Multiset union is defined as addition: (S]S′)(x) = S(x)+S′(x). The maximum
max(S, S′) is the multiset such that max(S, S′)(x) = max(S(x), S′(x)). The
inclusion S ⊆ S′ is true when Dom(S) ⊆ Dom(S′) and ∀x ∈ Dom(S), S(x) ≤
S′(x).

We define the multiset of available oracles inductively as follows:

Oracles(0) = ∅
Oracles(Q1 | Q2) = Oracles(Q1) ]Oracles(Q2)

Oracles(foreach i ≤ n do Q) =
⊎

a∈[1,n]

Oracles(Q{a/i})

Oracles(O[ã](x1[ã] : T1, . . . , xk[ã] : Tk) := P ) = {O[ã]} ]Oracles(P )

Oracles(return(M1, . . . ,Mk);Q) = Oracles(Q)

Oracles(end) = ∅

Oracles(x[ã]
R← T ;P ) = Oracles(P )

Oracles(x[ã]←M ;P ) = Oracles(P )

Oracles(insert Tbl(M1, . . . ,Ml);P ) = Oracles(P )

Oracles(get Tbl(x1[ã], . . . , xl[ã]) suchthat M in P else P ′) =

max(Oracles(P ),Oracles(P ′))

Oracles(event ev(M1, . . . ,Ml);P ) = Oracles(P )

Oracles(let (x1 [̃i] : T1, . . . , xk′ [̃i] : Tk′) = O[M̃ ](M̃ ′) in P else P ′) =

max(Oracles(P ),Oracles(P ′))

Oracles(let x[̃i] : T = loop O[M̃ ](M ′) in P else P ′) =

max(Oracles(P ),Oracles(P ′))

Oracles(E,P, T ,Q,S, E) = Oracles(P ) ]
⊎
Q∈Q

Oracles(Q) ]

⊎
((x1[ã],...,xk[ã]),P ′,P ′′)∈S

max(Oracles(P ′),Oracles(P ′′))

We show that, for all configurations C = E,P, T ,Q,S, E reachable from the
initial configuration Ci(Q0), Oracles(C) contains no duplicates.

Let us first show this property for the initial configuration. We show by an
easy induction on Q that

⊎
Q′∈oracledefset(Q) Oracles(Q′) ⊆ Oracles(Q). There-

fore, by definition of Ci, Oracles(Ci(Q0)) =
⊎
Q′∈oracledefset(Q0)

Oracles(Q′) ⊆
Oracles(Q0). Next, we show by induction on Q0 that Oracles(Q0) contains no
duplicates.
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• In the case Q | Q′, the oracles defined in Q and Q′ are not in different
branches of if or get, so by Property 4.6, they have different names. Hence,
Oracles(Q) and Oracles(Q′) do not both contain O[ã] for the same O. We
conclude that Oracles(Q) ] Oracles(Q′) contains no duplicates using the
induction hypothesis.

• In the case foreach i ≤ n do Q, by Property 4.6, the replication index i
occurs as index in all definitions of oracles in Q, and in the same position.
So the multisets Oracles(Q{a/i}) are disjoint for different choices of a.
We conclude that

⊎
a∈[1,n] Oracles(Q{a/i}) contains no duplicates using

the induction hypothesis.

• In the case O[ã](x1[ã] : T1, . . . , xk[ã] : Tk) := P , the definition of O is
not in a branch of if or get different from P , so by Property 4.6, there
is no definition of O in P . Hence O[ã] /∈ Oracles(P ). We conclude that
{O[ã]}]Oracles(P ) contains no duplicates using the induction hypothesis.

• In all other cases, the result follows immediately from the induction hy-
pothesis.

Furthermore, Oracles(C) decreases by reduction: if C →p C′, then we have
Oracles(C′) ⊆ Oracles(C). Indeed, the rules (New), (Let), (Insert), (Event),
(Loop1) leave Oracles(C) unchanged. In the case of (Loop1), we use

max(max(max(Oracles(P ),Oracles(P ′)),Oracles(P )),Oracles(P ′)) =

max(Oracles(P ),Oracles(P ′)) .

The rules (If1), (If2), (Get1), (Get2), (Loop2), (Return), (End) decrease
the multiset Oracles(C) by replacing max(Oracles(P ),Oracles(P ′)) with ei-
ther Oracles(P ) or Oracles(P ′). In the case of (Return), we also use⊎
Q′∈oracledefset(Q′′) Oracles(Q′) ⊆ Oracles(Q′′). The rule (Call) removes the

called oracle O[ã′] from Oracles(C).
Therefore, for all configurations C reachable from the initial configuration

Ci(Q0), Oracles(C) contains no duplicates.
By definition of Oracles, when C = E,P, T ,Q,S, E , we have {O[ã] |

O[ã](x1[ã] : T1, . . . , xk[ã] : Tk) := P ∈ Q} ⊆ Oracles(C). (Both sides
of the inclusion are multisets.) Therefore, Q contains at most one element
O[ã](x1[ã] : T1, . . . , xk[ã] : Tk) := P for each O[ã]. �

B Proof of Proposition 6.5
We first show that configurations equivalent by ≈v reduce in the same way.

Proof (of Lemma 6.3) No semantic rule uses the environment when the pro-
gram or expression is a value or an exceptional value.

Indeed, the only semantic rules that apply when the program or expres-
sion is a value or an exceptional value are (Context out), (Context raise1),
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(Context raise2), (Let ctx out), and (Let ctx raise). All these rules replace the
current environment with the one stored at the top of the stack. �

By reviewing the changes to the semantics, we can see that the total probabil-
ity of all reductions is still 1 for the instrumented semantics: If an instrumented
semantic configuration CI can reduce, then∑

{CI′|CI→p(CI′)CI′}

p(CI′) = 1 .

Moreover, for each reduction CI→p CI′, we have p > 0.

Proof (of Proposition 6.5) Let nev,ret(CI) be the number of occurrences of
event or return in the instrumented configuration CI. Let us first prove the
following property:

2’. If C ≈v noinstrCI(CI) and CI1, . . . ,CIn are pairwise distinct instrumented
configurations such that for all i ≤ n, CI→pi CIi with

∑
i≤n pi = 1, then

one of the following two properties holds:

P1. n = 1, C ≈v noinstrCI(CI1), and nev,ret(CI1) < nev,ret(CI).
P2. there exist pairwise distinct configurations C1, . . . ,Cn such that for

all i ≤ n, we have C→pi Ci and Ci ≈v noinstrCI(CIi).

We prove this property by case analysis on the possible reductions of CI.
Let us first suppose that CI reduces by (Globalstore1) and (Toplevel) from

a reduction th −→p th ′ of the current thread, and let us distinguish cases de-
pending on the latter reduction:

• The reduction comes from rules (Context in) or (Let ctx in): we have th =
〈env , Cm[e], stack , store〉 −→ th ′ = 〈env , e, (env , Cm) :: stack , store〉 where
e is not a value and Cm is a minimal expression or program evaluation
context. Let us distinguish cases on the form of Cm.

– If Cm = return(MI, [·]), then noinstr th(th) = noinstr th(〈env , e,
stack , store〉) = noinstr th(th

′) by Definition 6.4, so by expanding
this property to the complete configuration, and noting that the re-
duction removes one return, Property P1 holds.

– If Cm = event ev(e1, . . . , ei−1, [·], vi+1, . . . , vn), then we have by Def-
inition 6.4,

noinstr th(th) =
noinstr th(〈env , (e1, . . . , ei−1, e, vi+1, . . . , vn), stack , store〉) ,

noinstr th(th
′) = noinstr th(

〈env , e, (env , (e1, . . . , ei−1, [·], vi+1, . . . , vn)) :: stack , store〉) ,

and we have noinstr th(th) −→ noinstr th(th
′), so Property P2 holds.
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– If Cm is neither a return nor an event context, then the reduction
th −→p th ′ implies noinstr th(th) −→p noinstr th(th

′), so Property P2
holds.

• The reduction comes from rules (Context out) or (Let ctx out): we have
th = 〈env , v, (env ′, Cm) :: stack , store〉 −→ th ′ = 〈env ′, Cm[v], stack , store〉
where Cm is a minimal expression or program evaluation context. Let us
distinguish cases on the form of Cm.

– If Cm = return(MI, [·]), then we have by Definitions 6.4 and 6.2,

noinstr th(th) = noinstr th(〈env , v, stack , store〉)
≈vth noinstr th(th

′) ,

so by expanding this property to the complete configuration, and
noting that the reduction removes one return, Property P1 holds.

– If Cm = event ev(e1, . . . , ei−1, [·], vi+1, . . . , vn), we have by Defini-
tion 6.4,

noinstr th(th) = noinstr th(
〈env , v, (env ′, (e1, . . . , ei−1, [·], vi+1, . . . , vn)) :: stack , store〉) ,

noinstr th(th
′) =

noinstr th(〈env ′, (e1, . . . , ei−1, v, vi+1, . . . , vn), stack , store〉) ,

so Property P2 holds.
– If Cm is neither a return nor an event context, then Property P2

holds.

• The cases of (Context raise2) and (Let ctx raise) are similar to the pre-
vious case: Property P1 holds when the context is return(MI, [·]); Prop-
erty P2 holds otherwise.

• Property P2 holds in the other cases.

If CI→ CI1 by (Toplevel return), then the program of the current thread is
return(MI, v) in CI and the only differences between CI and CI1 are that the
program of the current thread is v and the set of callable modules is changed
in CI1. Therefore, noinstrCI(CI) = noinstrCI(CI1), and the reduction removes
one return, so Property P1 holds.

If CI → CI1 by (Toplevel event), then the program of the current thread
is event ev(v1, . . . , vn) in CI and the only differences between CI and CI1 are
that the program of the current thread is (v1, . . . , vn) and the list of executed
events is updated in CI1. Therefore, noinstrCI(CI) = noinstrCI(CI1), and the
reduction removes one event, so Property P1 holds.

Property P2 holds for addthread, schedule, and global store related re-
ductions. In the case of addthread, we use Assumption 6.1.

We have proved that Property 2’ holds. Property 2 also holds, since it is a
special case of Property 2’.

Let us now prove:
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3. If C ≈v noinstrCI(CI) and CI cannot reduce, then C cannot reduce.

We need to prove that noinstrCI(CI) cannot reduce. We can then use Lemma 6.3
to conclude. We distinguish cases depending on the program or expression in
the current thread of CI. If this program or expression was of the form Cm[e] for
some program or expression minimal evaluation context Cm, or return(MI, v),
or event ev(v1, . . . , vn), the configuration CI could reduce. In all other cases,
noinstrCI does not change the form of the possible reductions (since it transforms
tagged functions into functions that behave exactly in the same way). Property 3
is true.

Let us now prove Property 1 by induction on nev,ret(CI). Let us suppose
that C ≈v noinstrCI(CI) and C1, . . . ,Cn are pairwise distinct configurations
such that for all i ≤ n, we have C→pi Ci with

∑
i≤n pi = 1.

The configuration CI must reduce, otherwise, by Property 3, the configura-
tion C would also not reduce. Let CI →p′i

CIi for i ≤ n′ be all the reductions
possible from CI. By Property 2’, we are either in case P1 or in case P2.

In case P1, CI reduces into only one configuration CI1 such that C ≈v
noinstrCI(CI1), and nev,ret(CI1) < nev,ret(CI). By induction hypothesis, there
exist pairwise distinct instrumented configurations CI′1, . . . ,CI

′
n such that for

all i ≤ n, we have CI1 →∗pi CI
′
i and Ci ≈v noinstrCI(CI′i). As there is only one

reduction from CI to CI1 with probability 1, we can conclude that Property 1
holds in this case.

In case P2, there exist pairwise distinct configurations C′1, . . . ,C′n′ such that
for all i ≤ n′, we have C →p′i

C′i and C′i ≈v noinstrCI(CIi). Since
∑
i≤n pi = 1

and
∑
i≤n′ p′i = 1, the reductions C →pi Ci (i ≤ n) are all possible reductions

of C and the reductions C →p′i
C′i (i ≤ n′) are also all possible reductions

of C, so they are the same reductions. Therefore, n = n′ and there exists a
bijection α from {1, . . . , n} to {1, . . . , n} such that pi = p′α(i), Ci = C′α(i) ≈v
noinstrCI(CIα(i)), and CI →pi CIα(i). By renumbering the configurations CIi
(i ≤ n), we can conclude that Property 1 holds in this case. �

C Proof of Proposition 8.5

Definition C.1 Let th
def
= 〈env , pe, stack , store〉 and th ′

def
= 〈env ′, pe ′, stack ′,

store ′〉 be two threads, such that the domains of store and store ′ are disjoint.
We define plug(th, th ′)

def
= 〈env , pe, stack @ stack ′, store ∪ store ′〉.

Definition C.2 A well-formed thread th = 〈env , pe, stack , store〉 is a thread
such that:

1. all store locations l ∈ Loc` that occur in the thread th are bound in the
store: l ∈ Dom(store),

2. pe and stack do not contain global store locations, nor return, event,
schedule, or addthread operations.

89



Lemma C.3 If th is a well-formed thread and th →p th ′, then for all th ′′ such
that the domains of the stores of th ′′ and of th are disjoint, after renaming the
fresh locations introduced in th →p th ′ so that they do not occur in th ′′, we have
plug(th, th ′′) →p plug(th ′, th ′′) and the domains of the stores of th ′′ and of th ′

are disjoint.

Proof By reviewing the reduction rules, we have Property (P1): if env , pe,

stack
L−−→p env ′, pe ′, stack ′, then for every stack stack ′′, we have env , pe, stack @

stack ′′
L−−→p env ′, pe ′, stack ′@ stack ′′.

Let th
def
= 〈env , pe, stack , store〉 and th ′

def
= 〈env ′, pe ′, stack ′, store ′〉. Let us

prove that, if th →p th ′, then for every th ′′
def
= 〈env ′′, pe ′′, stack ′′, store ′′〉 such

that Dom(store)∩Dom(store ′′) = ∅, we have the reduction plug(th, th ′′) = 〈env ,
pe, stack @ stack ′′, store ∪ store ′′〉 →p plug(th ′, th ′′) = 〈env ′, pe ′, stack ′@ stack ′′,
store ′ ∪ store ′′〉 with Dom(store ′) ∩ Dom(store ′′) = ∅. We distinguish cases on
the label L present in rule (Thread).

• if L is empty, then by (Store empty), store = store ′. We conclude by
Property (P1) and rule (Thread).

• if L is !l = v, by (Store lookup), the location l is in the domain of the
store store, and store(l) = v, and store = store ′. We also have (store ∪
store ′′)(l) = v, so store ∪ store ′′

!l=v−−−−→ store ′ ∪ store ′′. We conclude by
Property (P1) and rule (Thread).

• if L is l := v, then by (Store assign), the location l is in the domain
of the store store, and store ′ = store[l 7→ v]. The domain of the store
store ∪ store ′′ also contains l, so store ∪ store ′′

l:=v−−−−→ store ′ ∪ store ′′. We
conclude by Property (P1) and rule (Thread).

• if L is ref v = l, then by (Store alloc), l /∈ Dom(store). By reviewing the
uses of L of the form ref v = l in the reduction rules, we can deduce that
pe = ref v and pe ′ = l. By Property 1 of Definition C.2, the location
l does not occur in th. Let us take a location l′ ∈ Loc` that is not in
Dom(store) ∪ Dom(store ′′); we rename l into l′. As l′ /∈ Dom(store),
the thread th ′ becomes 〈env ′, l′, stack ′, store[l′ 7→ v]〉, which is in the
same equivalence class as th ′, so we still designate this thread by th ′.
Let L′ def

= (ref v = l′). By Property (P1), env , pe, stack @ stack ′′
L′

−−−→
env ′, l′, stack ′@ stack ′′ and, since l′ /∈ Dom(store)∪Dom(store ′′), we have

store∪store ′′
L′

−−−→ store[l′ 7→ v]∪store ′′. We conclude that plug(th, th ′′) =
〈env , pe, stack @ stack ′′, store ∪ store ′′〉 → plug(th ′, th ′′) = 〈env ′, l′, stack ′

@ stack ′′, store[l′ 7→ v] ∪ store ′′〉 by rule (Thread). �

Lemma C.4 Let th be a well-formed thread. If th →p th ′, then th ′ is also
well-formed.

Proof Let us prove that both properties of Definition C.2 are preserved.
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• The only rule that may add new locations in the thread is (Store alloc),
which creates a new location l and also adds it in the domain of the store.
So Property 1 is preserved for th ′.

• By looking at the reduction rules, we can see that no rule can create global
store locations or return, event, schedule, or addthread operations.
So Property 2 is preserved for th ′.

Therefore, the thread th ′ is also well-formed. �

Lemma C.5 If v is a value of the type of the argument of the primitive s, then
the thread 〈∅, envprim(s) v, [ ], ∅〉 is well-formed.

Proof The thread ths0 = 〈∅, programprim;; , [ ], ∅〉 is well-formed, since it con-
tains no locations in Loc` and by Assumption 8.1, it contains no schedule,
addthread, return, or event operations and no global store locations.

By Assumption 8.2, ths0 →∗ th = 〈envprim, ε, [ ], ∅〉, so by Lemma C.4,
th is also well-formed. Therefore, the thread 〈∅, envprim(s) v, [ ], ∅〉 is well-
formed, since by Assumption 8.3, v contains no locations and no return, event,
schedule, or addthread operations since it contains no closure, and envprim

contains no locations and no return, event, schedule, or addthread opera-
tions since th is well-formed. �

Proof (of Proposition 8.5) By Assumption 8.4, we have reductions of the
form

th1
def
= 〈∅, envprim(s) v, [ ], ∅〉 →∗p th ′1

def
= 〈env ′, v′, [ ], store ′1〉 .

Let th2
def
= 〈env , (), stack , store〉. By Lemma C.5, th1 is well-formed, so by

Lemmas C.3 and C.4,

th = plug(th1, th2)→∗p plug(th ′1, th2) = 〈env ′, v′, stack , store ′1 ∪ store〉 .

Letting store ′
def
= store ′1 ∪ store, we obtain exactly the desired reductions th →∗p

〈env ′, v′, stack , store ′〉, and store ′ ⊇ store. �

D Proof of Lemmas 8.8 and 8.10
Let us first prove Lemma 8.8.

Proof (of Lemma 8.8) We prove this result by induction on the syntax of
terms.

• CaseM = x[ã′]: Since E ·M ⇓ a is derived by (Var), we have E(x[ã′]) = a.
Since env(E,M) ⊆ env , we have env(Gvar(x)) = GvalT (a), so

th = 〈env ,Gvar(x), stack , store〉 → th ′ = 〈env ,GvalT (a), stack , store〉
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• Case M = f(M1, . . . ,Mk), where f is of type T1 × · · · × Tk → T . Since
E ·M ⇓ a is derived by (Fun), we have E ·Mi ⇓ ai for all i ≤ k, for some
a1, . . . , ak such that f(a1, . . . , ak) = a.

th = 〈env ,Gf(f) (GM(M1), . . . ,GM(Mk)), stack , store〉
→ 〈env , (GM(M1), . . . ,GM(Mk)), stack ′, store〉

where stack ′
def
= (env ,Gf(f) [·]) :: stack

→ th1
def
= 〈env ,GM(Mk), stack ′′, store〉

where stack ′′
def
= (env , (GM(M1), . . . ,GM(Mk−1), [·])) :: stack ′

→∗ th2
def
= 〈env ′,GvalTk

(ak), stack ′′, store ′〉
by induction hypothesis applied to Mk

→ 〈env , (GM(M1), . . . ,GM(Mk−1),GvalTk
(ak)), stack ′, store ′〉

→∗ th3
def
= 〈env , (GvalT1(a1), . . . ,GvalTk

(ak)), stack ′, store ′′〉
by an easy induction

→ 〈env ,Gf(f) (GvalT1
(a1), . . . ,GvalTk

(ak)), stack , store ′′〉
→ 〈env ,Gf(f), stack ′′′, store ′′〉

where stack ′′′
def
= (env , [·] (GvalT1(a1), . . . ,GvalTk

(ak))) :: stack

→ 〈env , envprim(Gf(f)), stack ′′′, store ′′〉 since envprim ⊆ env

→ 〈env , envprim(Gf(f)) (GvalT1(a1), . . . ,GvalTk
(ak)), stack , store ′′〉

→∗ th ′
def
= 〈env ′′,GvalT (a), stack , store ′′′〉 by Proposition 8.5

By Proposition 8.5 and induction hypothesis, we have store ′′′ ⊇ store ′′ ⊇
store ′ ⊇ store. �

Let us now prove lemmas useful to prove Lemma 8.10.

Lemma D.1 (Write file) Let C be an OCaml configuration. If Cth(C) =
〈env ,Gfile(x[ã]), stack , store〉, env(Gvar(x)) = GvalTx

(a), env ⊇ envprim, and
Cglobalstore(C) ⊇ globalstore(E, T ), then we have C −→∗ C′ where

• C′ = C[th 7→ 〈env , (), stack , store ′〉, globalstore 7→ globalstore ′],

• store ′ ⊇ store,

• globalstore ′ ⊇ globalstore(E[x[ã] 7→ a], T ),

• globalstore ′(l) = Cglobalstore(C)(l) for all l 6∈ Locpriv.

Proof If (x[ã], f) ∈ Files for some f , then we have x[ã] = x[ ] and Gfile(x[ã]) =
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(f := Gser(Tx) Gvar(x)), so

C→ C[th 7→ 〈env ,Gser(Tx) Gvar(x)), stack ′, store〉]

where stack ′
def
= (env , f := [·]) :: stack

→∗ C[th 7→ 〈env , envprim(Gser(Tx)) GvalTx
(a), stack ′, store〉]

→∗ C[th 7→ 〈env ′, ser(Tx, a), stack ′, store ′〉] by Proposition 8.5
→ C[th 7→ 〈env , f := ser(Tx, a), stack , store ′〉]

→ C′ = C[th 7→ 〈env , (), stack , store ′〉, globalstore 7→ globalstore ′]

where

globalstore ′
def
= Cglobalstore(C)[f 7→ ser(Tx, a)]

⊇ globalstore(E, T )[f 7→ ser(Tx, a)]

⊇ globalstore(E[x[ ] 7→ a], T ) .

The modified location f is in Locpriv, so for all l /∈ Locpriv, globalstore ′(l) =
Cglobalstore(C)(l). We have store ′ ⊇ store by Proposition 8.5.

Otherwise, we have Gfile(x[ã]) = () and C′ = C, so

globalstore ′ = Cglobalstore(C)
⊇ globalstore(E, T ) = globalstore(E[x[ã] 7→ a], T ) ,

and for all l 6∈ Locpriv, we have globalstore ′(l) = Cglobalstore(C)(l). �

Definition D.2 (Deserialized OCaml values for tables) Let Tbl be a ta-
ble of type T1 × · · · × Tl. The OCaml value that corresponds to an element
(b1, . . . , bl) of this table is

GvalT1,...,Tl
(b1, . . . , bl)

def
= (GvalT1

(a1), . . . ,GvalTl
(al)) .

Let t = [a1; . . . ; ak] be a list of elements of table Tbl . The corresponding OCaml
list is

Gtbldeser(Tbl , t)
def
= [GvalT1,...,Tl

(a1); . . . ;GvalT1,...,Tl
(ak)] .

Definition D.3 (Function filter) Let E be a CryptoVerif environment, M a
CryptoVerif boolean term, (x1, . . . , xk) a tuple of variables, and t a list of tuples
of CryptoVerif values of type Tx1

×· · ·×Txk
. We let filter(E,M, (x1[ã], . . . , xk[ã]),

t) be the list of tuples (a1, . . . , ak) in t such that the term M is true when the
variables x1[ã], . . . , xk[ã] are bound to a1, . . . , ak in the environment E, respec-
tively:

filter(E,M, (x1[ã], . . . , xk[ã]), t)
def
=

[(a1, . . . , ak) ∈ t | E[x1[ã] 7→ a1, . . . , xk[ã] 7→ ak] ·M ⇓ true]

Let us recall that our fold function on lists Gfold is defined in Figure 16 as
follows:

Gfold
def
= f → function a→ function [ ]→ a | x :: l→ f (fold f a l) x
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Lemma D.4 Suppose that

th = 〈env , fold c [ ] (Gtbl(Tbl , t)), stack , store〉
c = function[env ′,

a→ function x→ try (c′ x) :: a with Match_failure→ a]

c′ = Gtest((x1, . . . , xk),M)

env ′ ⊇ envprim ∪ {Gvar(x) 7→ GvalTx
(b) | x[ã′] ∈ fv(M) \ {x1[ã], . . . , xk[ã]},

E(x[ã′]) = b}
env(fold) = env ′(fold) = letrec[env0, {fold 7→ Gfold} in fold ]

where t is a list of CryptoVerif values of type Tx1
× · · · × Txk

and all occurrences of x1, . . . , xk in M have indices ã.

Then th →∗ th ′ such that

th ′ = 〈env ′′,Gtbldeser(Tbl ,filter(E,M, (x1[ã], . . . , xk[ã]), t)), stack , store ′〉

for some env ′′ and store ′ such that store ′ ⊇ store.

Proof We prove this lemma by induction on the length of t.
In the base case, t = [ ], so Gtbl(Tbl , t) = [ ], and

th = 〈env , fold c [ ] [ ], stack , store〉
→∗ 〈env1, (match c with Gfold) [ ] [ ], stack , store〉

where env1
def
= env0[fold 7→ env ′(fold)]

→∗ 〈env ′′,match [ ] with [ ] 7→ a | x :: l→ f (fold f a l) x, stack , store〉

where env ′′
def
= env1[f 7→ c, a 7→ [ ]]

→∗ th ′
def
= 〈env ′′, [ ], stack , store〉

For any E,M, (x1[ã], . . . , xk[ã]), we have filter(E,M, (x1[ã], . . . , xk[ã]), [ ]) = [ ].
So the lemma is correct for the base case.

In the inductive case, let t = b :: t′. Let y = Gtblel(Tbl , b) and l′ =
Gtbl(Tbl , t′), so Gtbl(Tbl , t) = y :: l′. Let b = (a1, . . . , ak) and y = (d1, . . . , dk),
where each di corresponds to ai. Let (d′1, . . . , d′k) = GvalT1,...,Tk

(b), where Tbl is
a table of type T1 × · · · × Tk.

th = 〈env , fold c [ ] (y :: l′), stack , store〉
→∗ 〈env1, (match c with Gfold) [ ] (y :: l′), stack , store〉

where env1
def
= env0[fold 7→ env ′(fold)]

→∗ 〈env2,match y :: l′ with [ ] 7→ a | x :: l→ f (fold f a l) x, stack , store〉

where env2
def
= env1[f 7→ c, a 7→ [ ]]

→∗ 〈env3, f (fold f a l) x, stack , store〉

where env3
def
= env2[x 7→ y, l 7→ l′]
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→∗ 〈env3, fold f a l, stack1, store〉 where stack1
def
= (env3, f [·] y) :: stack

(arguments are evaluated from right to left)

→∗ 〈env3, fold c [ ] l′, stack1, store〉
→∗ 〈env4,Gtbldeser(Tbl , t′′), stack1, store1〉 by induction hypothesis

where t′′ def
= filter(E,M, (x1[ã], . . . , xk[ã]), t

′)

→ 〈env3, f (Gtbldeser(Tbl , t′′)) y, stack , store1〉
→∗ 〈env3, c (Gtbldeser(Tbl , t′′)) y, stack , store1〉
→∗ 〈env5, try (c′ x) :: a with Match_failure→ a, stack , store1〉

where env5
def
= env ′[a 7→ Gtbldeser(Tbl , t′′), x 7→ y]

→ 〈env5, (c
′ x) :: a, stack2, store1〉

where stack2
def
= (env5, try [·] with Match_failure→ a) :: stack

→ 〈env5, c
′ x, stack3, store1〉 where stack3

def
= (env5, [·] :: a) :: stack2

→∗ 〈env5[Gvar(x1) 7→ d1, . . . ,Gvar(xk) 7→ dk],

let Gvar(x1) = Gdeser(Tx1
) Gvar(x1) in . . .

let Gvar(xk) = Gdeser(Txk
) Gvar(xk) in

if (GM(M)) then (Gvar(x1), . . . ,Gvar(xk)) else raise Match_failure,

stack3, store1〉
→∗〈env6,

if (GM(M)) then (Gvar(x1), . . . ,Gvar(xk)) else raise Match_failure,

stack3, store2〉 where env6
def
= env5[Gvar(x1) 7→ d′1, . . . ,Gvar(xk) 7→ d′k]

by Proposition 8.5 applied k times

→ th1
def
= 〈env6,GM(M), stack4, store2〉

where stack4
def
= (env6, if [·] then (Gvar(x1), . . . ,Gvar(xk))

else raise Match_failure) :: stack3

The environment env6 contains envprim and env(E[x1[ã] 7→ a1, . . . , xk[ã] 7→
ak],M). Let r be the CryptoVerif value such that E[x1[ã] 7→ a1, . . . , xk[ã] 7→ ak]·
M ⇓ r. So by Lemma 8.8,

th1 →∗ th2
def
= 〈env7,Gvalbool(r), stack4, store3〉

and by Lemma 8.8, Proposition 8.5, and the induction hypothesis, we have
store3 ⊇ store2 ⊇ store1 ⊇ store.

Let us suppose that r = true. In this case, filter(E,M, (x1[ã], . . . , xk[ã]), t) =

b :: filter(E,M, (x1[ã], . . . , xk[ã]), t
′). Let us denote t′′′ def

= filter(E,M, (x1[ã],
. . . , xk[ã]), t).

th2 = 〈env7, true, stack4, store3〉
→∗ 〈env6, if true then (Gvar(x1), . . . ,Gvar(xk)) else raise Match_failure,

stack3, store3〉
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→ 〈env6, (Gvar(x1), . . . ,Gvar(xk)), stack3, store3〉
→∗ 〈env6, (d

′
1, . . . , d

′
k), stack3, store3〉

→ 〈env5, (d
′
1, . . . , d

′
k) :: a, stack2, store3〉

→∗ 〈env5,Gtbldeser(Tbl , t′′′), stack2, store3〉
since Gtbldeser(Tbl , t′′′) = (d′1, . . . , d

′
k) :: (Gtbldeser(Tbl , t′′))

→∗ 〈env5, try Gtbldeser(Tbl , t′′′) with Match_failure→ a, stack , store3〉

→ th ′
def
= 〈env5,Gtbldeser(Tbl , t′′′), stack , store3〉

So the lemma is correct in this case.
Let us now suppose that r = false. In this case, filter(E,M, (x1[ã], . . . ,

xk[ã]), t) = filter(E,M, (x1[ã], . . . , xk[ã]), t
′).

th2 = 〈env7, false, stack4, store3〉
→∗ 〈env6, if false then (Gvar(x1), . . . ,Gvar(xk)) else raise Match_failure,

stack3, store3〉
→ 〈env6, raise Match_failure, stack3, store3〉
→∗ 〈env5, try raise Match_failure with Match_failure→ a,

stack , store3〉
→∗ 〈env5, a, stack , store3〉

→ th ′
def
= 〈env5,Gtbldeser(Tbl , t′′), stack , store3〉

As in the previous case, the lemma is also correct in this case. �

Proof (of Lemma 8.10) Let us prove this lemma by looking at each case.

• The random number generation construct:

On the CryptoVerif side, for each element b of type T , we have the follow-
ing reduction:

E, x[ã]
R← T ;P ′, T ,Q,S, E →1/|T | E[x[ã] 7→ b], P ′, T ,Q,S, E

The variable x[ã], bound in P , is free in P ′.

On the OCaml side, we have, for all b ∈ T ,

C = C[th 7→ 〈env , let Gvar(x) = Grandom(T ) () in (Gfile(x[ã]);G(P ′)),

stack , store〉]
→ C[th 7→ 〈env ,Grandom(T ) (), stack ′, store〉]

where stack ′
def
= (env , let Gvar(x) = [·] in (Gfile(x[ã]);G(P ′)))

:: stack

→∗ C[th 7→ 〈env , envprim(Grandom(T )) (), stack ′, store〉]
→∗1/|T | C[th 7→ 〈env ′,GvalT (b), stack ′, store ′〉] by Proposition 8.5
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→∗ C[th 7→ 〈env ′′,Gfile(x[ã]);G(P ′), stack , store ′〉]

where env ′′
def
= env [Gvar(x) 7→ GvalT (b)]

→ C[th 7→ 〈env ′′,Gfile(x[ã]), ([·];G(P ′)) :: stack , store ′〉]
→∗ C[th 7→ 〈env ′′, ();G(P ′), stack , store ′′〉, globalstore 7→ globalstore ′]

by Lemma D.1

→ C′ = C[th 7→ 〈env ′′,G(P ′), stack , store ′′〉, globalstore 7→ globalstore ′]

This sequence of reductions describes the set of traces CTSb that cor-
responds to the CryptoVerif reduction that adds to its environment the
value b bound to x[ã]. We have Pr[CTSb] = 1/|T |.

Let E′ def
= E[x[ã] 7→ b]. We have env(E′, P ′) = env(E,P )[Gvar(x) 7→

GvalT (a)], so env ′′ ⊇ envprim ∪ env(E′, P ′). By Lemma D.1, we have
globalstore ′ ⊇ globalstore(E′, T ) and globalstore ′(l) = Cglobalstore(C)(l) for
all l 6∈ Locpriv. By Lemma D.1 and Proposition 8.5, we have store ′′ ⊇
store ′ ⊇ store. Events are unchanged on both sides. So this construct
satisfies the lemma.

• The assignment construct:
On the CryptoVerif side, let us suppose that E ·M ⇓ b. We have the
following reduction:

E, x[ã]←M ;P ′, T ,Q,S, E → E[x[ã] 7→ b], P ′, T ,Q,S, E

Let us denote T = TM . The variable x[ã], bound in P , is free in P ′.
On the OCaml side, we have:

C = C[th 7→ th] where th
def
=

〈env , let Gvar(x) = GM(M) in (Gfile(x[ã]);G(P ′)), stack , store〉
→ C[th 7→ 〈env ,GM(M), stack ′, store〉]

where stack ′
def
= (env , let Gvar(x) = [·] in (Gfile(x[ã]);G(P ′)))

:: stack

→∗ C[th 7→ 〈env ,GvalT (b), stack ′, store′〉] by Lemma 8.8
→∗ C[th 7→ 〈env ′,Gfile(x[ã]);G(P ′), stack , store ′〉]

where env ′
def
= env [Gvar(x) 7→ GvalT (b)]

→∗ C[th 7→ 〈env ′, ();G(P ′), stack , store ′′〉, globalstore 7→ globalstore ′]
by Lemma D.1

→ C′ def
= C[th 7→ 〈env ′,G(P ′), stack , store ′′〉, globalstore 7→ globalstore ′]

This sequence of reductions describes the set of traces CTS1 that corre-
sponds to the CryptoVerif reduction. We have Pr[CTS1] = 1.

Let E′ def
= E[x[ã] 7→ b]. We have env(E′, P ′) = env(E,P )[Gvar(x) 7→

GvalT (b)], so env ′ ⊇ envprim ∪ env(E′, P ′). By Lemma D.1, we have
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globalstore ′ ⊇ globalstore(E′, T ) and globalstore ′(l) = Cglobalstore(C)(l) for
all l 6∈ Locpriv. By Lemmas D.1 and 8.8, we have store ′′ ⊇ store ′ ⊇ store.
Events are unchanged on both sides. So this construct satisfies the lemma.

• The conditional construct:

On the CryptoVerif side, let us suppose that E ·M ⇓ true. The same
reasoning can be applied in the case that E · M ⇓ false. We have the
following reduction:

E, if M then P1 else P2, T ,Q,S, E → E,P1, T ,Q,S, E .

On the OCaml side, we implement the CryptoVerif bool type with booleans
in OCaml, and we have Gvalbool(true) = true and Gvalbool(false) = false.
Let th = Cth(C).

th = 〈env , if GM(M) then G(P1) else G(P2), stack , store〉
→ 〈env ,GM(M), stack ′, store〉

where stack ′
def
= (env , if [·] then G(P1) else G(P2)) :: stack

→∗ 〈env , true, stack ′, store ′〉 by Lemma 8.8
→ 〈env , if true then G(P1) else G(P2), stack , store ′〉

→ th ′
def
= 〈env ,G(P1), stack , store ′〉

By (Globalstore1) and (Toplevel), we obtain C→∗ C′ def
= C[th 7→ th ′]. This

sequence of reductions describes the set of traces CTS1 that corresponds
to the CryptoVerif reduction. We have Pr[CTS1] = 1.

The CryptoVerif environment E and tables T , the OCaml environment
env and global store globalstore, and the events on both sides are un-
changed. By Lemma 8.8, we have store ′ ⊇ store, so this construct satisfies
the lemma.

• The insert construct:

On the CryptoVerif side, let us suppose that E ·Mi ⇓ ai. We have the
following reduction:

E, insert Tbl(M1, . . . ,Mk);P
′, T ,Q,S, E → E,P ′, T ′,Q,S, E ,

where T ′ def
= T [Tbl 7→ (a1, . . . , ak) :: T (Tbl)]. Let the type of the table

Tbl be T1 × · · · × Tk.
On the OCaml side, there exists a unique f such that (Tbl , f) ∈ Tables.
Let globalstore = Cglobalstore(C). Since globalstore ⊇ globalstore(E, T ), we
have

globalstore(f) = t where t def
= Gtbl(Tbl , T (Tbl)) .
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Let t′ def
= Gtblel(Tbl , (a1, . . . , ak)) :: t. By definition of Gtbl, we have t′ =

Gtbl(Tbl , T ′(Tbl)). Let globalstore ′ = globalstore[f 7→ t′].

C = C[th 7→ 〈env , f := e :: (!f);G(P ′), stack , store〉]

where e def
= (Gser(T1) GM(M1), . . . ,Gser(Tk) GM(Mk))

→∗ C[th 7→ 〈env , e :: t, stack ′, store〉]

where stack ′
def
= (env , f := [·]) :: (env , [·];G(P ′)) :: stack

→∗ C[th 7→ 〈env ,Gtblel(Tbl , (a1, . . . , ak)) :: t, stack ′, store ′〉]
by Lemma 8.8 and Proposition 8.5

→ C[th 7→ 〈env , f := t′, (env , [·];G(P ′)) :: stack , store ′〉]
→∗ C[th 7→ 〈env , ();G(P ′), stack , store ′〉, globalstore 7→ globalstore ′]

→ C′ def
= C[th 7→ 〈env ,G(P ′), stack , store ′〉, globalstore 7→ globalstore ′]

This sequence of reductions describes the set of traces CTS1 that corre-
sponds to the CryptoVerif reduction. We have Pr[CTS1] = 1.

The global store is modified so that globalstore ′ ⊇ globalstore(E, T ′) and
globalstore ′(l) = Cglobalstore(C)(l) for all l 6∈ Locpriv, and the environments
and events are unchanged on both sides. Moreover, by Proposition 8.5 and
Lemma 8.8, we have store ′ ⊇ store, so this construct satisfies the lemma.

• The get construct:

On the CryptoVerif side, let us consider a CryptoVerif configuration such
that its program is

P = get Tbl(x1[ã], . . . , xk[ã]) suchthat M in P ′ else P ′′ .

Let the type of the table Tbl be T1 × · · · × Tk.
We have two cases depending on whether there is a value in the table Tbl

that satisfies M or not. Let l′ def
= filter(E,M, (x1[ã], . . . , xk[ã]), T (Tbl)) =

[b1, . . . , bm]. This list contains every element of T (Tbl) such that M is
true.

If l′ is empty, then:

E,P, T ,Q,S, E → E,P ′′, T ,Q,S, E .

If l′ is not empty, then there is a reduction for each element b = (a1, . . . , ak)
in l′,

E,P, T ,Q,S, E →pb Eb, P
′, T ,Q,S, E ,

with pb
def
=
∑
{j∈{1,...,m}|bj=b} almostunif ({1, . . . ,m}, j) and Eb

def
=E[x1[ã] 7→

a1, . . . , xk[ã] 7→ ak].
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On the OCaml side, let us denote

e
def
= if l = [ ] then G(P ′) else

let (Gvar(x1), . . . ,Gvar(xk)) = random` l in

(Gfile(x1[ã]); . . . ;Gfile(xk[ã]);G(P ))

e1
def
= try (Gtest((x1, . . . , xk),M) x) :: a with Match_failure→ a

There exists a unique f such that (Tbl , f) ∈ Tables, and we have

C = C[th 7→ 〈env , let l = e2 in e, stack , store〉]

where e2
def
= read_table(f,Gtest((x1, . . . , xk),M))

= let rec fold = function Gfold in

fold (function a→ x→ e1) [ ] !f

→ C[th 7→ 〈env , e2, stack ′, store〉]

where stack ′′
def
= (env , let l = [·] in e) :: stack

→ C[th 7→ 〈env ′, fold (function a→ x→ e1) [ ] !f, stack ′, store〉]

where env ′
def
= env [fold 7→ letrec[env , {fold 7→ Gfold} in fold ]]

→∗ C[th 7→ 〈env ′, e3, stack ′, store〉]

where e3
def
=

fold function[env ′, a→ function x→ e1] [ ] Gtbl(Tbl , T (Tbl))

→∗ C[th 7→ 〈env ′′,Gtbldeser(Tbl , l′), stack ′, store ′〉] by Lemma D.4
since l′ = filter(E,M, (x1[ã], . . . , xk[ã]), T (Tbl))

→ C[th 7→ 〈env , let l = Gtbldeser(Tbl , l′) in e, stack , store ′〉]

→ C1
def
= C[th 7→ 〈env ′′, e, stack , store ′〉]

where env ′′
def
= env [l 7→ Gtbldeser(Tbl , l′)]

Now, if l′ is empty, then env ′′(l) = [ ], so

C1 →∗ C′
def
= C[th 7→ 〈env ′′,G(P ′′), stack , store ′〉]

The sequence of reductions C →∗ C1 →∗ C′ describes the set of traces
CTS1 that corresponds to the unique CryptoVerif reduction that can hap-
pen when l′ is empty. We have Pr[CTS1] = 1.

The CryptoVerif environment E is unchanged and the OCaml environment
env ′′ is an extension of env , so we have env ′′ ⊇ envprim∪ env(E,P ′′). The
CryptoVerif tables, the global store, and the events on both sides are
unchanged. By Lemma D.4, we have store ′ ⊇ store. So, in this case, the
get construct satisfies the lemma.

If l′ is not empty, then let b = (a1, . . . , ak) be any element of l′, and let
v = GvalT1,...,Tk

(Tbl , b) = (GvalT1
(a1), . . . ,GvalTk

(ak)). We have env ′′(l) =

100



Gtbldeser(Tbl , l′). Let env ′′(l) = [v1; . . . ; vm]. The set S def
= {j ∈ {1, . . . ,

m} | v = vj} is equal to the set {j ∈ {1, . . . ,m} | b = bj}, because
the function b 7→ GvalT1,...,Tk

(Tbl , b) is injective. Hence, we have pb =∑
j∈S almostunif ({1, . . . ,m}, j).

C1 →∗ C[th 7→ 〈env ′′, e4, stack , store ′〉]

where e4
def
= let (Gvar(x1), . . . ,Gvar(xk)) = random` l in

(Gfile(x1[ã]); . . . ;Gfile(xk[ã]);G(P ′))

→∗pb C[th 7→ 〈env ′′, e5, stack , store ′′〉] by Proposition 8.5

where e5
def
= let (Gvar(x1), . . . ,Gvar(xk)) = v in

(Gfile(x1[ã]); . . . ;Gfile(xk[ã]);G(P ′))

→∗ C[th 7→ 〈env ′′′,Gfile(x1[ã]); . . . ;Gfile(xk[ã]);G(P ′), stack , store ′′〉]

where env ′′′
def
=

env ′′[Gvar(x1) 7→ GvalT1
(a1), . . . ,Gvar(xk) 7→ GvalTk

(ak)]

→∗ C′b
def
= C[th 7→ 〈env ′′′,G(P ′), stack , store ′′′〉, globalstore 7→ globalstore ′]

by Lemma D.1

The sequence of reductions C →∗ C1 →∗ C′b describes the set of traces
CTSb that corresponds to the CryptoVerif reduction in which the element
b = (a1, . . . , ak) of l′ is chosen. We have Pr[CTSb] = pb.

By Lemma D.1, globalstore ′ ⊇ globalstore(Eb, T ), and globalstore ′ and
Cglobalstore(C) are equal on all locations not in Locpriv, since Eb=E[x1[ã] 7→
a1, . . . , xk[ã] 7→ ak]. Since the OCaml environment is env ′′′ = env [l 7→
. . . ,Gvar(x1) 7→ GvalT1

(a1), . . . ,Gvar(xk) 7→ GvalTk
(ak)], we have env ′′′ ⊇

envprim ∪ env(Eb, P
′). The events are unchanged on both sides. By

Lemma D.1, Proposition 8.5, and Lemma D.4, we have store ′′′ ⊇ store ′′ ⊇
store ′ ⊇ store. So, in this case, the get construct also satisfies the lemma.

• The event construct:

On the CryptoVerif side, let us suppose that E ·Mj ⇓ aj for all j ≤ l. We
have the following reduction:

E, event ev(M1, . . . ,Ml);P
′, T ,Q,S, E → E,P ′, T ,Q,S, E ′ ,

where E ′ def
= ev(a1, . . . , al) :: E . Let us denote T1 × · · · × Tl the type of the

event ev .

On the OCaml side, let us denote

events ′
def
= Gev(E ′) = ev(GvalT1

(a1), . . . ,GvalTl
(al)) :: events .
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We have

C = C[th 7→ 〈env , e;G(P ′), stack , store〉]

where e def
= event ev(GM(M1), . . . ,GM(Ml))

→ C[th 7→ 〈env , e, stack ′, store, 〉]

where stack ′
def
= (env , [·];G(P ′)) :: stack

→∗ C[th 7→ 〈env , e′, stack ′, store ′〉] by Lemma 8.8

where e′ def
= event ev(GvalT1

(a1), . . . ,GvalTl
(al))

→ C[th 7→ 〈env , (), stack ′, store ′〉, events 7→ events ′]

→∗ C′ def
= C[th 7→ 〈env ,G(P ′), stack , store ′〉, events 7→ events ′]

This sequence of reductions describes the set of traces CTS1 that corre-
sponds to the CryptoVerif reduction. We have Pr[CTS1] = 1.

The CryptoVerif environment E and tables T and the OCaml environ-
ment env and global store globalstore are unchanged. We have events ′ =
Gev(E ′). By Lemma 8.8, we have store ′ ⊇ store, so this construct satisfies
the lemma. �

E Proof of Lemma 8.18 and Proposition 8.19
Proof (of Lemma 8.18) Let us first show by induction on steps that, if
CS →∗ CS′ in at most steps steps and CS′ does not reduce, or CS →∗ CS′ in
exactly steps steps, C = E,P, T ,Q,S, E , and P = x[a] ← simulateML(s[a]);P

′,
then C, steps,CS ∗ E[x[a] 7→ simreturn(CS′)], P ′, T ,Q,S, E .

• If steps = 0 or CS does not reduce, then CS′ = CS and C, steps,CS  
E[x[a] 7→ simreturn(CS′)], P ′, T ,Q,S, E by (Leave Simulator).

• If steps > 0 and CS→ CS1, then CS1 →∗ CS′ in at most steps−1 steps and
CS′ does not reduce, or CS1 →∗ CS′ in exactly steps−1 steps, so by induc-
tion hypothesis, C, steps − 1,CS1  ∗ E[x[a] 7→ simreturn(CS)], P ′, T ,Q,
S, E . By (Simulator), C, steps,CS C, steps − 1,CS1, so C, steps,CS ∗
E[x[a] 7→ simreturn(CS′)], P ′, T ,Q,S, E .

Let us now prove that, if C →p C′, then there is a trace C  ∗p C′ and all
intermediate configurations in this trace (if any) are of the form C, steps,CS.
Let C = E,P, T ,Q,S, E .

• If P is not of the form x[a] ← simulateML(s[a]);P
′ for any x, a, P ′, then

C  p C′ by (CryptoVerif).

• If P = x[a] ← simulateML(s[a]);P
′ for some x, a, P ′, then by the se-

mantics of CryptoVerif, s[a] ∈ Dom(E), E(s[a]) is of type TCS, and
C′ = E[x[a] 7→ simulateML(E(s[a]))], P ′, T ,Q,S, E . Since E(s[a]) is of
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type TCS, there exists a configuration CS such that E(s[a]) = repr(CS).
By reduction rule (Enter Simulator), C  Ccs

1 = C, Nsteps,CS. More-
over, by definition of simulateML, CS →∗ CS′ in at most Nsteps steps
and CS′ does not reduce, or CS →∗ CS′ in exactly Nsteps steps, and
simulateML(repr(CS)) = simreturn(CS′). By the result shown above,
C  Ccs

1  
∗ E[x[a] 7→ simreturn(CS′)], P ′, T ,Q,S, E = C′.

Finally, let us show that, if C does not reduce by →, then it does not reduce by
 either. Let C = E,P, T ,Q,S, E .

• If P is not of the form x[a] ← simulateML(s[a]);P
′ for any x, a, P ′, then

the only rule applicable to reduce C by  is (CryptoVerif), and it cannot
be applied because C does not reduce by →. Hence C does not reduce by
 .

• If P = x[a] ← simulateML(s[a]);P
′ for some x, a, P ′, then either s[a] /∈

Dom(E) or E(s[a]) /∈ TCS. The only rule applicable to reduce C by  is
(Enter Simulator), and it does not apply when s[a] /∈ Dom(E) or E(s[a]) /∈
TCS. Hence C does not reduce by  . (We could also show that, because
the CryptoVerif configurations are well-typed, C always reduces when P =
x[a]← simulateML(s[a]);P

′.) �

Proof (of Proposition 8.19) For b ∈ {true, false}, let CT Sb be the set of
complete CryptoVerif traces using → starting at C and such that the list of
events E in their last configuration satisfies D(E) = b. By the first property of
Lemma 8.18, we can map each trace CT ∈ CT Sb into a trace CT cs using  and
starting at C, such that the configurations of the form C of CT cs are exactly the
same as in CT and Pr[CT cs] = Pr[CT ].

Let CT Scs
b be the set of these traces CT cs. Let us show that CT Scs

b is the set
of complete CryptoVerif traces using  starting at C and such that the list of
events E in their last configuration satisfies D(E) = b.

The list of events E in the last configuration of CT cs is the same as in CT ,
so it satisfies D(E) = b. By the second property of Lemma 8.18, since CT is
complete, CT cs is also complete. Since the mapping from CT to CT cs is injective,
we have Pr[CT Scs

b ] = Pr[CT Sb].
Moreover, if a configuration Ccs reduces by  into another configuration,

then the sum of the probabilities of all the possible reductions from Ccs is 1:∑
{Ccs′|Ccs p(Ccs′)Ccs′}

p(Ccs′) = 1 .

Indeed, the rules that define  are mutually exclusive. If Ccs reduces by
rule (CryptoVerif), then the property holds because it holds for the semantics
of CryptoVerif. Otherwise, a single reduction is possible, and it has probability
1.

Using the same property for →, the probability of all complete traces using
→ starting from C is 1, so Pr[CT Strue] + Pr[CT S false] = 1. So Pr[CT Scs

true] +

103



Pr[CT Scs
false] = 1. Since the sum of the probabilities of all the possible reductions

from each configuration by  is 1, the probability of all complete traces using
 starting from C is 1, so all these traces are in CT Scs

true or CT Scs
false. Hence

all complete CryptoVerif traces using  starting at C and such that the list of
events E in their last configuration satisfies D(E) = b are in CT Scs

b .
So Pr[C :( ) D] = Pr[CT Scs

true] = Pr[CT Strue] = Pr[C :(CV) D]. �

F Proof of Lemmas 8.34 and 8.35
Proof (of Lemma 8.34) Let Ccs

0
def
= C0(Q0, program0).

Ccs
0 = ∅, let x[ ] : bitstring = Ostart() in return(x[ ]) else end, T0,Q0, ∅, [ ]

where Q0
def
= {Qstart(Q0, program0)} ∪

⋃
a≤Nrand+calls

{Qloop{a/i′}}

∪ oracledefset(Q0)

 ∅, P1, T0,Q1,S1, [ ]

where Q1
def
= Q0 \ {Qstart(Q0, program0)},

P1
def
= s0[ ]← s0(Q0, program0);P2,

P2
def
= let r[ ] : TCS = loop Oloop[1](s0) in end else end,

S1
def
= [x[ ], return(x[ ]), end]

 E1, P2, T0,Q1,S1, [ ]

where E1
def
= {s0[ ] 7→ s0(Q0, program0)}

 E1, P3, T0,Q1,S1, [ ]

where P3
def
= let (r′1,r[ ] : TCS, b1,r[ ] : bool) = Oloop[1](s0)

in Preturn-loop(1) else end

 E2, Ploop{1/i′}, T0,Q2,Sloop(1), [ ]

where E2
def
= E1[s[1] 7→ s0(Q0, program0)],

Q2
def
= Q1 \ {Qloop{1/i′}},

 Ccs
1

def
= E2, Ploop{1/i′}, T0,Q2,Sloop(1), [ ], Nsteps,CS0

where CS0
def
= ([〈∅, program0, [ ], ∅〉], globalstore0, 1),RI0, ∅

We have

C0(Q0, program0) = [〈∅, program0, [ ], ∅〉], globalstore0, 1,GgetMI(Q0), [ ] .

Let CT be the trace that consists only of the configuration C0(Q0, program0).
Let us prove that Ccs

1 ≡ CT. Properties I1, I2, and I4 hold. The set O(RI0)
contains all the oracles that can be called at the beginning, and

Q2 =
⋃

2≤a≤Nrand+calls

{Qloop{a/i′}} ∪ oracledefset(Q0) ,
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so Property I3 holds. As mentioned in Section 5.2.6, the initial program program0

does not contain locations in Loc`, so Property I5 holds. As also mentioned in
Section 5.2.6, program0 contains no closure, and as mentioned in Section 7,
program0 contains no tagged function, no return, and no event except in parts
program(µrole) inside addthread. So Property T2 holds, which proves Prop-
erty I6. By Assumption 7.2, Property I7 holds. The global store globalstore0

maps each l ∈ Locg to its initial value initval l and globalstore(E2, T0) maps each
f ∈ Locpriv to its initial value initvalf (the empty string "" when (x[ ], f) ∈ Files
and the empty list [ ] when (Tbl , f) ∈ Tables), so Properties I8, I9, and I10
hold. The module set GgetMI(Q0) and the role set RI0 correspond by defini-
tion of RI0, so Property I11 holds. The event lists are empty on both sides,
so Property I12 holds. The sets O∞(I) with I def

= ∅ and Ocall(CS0) are both
empty, so Property O1 holds. The sets Ocall-repl(th

s
1), O∞(Rinit-function(th

s
1)),

and O∞(Rinit-closure(th
s
1)) where ths

1 is the current thread of CS0 are also empty,
so Property O2 holds, which shows Property I13. We have 0 +Nsteps ≥ Nsteps,
so Property I14 holds. We have α = 1, so Property I15 holds. The set I is
empty, so Property I16 holds. For all role

[
[a′,+∞[, ã

]
∈ RI0, we have a′ = 1, so

Property I17 holds. Therefore, Ccs
1 ≡ CT. �

The following two lemmas serve to prove Property I4 of the invariant.

Lemma F.1 If E,P, T ,Q,S, E →p E
′, P ′,Q′, T ′,S ′, E ′, and fv(P ) ∪ fv(Q) ∪

fv(S) ⊆ Dom(E), then fv(P ′) ∪ fv(Q′) ∪ fv(S ′) ⊆ Dom(E′).

Proof This result is easily proved by cases on the applied reduction rule. �

We denote by Ccs = E,P, T ,Q,S, E , rest an extended CryptoVerif configuration
in which rest is either nothing or steps,CS.

Lemma F.2 If E,P, T ,Q,S, E , rest  p E
′, P ′,Q′, T ′,S ′, E ′, rest ′ and fv(P ) ∪

fv(Q) ∪ fv(S) ⊆ Dom(E), then fv(P ′) ∪ fv(Q′) ∪ fv(S ′) ⊆ Dom(E′).

Proof This result is easily proved by cases on the applied reduction rule.
By Lemma F.1, the rule (CryptoVerif) preserves the invariant. The rules
(Enter Simulator) and (Simulator) leave the environment and the set of free
variables unchanged. The rule (Leave Simulator) introduces a new free variable
and adds it to the environment. �

The following lemma shows that a correct closure always remains correct
during execution.

Lemma F.3 Suppose that fv(Q0) ⊆ Dom(E), Q0 ↔ RI, I, Q′0 ↔ RI′, I′, R is
an oracle reference of the form O′[ã′] when oracle O′ is not under replication and
O′[_, ã′′] when O′ is under replication, and one of the following two situations
occurs:

1. E′ ⊇ E, I′ = I − {O[ã]}, Q′0 ⊇ Q0 \ {Q0(O[ã])}, τ ′O = τO, and l′tok is a
restriction of ltok such that, if R = O′[ã′], then R ∈ Dom(l′tok).
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2. E′ ⊇ E, I′ ⊇ I, Q′0 ⊇ Q0, l′tok ⊇ ltok, τ ′O ⊇ τO, if R = O′[ã′], then
O′[ã′] /∈ I′ \ I and O′[ã′] ∈ Dom(ltok), and if R = O′[_, ã′′], then for all a,
O′
[
[a,+∞[, ã′′

]
/∈ I′ \ I and O′[_, ã′′] ∈ Dom(τO).

Then correctclosure(R, I′, E′,Q′0, l′tok, τ
′
O) ⊇ correctclosure(R, I, E,Q0, ltok, τO).

Proof Let us consider the first situation.

• Case R = O[ã]. Oracle O is not under replication. Since I − {O[ã]} is
defined, we have O[ã] ∈ I, and since I′ = I − {O[ã]}, we have O[ã] /∈ I′.
We also have l′tok(O[ã]) = ltok(O[ã]). So, by definition of correctclosure,

correctclosure(O[ã], I′, E′,Q′0, l′tok, τ
′
O)

= {tagfunctionO,τ [env , pmOnce(Q)] |
for any Q, env(token) = l′tok(O[ã])}

⊇ {tagfunctionO,τ [env , pmOnce(Q(O[ã]))] |
env ⊇ envprim ∪ env(E,Q(O[ã])), env(token) = ltok(O[ã])}

⊇ correctclosure(O[ã], I, E,Q0, ltok, τO) .

• Case R = O[_, ã′′] where ã = a′, ã′′ for some a′. Oracle O is under
replication. Since I − {O[ã]} is defined, O

[
[a′,+∞[, ã′′

]
∈ I, and since

I′ = I− {O[ã]}, we have O
[
[a′ + 1,+∞[, ã′′

]
∈ I′.

Suppose that a′ < NO. Since Q0 ↔ RI, I, there exist Q and i such that i
does not occur in fv(Q), Q0(O[a′, ã′′]) = Q{a′/i}, and Q0(O[a′+1, ã′′]) =
Q{a′+1/i}. It is easy to see that pmAny(Q{a′+1/i}) = pmAny(Q{a′/i}),
since the translation into OCaml does not depend on the indices. More-
over, fv(Q{a′ + 1/i}) = fv(Q{a′/i}) since i does not occur in fv(Q), so
env(E,Q{a′ + 1/i}) = env(E,Q{a′/i}). Since fv(Q0) ⊆ Dom(E) and E′
is an extension of E, we have env(E′, Q{a′+1/i}) = env(E,Q{a′+1/i}).
So, by definition of correctclosure,

correctclosure(O[_, ã′′], I′, E′,Q′0, l′tok, τ
′
O)

= {tagfunctionO,τ [env , pmAny(Q′0(O[a′ + 1, ã′′]))] |

τ = τ ′O(O[_, ã′′]), env ⊇ envprim ∪ env(E′,Q′0(O[a′ + 1, ã′′]))}

= {tagfunctionO,τ [env , pmAny(Q0(O[a′, ã′′]))] |

τ = τO(O[_, ã′′]), env ⊇ envprim ∪ env(E,Q0(O[a′, ã′′]))}

= correctclosure(O[_, ã′′], I, E,Q0, ltok, τO) .

106



Suppose that a′ = NO. By definition of correctclosure,

correctclosure(O[_, ã′′], I′, E′,Q′0, l′tok, τ
′
O)

= {tagfunctionO,τ [env , pmAny(Q)] | τ = τ ′O(O[_, ã′′]), for any Q, env}

⊇ {tagfunctionO,τ [env , pmAny(Q0(O[a′, ã′′]))] |

τ = τO(O[_, ã′′]), env ⊇ envprim ∪ env(E,Q0(O[a′, ã′′]))}

⊇ correctclosure(O[_, ã′′], I, E,Q0, ltok, τO) .

Suppose that a′ > NO. We have correctclosure(O[_, ã′′], I′, E′,Q′0, l′tok,

τ ′O) = correctclosure(O[_, ã′′], I, E,Q0, ltok, τO) since E,Q0, ltok are not
used and τ ′O = τO.

• Other cases. All references to Q′0(O′[ã′]) in the definition of correctclosure

satisfy O′[ã′] 6= O[ã]. In this case, we have Q′0(O′[ã′]) = Q0(O
′[ã′]).

Since fv(Q0) ⊆ Dom(E) and E′ is an extension of E, we have env(E′,

Q′0(O′[ã′])) = env(E′,Q0(O
′[ã′])) = env(E,Q0(O

′[ã′])). Moreover, when
R = O′[ã′], we have l′tok(O

′[ã′]) = ltok(O
′[ã′]). Hence, by definition of

correctclosure, correctclosure(R, I′, E′,Q′0, l′tok, τ
′
O) = correctclosure(R, I,

E,Q0, ltok, τO).

Let us now consider the second situation.

• Case R = O′[ã′]. Since O′[ã′] /∈ I′ \ I, we have O′[ã′] ∈ I′ if and only if
O′[ã′] ∈ I. We have l′tok(O

′[ã′]) = ltok(O
′[ã′]).

If O′[ã′] /∈ I, these points are sufficient to conclude that correctclosure(R,
I′, E′,Q′0, l′tok, τ

′
O) = correctclosure(R, I, E,Q0, ltok, τO).

If O′[ã′] ∈ I, there is an oracle O′[ã′] in Q0; since Q′0 ⊇ Q0, we have
Q′0(O′[ã′]) = Q0(O

′[ã′]). Since fv(Q0) ⊆ Dom(E) and E′ is an exten-
sion of E, we have env(E′,Q′0(O′[ã′])) = env(E′,Q0(O

′[ã′])) = env(E,

Q0(O
′[ã′])). So correctclosure(R, I′, E′,Q′0, l′tok, τ

′
O) = correctclosure(R, I,

E,Q0, ltok, τO).

• Case R = O′[_, ã′′]. Since for all a, O′
[
[a,+∞[, ã′′

]
/∈ I′ \ I, we have

O′
[
[a′,+∞[, ã′′

]
∈ I′ if and only if O′

[
[a′,+∞[, ã′′

]
∈ I.

If there is no a′ such that O′
[
[a′,+∞[, ã′′

]
∈ I, this point is sufficient

to conclude that correctclosure(R, I′, E′,Q′0, l′tok, τ
′
O) = correctclosure(R,

I, E,Q0, ltok, τO).

If O′
[
[a′,+∞[, ã′′

]
∈ I and a′ ≤ NO′ , then there is an oracle O′[a′, ã′′]

in Q0; since Q′0 ⊇ Q0, we have Q′0(O′[a′, ã′′]) = Q0(O
′[a′, ã′′]). Since

fv(Q0) ⊆ Dom(E) and E′ is an extension of E, we obtain env(E′,Q′0(O′[a′,
ã′′])) = env(E′,Q0(O

′[a′, ã′′])) = env(E,Q0(O
′[a′, ã′′])). Moreover, we
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have τ ′O(O
′[_, ã′′]) = τO(O

′[_, ã′′]). So correctclosure(R, I′, E′,Q′0, l′tok,
τ ′O) = correctclosure(R, I, E,Q0, ltok, τO).

If O′
[
[a′,+∞[, ã′′

]
∈ I and a′ > NO′ , then we have τ ′O(O

′[_, ã′′]) =

τO(O
′[_, ã′′]), so correctclosure(R, I′, E′,Q′0, l′tok, τ

′
O) = correctclosure(R,

I, E,Q0, ltok, τO). �

Let P ′loop be the process from line 8 to line 20 of Figure 18. Let P jloop be
the process from line 13 to line 15 for the if o = oj branch. Let PRloop be the
process from line 19 to line 20. The expansion of the let construct with pattern-
matching introduces a fresh variable. Let us denote xs[i′] the variable created
for the let matching on line 7, xaj [i

′] and xi j [i
′] the variables created on lines 11

and 12 for oracle number j.

Proof (of Lemma 8.35) Let us consider Ccs and CT such that Ccs ≡ CT.
Let Ccs = E,Ploop{α/i′}, T ,Q,Sloop(α), E , steps,CS and let C be the last config-
uration of CT. Let

CS = ([th1, . . . , thn], globalstores, tj ),RI, I ,
C = [th ′1, . . . , th

′
n], globalstoreo, tj ,MI, events ,

thtj = ths = 〈env s, pes, stack s, stores〉 ,
th ′tj = tho = 〈envo, peo, stacko, storeo〉 .

We use the exponent s for the elements of the simulator configuration and the
exponent o for the elements of the OCaml configuration.

Let us first distinguish cases depending on whether Property T1 or Prop-
erty T2 is satisfied for the current thread.

Case 1. Property T1 is satisfied for the current thread, that is, we are at the
beginning of the initialization of a protocol thread. There exists a program
program ′ such that

ths = 〈∅, programprim;; program ′(role1[ã1]);; . . . ;; program ′(rolem[ãm]);;

program ′, [ ], ∅〉 .

There is no closure, no tagged function tagfunctiont pm, no event, and no
return in program ′, except in program(µrole) in arguments of addthread. The
OCaml thread verifies tho = replaceinitpm(ths), so

tho = 〈∅, programprim;; program(µrole1);; . . . ;; program(µrolem);; program ′, [ ], ∅〉 .

By Assumption 8.2, there is exactly one complete thread trace TT that
begins at 〈∅, programprim;; , [ ], ∅〉, and the last thread of this trace is 〈envprim, ε,
[ ], ∅〉. So there is no call to the random function inside the initialization of
the primitives. Let TT(definitions) be the trace TT where, in each thread, we
replace the empty definition list ε by definitions. As no OCaml reduction rule
depends on the contents of a definition list, the trace TT(definitions) is a valid
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trace for any definition list definitions. So, by taking definitions the definitions
after programprim in ths and tho,

ths →∗ ths
e

def
= 〈envprim, program ′(role1[ã1]);; . . . ;; program ′(rolem[ãm]);;

program ′, [ ], ∅〉

tho →∗ tho
e

def
= 〈envprim, program(µrole1);; . . . ;; program(µrolem);; program ′, [ ], ∅〉

in exactly the same number of steps.
Let lj (j ≤ m) be m distinct locations. For j ≤ m + 1, let ths

j
def
= 〈env s

j ,

programj , [ ], stores
j〉 where env s

j
def
= envprim ∪ {µrolei .init 7→ ci | i < j} with ci

def
=

tagfunctionrolei,τi [env i, pm ′rolei[ãi]
] and env i

def
= env s

i[token 7→ li], programj
def
=

program ′(rolej [ãj ]);; . . . ;; program ′(rolem[ãm]);; program ′ for j ≤ m, programj
def
=

program ′ for j = m+ 1, and stores
j

def
= {li 7→ Callable | i < j}. For j ≤ m, the

thread ths
j reduces as follows:

ths
j = 〈env s

j , let µrolej .init = esj ;; programj+1, [ ], stores
j〉

where esj
def
= let token = ref Callable in tagfunctionrolej pm ′rolej [ãj ]

→ 〈env s
j , e

s
j , stack s

j , stores
j〉

where stack s
j

def
= [env s

j , let µrolej .init = [·];; programj+1]

→∗ 〈env j , tagfunctionrolej pm ′rolej [ãj ]
, stack s

j , stores
j+1〉

since env j = env s
j [token 7→ lj ] and stores

j+1 = stores
j [lj 7→ Callable]

→ 〈env j , cj , stack s
j , stores

j+1〉
→∗ ths

j+1 = 〈env s
j+1, programj+1, [ ], stores

j+1〉
since env s

j+1 = env s
j [µrolej .init 7→ cj ]

Let tho
j

def
= replaceinitpm(ths

j). We have tho
j = 〈envo

j , program ′j , [ ], stores
j〉

where envo
j is the environment env s

j in which we replace pm ′rolei[ãi]
with pmµrolei

for all i < j, program ′j
def
= program(µrolej );; . . . ;; program(µrolem);; program ′ for

j ≤ m, and program ′j
def
= program ′ for j = m + 1. For j ≤ m, the thread tho

j

reduces as follows:

tho
j = 〈envo

j , let µrolej .init = eoj ;; program ′j+1, [ ], stores
j〉

where eoj
def
= let token = ref Callable in tagfunctionrolej pmµrolej

→ 〈envo
j , e

o
j , stacko

j , stores
j〉

where stacko
j

def
= [envo

j , let µrolej .init = [·];; program ′j+1]

→∗ 〈env ′j , tagfunctionrolej pmµrolej
, stacko

j , stores
j+1〉

where env ′j
def
= envo

j [token 7→ lj ]
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→ 〈env ′j , c
′
j , stacko

j , stores
j+1〉

where c′j
def
= tagfunctionrolej ,τj [env ′j , pmµrolej

]

→∗ tho
j+1 = 〈envo

j+1, program ′j+1, [ ], stores
j+1〉

since envo
j+1 = envo

j [µrolej .init 7→ c′j ]

Moreover, ths
e = ths

1 and tho
e = tho

1, so ths →∗ ths
m+1 and tho →∗ tho

m+1. There
are exactly the same number of steps in both traces. Let stepss be this number
of steps.

Let CT1 be the extension of the trace CT until C[th 7→ tho
m+1]. Since

ths →∗ ths
m+1 without using (Random), we have CS →∗ CS[th 7→ ths

m+1]
by (Globalstore1), (Toplevel), and (Simulator toplevel). Furthermore, by defi-
nition of Nsteps, all traces of the OCaml program have at most Nsteps steps, so
in particular |CT1| = |CT| + stepss ≤ Nsteps. Hence, by Property I14, steps ≥
Nsteps − |CT| ≥ stepss. So, with Ccs

1
def
= E,P, T ,Q,S, E , steps − stepss,CS[th 7→

ths
m+1], we have Ccs  + Ccs

1 by (Simulator) since steps remains positive during
the reduction. (More generally, the same reasoning shows that, if the simulator
trace has at most as many steps as the OCaml trace, then the extended Cryp-
toVerif configuration can reduce by (Simulator) because steps remains positive
by Property I14. We shall not detail this point in the other cases.)

Let us prove that Ccs
1 ≡ CT1. Properties I1, I2, I3, I4, I7, I8, I9, I10,

I11, I12 are inherited from Ccs ≡ CT. As mentioned in Section 5.2.6, there
are no local store locations in the initial program, so there are no local store
locations in program ′, so the locations l1, . . . , lm are the only local store locations
present in ths

m+1, and they are all in the domain of stores
m+1. So Property I5

holds. Let ltok be the empty function. The set Ocall(th
s
m+1) is empty. We have

that gettokens(I,Ocall(th
s
m+1), ltok) = ∅ and tho

m+1 = replaceinitpm(ths
m+1) ∈

replacecalls(replaceinitpm(ths
m+1), I, E,Q, ltok, τO), so Property T2(a) holds for

the current thread. Using the function linit-tok that maps rolej [ãj ] to lj for
j ≤ m, Property T2(b) holds for the current thread. The environment of the
tagged closures that we created contains envprim, so Property T2(c) holds for
the current thread. Since there is no tagged function, no event and no return in
program ′ except in program(µrole) in arguments of addthread, Property T2(d)
holds for the current thread. Threads that are not the current thread did not
change, so Property I6 holds. The only change in the oracle sets is that the roles
rolej [ãj ] are transferred from Rinit-function(th

s) to Rinit-closure(th
s), so Property I13

is preserved. We have

|CT1|+ steps − stepss = |CT|+ stepss + steps − stepss ≥ Nsteps

so Property I14 holds. Properties I15, I16, and I17 are preserved, because all
components of these inequalities are unchanged. Therefore, we have proved that
Ccs
1 ≡ CT1.

Case 2. Property T2 is satisfied for the current thread. We now distinguish
cases on the form of the simulator configuration CS.
Case 2.1. The current expression of CS is pes = call(Oj [ã]) (v1, . . . , vmj ) and
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CS cannot reduce, that is, the configuration CS makes a successful call to Oj [ã],
an oracle not under replication. By definition of simreturn, simreturn(CS) def

=

(repr(CS), oj , ã, args) where args
def
= (b1, . . . , bmj

) and bk
def
= G−1valTj,k

(vk) for k ≤
mj .

So Ccs reduces in several steps into the configuration E1, P
′
loop{α/i′}, T ,Q,

Sloop(α), E that corresponds to line 8 where

E1
def
= E[xs[α] 7→ (repr(CS), oj , ã, args),

s′[α] 7→ repr(CS), o[α] 7→ oj , i[α] 7→ ã, args[α] 7→ args] .

Let a′1, . . . , a′nj

def
= ã. As E1(o[α]) = oj , this configuration reduces in several

steps into the configuration E2, P
j
loop{α/i′}, T ,Q,Sloop(α), E where

E2
def
= E1[xaj [α] 7→ args, aj,1[α] 7→ b1, . . . , aj,mj [α] 7→ bmj ,

xi j [α] 7→ ã, ij,1[α] 7→ a′1, . . . , ij,nj [α] 7→ a′nj
] .

The oracle Oj [ã] is in I, otherwise CS could reduce using (FailedCall1). By
Property I3 of the invariant, there exists Q0 such that Q0 ↔ I,RI and Q =

{Qloop{a/i′} | α < a ≤ Nrand+calls} ∪ Q0. Let Q def
= Q0(Oj [ã]). The oracle

definition Q is of the form Oj [ã](x1[ã] : Tj,1, . . . , xmj
[ã] : Tj,mj

) := PO. The
previous configuration reduces in one step into C def

= E3, PO, T ,Q1,S1, E where

E3
def
= E2[x1[ã] 7→ b1, . . . , xmj [ã] 7→ bmj ]

S1
def
= ((rj,1, . . . , rj,m′

j
), return(simulateretOj

(s′, (rj,1, . . . , rj,m′
j
)), continue),

return(simulateendOj
(s′), continue)) :: Sloop(α)

Q1
def
= Q \ {Q}

Let us now look at C. By the invariant, there exists an injection ltok that sat-
isfies Property T2(a). The current expression peo is of the form c (v1, . . . , vmj ),
where c ∈ correctclosure(Oj [ã], I, E,Q, ltok, τO), so c = tagfunctionOj ,τ [envo

1,
pmOnce(Q)] where envo

1 ⊇ envprim ∪ env(E,Q) and envo
1(token) = ltok(Oj [ã]).

By the same property, storeo(ltok(Oj [ã])) = Callable.

tho = 〈envo, c (v1, . . . , vmj
), stacko, storeo〉

→ 〈envo
1,match (v1, . . . , vmj

) with pmOnce(Q), stacko, storeo〉

→ tho
1

def
= 〈envo

2, e, stacko, storeo〉

where envo
2

def
= envo

1[Gvar(x1) 7→ v1, . . . ,Gvar(xmj ) 7→ vmj ] and

e
def
= if (!token = Callable)&&

(Gpred(Tj,1) Gvar(x1))&& . . . &&(Gpred(Tj,mj
) Gvar(xmj

))

then (token := Invalid; e′) else raise Bad_Call

e′
def
= Gfile(x1[ã]); . . . ;Gfile(xmj

[ã]);G(PO)
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For all k ≤ mj , there exists bk such that GvalTj,k
(bk) = vk, so Gpred(Tj,k) Gvar(xk)

evaluates to true using Proposition 8.5. Moreover, envo
2(token) = ltok(Oj [ã]).

So, the configuration C reduces as follows

C→∗ C′ def
= C[th 7→ tho

1]

→∗ C[th 7→ 〈envo
2, token := Invalid; e′, stacko, storeo

1〉]
→∗ C[th 7→ 〈envo

2, e
′, stacko, storeo

2〉]

where storeo
2

def
= storeo

1[ltok(Oj [ã]) 7→ Invalid]

→∗ C1
def
= C[th 7→ 〈envo

2,G(PO), stacko, storeo
3〉, globalstore 7→ globalstoreo

1]
by Lemma D.1 applied mj times

where storeo
3 ⊇ storeo

2, storeo
1 ⊇ storeo, globalstoreo

1 ⊇ globalstore(E3, T )
since globalstoreo ⊇ globalstore(E, T ) by Property I9 of the invariant, and
globalstoreo

1(l) = globalstoreo(l) for all l 6∈ Locpriv.
We prove that for any traces CT 1, . . . , CT m beginning at C such that∑
i≤m Pr[CT i] = 1, none of these traces is a prefix of another, and there is

no intermediate configuration inside any of these traces with a return, end,
call, or loop as current process, there exist m disjoint sets of OCaml traces
CTS1, . . . ,CTSm all starting at C1 such that none of these traces is a prefix
of another of these traces, Pr[CTSi] = Pr[CT i] for all i ≤ m, and if C4 is the
last configuration of a trace CT′ ∈ CTSi, then C4 = C[th 7→ tho

4, globalstore 7→
globalstoreo

4, events 7→ events4] where

tho
4 = 〈envo

4,G(P4), stacko, storeo
4〉 with

envo
4 ⊇ envprim ∪ env(E4, P4) and storeo

4 ⊇ storeo
3 ,

globalstoreo
4 ⊇ globalstore(E4, T4) ,

globalstoreo
4(l) = globalstoreo(l) for all l 6∈ Locpriv ,

events4 = Gev(E4) ,

and the last configuration of CT i is E4, P4, T4,Q1, S1, E4.
The proof proceeds by induction on the total length of the traces CT 1, . . . ,

CT m. In the base case, m = 1 and CT 1 is the trace that consists only of the
configuration C. Let CTS1 consist of the single trace that contains just the
configuration C1. We have envo

2 ⊇ envprim ∪ env(E3, PO) since envo ⊇ envprim ∪
env(E,Q), the variables x1[ã], . . . , xmj [ã] are added on the CryptoVerif side, and
Gvar(x1), . . . ,Gvar(xmj

) are added correspondingly on the OCaml side. As shown
above, globalstoreo

1 ⊇ globalstore(E3, T ) and globalstoreo
1(l) = globalstoreo(l) for

all l 6∈ Locpriv. By Property I12 of the invariant, events = Gev(E). So the
property holds for the base case. The inductive case follows from Lemma 8.10.

Let us take the maximal CryptoVerif traces CT 1, . . . , CT n that begin at C
and that contain no return, end, call, or loop as current process in intermediate
configurations. Let CTS1, . . . ,CTSn the trace sets as defined above. The final
configurations of the CryptoVerif traces CT i contain either return or end, since
the oracle Oj [ã] does not contain loop or call constructs. Let us take one such
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trace CT i and a trace CT′ ∈ CTSi. Let C4 and C4 be the last configurations of
CT i and CT′ respectively. Let C4 = E4, P4, T4,Q1,S1, E4. We distinguish cases
on the form of P4.

• If P4 = end,

C4  E4, return(simulateendOj
(s′[α]), continue), T4,Q1,Sloop(α), E4

 E5, Preturn-loop(α), T4,Q1, [x[ ], return(x[ ]), end], E4
where E5

def
= E4[r

′
α,r[ ] 7→ s, bα,r 7→ continue],

s
def
= repr(CS′),

CS′ is CS in which the current expression is replaced
with raise Match_failure and the set I is replaced
with I′ def

= I− (Oj [ã])

 E5, P5, T4,Q1, [x[ ], return(x[ ]), end], E4
where P5

def
= let r[ ] : TCS = loop Oloop[α+ 1](r′α,r[ ])

in end else end

 E5, P6, T4,Q1, [x[ ], return(x[ ]), end], E4
where P6

def
= let (r′α+1,r[ ] : TCS, bα+1,r[ ] : bool) =

Oloop[α+ 1](r′α,r) in Preturn-loop(α+ 1) else end

 E6, Ploop{α+ 1/i′}, T4,Q2,Sloop(α+ 1), E4
where E6

def
= E5[s[α+ 1] 7→ s],

Q2
def
= Q1 \ {Qloop{α+ 1/i′}}

(Let CT′′ be the trace CT followed by CT′. By definition of
Nrand+calls, Nrand+calls ≥

(
Nrand(CT′′) +

∑
O,τ Ncalls(O, τ,CT′′)

)
+

1 =
(
Nrand(CT) +

∑
O,τ Ncalls(O, τ,CT)

)
+ 2 since CT′′ makes

one more call to Oj than CT. So, by Property I15, Nrand+calls ≥
α+1. So, by Property I3, Qloop{α+1/i′} ∈ Q, soQloop{α+1/i′} ∈
Q1.)

 Ccs
1

def
= E6, Ploop{α+ 1/i′}, T4,Q2,Sloop(α+ 1), E4, Nsteps,CS′

By definition of the translation of end, the current expression of C4 is
raise Match_failure. Let CT′′ be the trace CT followed by CT′. The
last configuration of CT′′ is C4.

Let us prove that Ccs
1 ≡ CT′′. By the form of Ccs

1 and C4, Properties I1
and I2 hold. The set Q2 is the set Q where we removed the oracles Oj [ã]
and Oloop[α + 1]. We have I′ = I − (Oj [ã]), so Property I3 is preserved.
Property I4 is an immediate consequence of Lemma F.2. No new locations
were created in the simulator, and the domains of stores can only grow,
so Property I5 is preserved.
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For all threads tj ′ 6= tj , the thread tj ′ does not change so, to prove Prop-
erty I6, we just have to show that Property T2(a) is preserved; the other
elements of Property I6 are obviously preserved. Suppose that thread tj ′

satisfies Property T2(a) initially, with a function ltok. By Lemma F.3,
Item 1, for all call(R) that occur in th ′′tj ′

def
= replaceinitpm(thtj ′), we

have correctclosure(R, I′, E6,Q2, ltok, τO) ⊇ correctclosure(R, I, E,Q, ltok,
τO), so replacecalls(th ′′tj ′ , I′, E6,Q2, ltok, τO) ⊇ replacecalls(th ′′tj ′ , I, E,Q,
ltok, τO). Furthermore, the oracle Oj [ã] is in Ocall(thtj ), so by Prop-
erty O2 of the invariant, it is not in Ocall(thtj ′). Hence, Ocall(thtj ′)∩ I′ =
Ocall(thtj ′) ∩ I and Ocall(thtj ′) \ I′ = Ocall(thtj ′) \ I, so gettokens(I′,
Ocall(thtj ′), ltok) = gettokens(I,Ocall(thtj ′), ltok). So thread tj ′ continues
to verify Property T2(a) with the same function ltok.

Let us now consider the current thread. The current thread of the simu-
lator is ths

1 = 〈env s, raise Match_failure, stack s, stores〉 and the current
thread on the OCaml side is tho

4 = 〈envo
4, raise Match_failure, stacko,

storeo
4〉 where storeo

4 ⊇ storeo
3. By Property T2(a), there exist storeo

5 and
ltok such that

〈envo, peo, stacko, storeo
5〉

∈ replacecalls(replaceinitpm(ths), I, E,Q, ltok, τO)

storeo
5 ∪ gettokens(I,Ocall(th

s), ltok) ⊆ storeo .

Let us denote th ′′
def
= replaceinitpm(ths) and th ′′1

def
= replaceinitpm(ths

1).
The thread th ′′1 is the thread th ′′ in which the current expression is replaced
with raise Match_failure. This is an exceptional value, so the definition
of replacecalls allows any environment in the threads it returns, hence

tho
5

def
= 〈envo

4, raise Match_failure, stacko, storeo
5〉

∈ replacecalls(th ′′1 , I, E,Q, ltok, τO) .

Let l′tok
def
= ltok|Ocall(ths

1)
. By Lemma F.3, Item 1, for all call(R) that occur

in th ′′1 , we have correctclosure(R, I′, E6,Q2, l
′
tok, τO) ⊇ correctclosure(R, I,

E,Q, ltok, τO), so tho
5 ∈ replacecalls(th ′′1 , I′, E6,Q2, l

′
tok, τO). We have

storeo
5 ∪ gettokens(I′,Ocall(th

s
1), l

′
tok)

⊆ storeo
5 ∪ gettokens(I,Ocall(th

s), ltok)[ltok(Oj [ã]) 7→ Invalid]

⊆ storeo[ltok(Oj [ã]) 7→ Invalid]

⊆ storeo
1[ltok(Oj [ã]) 7→ Invalid] = storeo

2 ⊆ storeo
3 ⊆ storeo

4 ,

so Property T2(a) holds with the function l′tok. Properties T2(b), T2(c),
T2(d) are clearly preserved, so Property I6 holds.

Properties I7, I8, and I11 are also preserved. Properties I9, I10,
and I12 hold because they are kept inside Lemma 8.10. We have
O∞(I′) = O∞(I) \ {Oj [ã]}. If there remains no occurrence of

114



call(Oj [ã]) in the thread ths
1, then Ocall(th

s
1) = Ocall(th

s) \ {Oj [ã]}
and Ocall(CS′) = Ocall(CS) \ {Oj [ã]}, so O∞(I′) ∪ Ocall(CS′) =
O∞(I) ∪ Ocall(CS) \ {Oj [ã]}. Otherwise, Ocall(th

s
1) = Ocall(th

s) and
Ocall(CS′) = Ocall(CS), so O∞(I′) ∪ Ocall(CS′) = O∞(I) ∪ Ocall(CS).
We also have Ocall-repl(th

s
1) = Ocall-repl(th

s), O∞(Rinit-function(th
s
1)) =

O∞(Rinit-function(th
s)), and O∞(Rinit-closure(th

s
1)) = O∞(Rinit-closure(th

s)),
so Property O2 is preserved. The set O∞(I′) ∪ Ocall(CS′) is included
in O∞(I) ∪ Ocall(CS) and the set willbeavailable(CS′) is included in
willbeavailable(CS), so Property O1 is preserved, which shows Prop-
erty I13. We have |CT′′| + Nsteps ≥ Nsteps, so Property I14 holds. The
number of calls to Oj increases by 1 and α increases by 1, so Property I15
is preserved. Properties I16 and I17 are preserved, because all components
of these inequalities are unchanged. So Ccs

1 ≡ CT′′ in this case.

• If P4 = return(M1, . . . ,Mm′
j
);Q′, let ci (i ≤ m′j) be the CryptoVerif values

such that E4 ·Mi ⇓ ci.

C4  E5, return(simulateretOj
(s′[α], (rj,1[α], . . . , rj,m′

j
[α])), continue),

T4,Q1,S, E4
where E5

def
= E4[rj,1 7→ c1, . . . , rj,m′

j
7→ cm′

j
]

 ∗ Ccs
1

def
= E6, Ploop{α+ 1/i′}, T4,Q2,Sloop(α+ 1), E4, Nsteps,CS′

where E6 ⊇ E5[s[α+ 1] 7→ repr(CS′)],

Q2
def
= Q1 ∪ oracledefset(Q′) \ {Qloop{α+ 1/i′}}

repr(CS′) = simulateretOj (repr(CS), (c1, . . . , cj,m′
j
))

where we show that Qloop{α + 1/i′} ∈ Q1 using Property I15 as in the
case P4 = end.

Let oracledeflist(Q′) = [(Q1, γ1), . . . , (Ql, γl)] and oraclelist(Q′) = [O′1[ã1],
. . . , O′l[ãl]]. A thread 〈env ,GO(Qi, γi), stack , store〉 where env ⊇ envprim∪
env(E4, P4) reduces into 〈env ′, c(Qi, γi), stack , store ′〉 where c(Qi, γi)

def
=

tagfunctionO
′
i,τi [env ′, pmγi(Qi)] and

– if γi = Once, then env ′ = env [token 7→ li] and store ′ = store[li 7→
Callable] where li is a fresh location: li /∈ Dom(store);

– if γi = Any, then env ′ = env and store ′ = store.

So in both cases, env ′ ⊇ envprim ∪ env(E4, P4).

Let tho
4 = 〈envo

4,G(P4), stacko, storeo
4〉 be the current thread of C4. We
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have envo
4 ⊇ envprim ∪ env(E4, P4) and storeo

4 ⊇ storeo
3.

tho
4 = 〈envo

4, (GO(Q1, γ1), . . . ,GO(Ql, γl),GM(M1), . . . ,GM(Mm′
j
)),

stacko, storeo
4〉

→∗ 〈envo
4, (GO(Q1, γ1), . . . ,GO(Ql, γl),GvalT ′

j,1
(c1), . . . ,

GvalT ′
j,m′

j

(cm′
j
)), stacko, storeo

5〉

by Lemma 8.8 applied m′j times

→∗ tho
5

def
= 〈envo

4, (c(Q1, γ1), . . . , c(Ql, γl),GvalT ′
j,1
(c1), . . . ,GvalT ′

j,m′
j

(cm′
j
)),

stacko, storeo
6〉

where storeo
6

def
= storeo

5 ∪ {li 7→ Callable | γi = Once} ⊇ storeo
5 ⊇ storeo

4.

Let CT′′ be the trace CT followed by CT′ and extended until C5
def
=

C4[th 7→ tho
5]. Let I′ be the set I of CS′.

Let us now prove that Ccs
1 ≡ CT′′. We define τ ′O

def
= τO ∪ {O′i[_, ã] 7→ τi |

γi = Any}. (This function is well defined, because O′i[_, ã] /∈ Dom(τO).
Indeed, for any a′, O′i[a′, ã] ∈ willbeavailable(CS), so by Property O1,
O′i[a

′, ã] /∈ O∞(I), hence for any a′, O′i
[
[a′,+∞[, ã

]
/∈ I. The main reason

why we introduced the set O∞(I) is that at this point, we are able to
distinguish between an oracle under replication that has not been called
yet and an oracle whose calls have been exhausted. If we used the set
O(I) instead here, we would not be able to conclude that there is no
oracle O′i

[
[a′,+∞[, ã

]
in I: if a′ > NO′

i
, then O({O′i

[
[a′,+∞[, ã

]
}) = ∅.)

By the form of Ccs
1 and C5, Properties I1 and I2 hold. The set Q2 is the

set Q where we removed the oracles Oj [ã] and Oloop[α + 1] and where
we added the new oracles oracledeflist(Q′). By definition of simulateretOj

,
the set I′ is the set I where we removed Oj [ã] and added the elements of
oraclelist(Q′). So Property I3 is preserved. We also have Q2(O

′
i[ãi]) = Qi

for i ≤ l. Property I4 is an immediate consequence of Lemma F.2. No
new locations were created in the simulator, and the domains of stores can
only grow, so Property I5 is preserved.

For all threads tj ′ 6= tj , the thread tj ′ does not change so, to prove Prop-
erty I6, we just have to show that Property T2(a) is preserved; the other
elements of Property I6 are obviously preserved. Suppose that thread tj ′

satisfies Property T2(a) initially, with a function ltok. By Lemma F.3,
Items 1 and 2, for all call(R) that occur in th ′′tj ′

def
= replaceinitpm(thtj ′),

we have correctclosure(R, I′, E6,Q2, ltok, τ
′
O) ⊇ correctclosure(R, I, E,Q,

ltok, τO), so replacecalls(th ′′tj ′ , I′, E6,Q2, ltok, τ
′
O) ⊇ replacecalls(th ′′tj ′ , I, E,

Q, ltok, τO). Furthermore, the oracle Oj [ã] is in Ocall(thtj ) and the or-
acles O′i[ãi] that are not under replication are in willbeavailable(CS), so
by Property I13 of the invariant, they are not in Ocall(thtj ′). Hence,
Ocall(thtj ′) ∩ I′ = Ocall(thtj ′) ∩ I and Ocall(thtj ′) \ I′ = Ocall(thtj ′) \ I, so
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gettokens(I′,Ocall(thtj ′), ltok) = gettokens(I,Ocall(thtj ′), ltok). So thread
tj ′ continues to verify Property T2(a) with the same function ltok.

Let us now consider the current thread. The current thread of the sim-
ulator is ths

1 = 〈env s, pes
1, stack s, stores〉 where pes

1
def
= (call(O′1[ã1]), . . . ,

call(O′l[ãl]),GvalT ′
j,1
(c1), . . . ,GvalT ′

j,m′
j

(cm′
j
)) and the current thread on the

OCaml side is tho
5 = 〈envo

4, peo
6, stacko, storeo

6〉 where peo
6

def
= (c(Q1, γ1),

. . . , c(Ql, γl),GvalT ′
j,1
(c1), . . . ,GvalT ′

j,m′
j

(cm′
j
)). By Property T2(a), there

exist storeo
7 and ltok such that

〈envo, peo, stacko, storeo
7〉

∈ replacecalls(replaceinitpm(ths), I, E,Q, ltok, τO)

storeo
7 ∪ gettokens(I,Ocall(th

s), ltok) ⊆ storeo .

Let us denote th ′′
def
= replaceinitpm(ths) and th ′′1

def
= replaceinitpm(ths

1).
The thread th ′′1 is the thread th ′′ where the current expression is re-
placed with pes

1. Let ths
2

def
= 〈env s, (), stack s, stores〉 be a thread in-

termediate between ths and ths
1, in which the result of the call has

not been inserted yet in the thread. When γi = Once, O′i[ãi] is in
willbeavailable(CS), so by Property O1, O′i[ãi] is not in Ocall(th

s), so we
can define l′tok

def
= ltok|Ocall(ths

2)
∪ {O′i[ãi] 7→ li | γi = Once} and l′tok is an

extension of ltok|Ocall(ths
2)
. By Lemma F.3, Items 1 and 2, for all call(R)

that occur in th ′′2
def
= replaceinitpm(ths

2), we have correctclosure(R, I′, E6,
Q2, l

′
tok, τ

′
O) ⊇ correctclosure(R, I, E,Q, ltok, τO). Moreover, c(Qi, γi) ∈

correctclosure(O′i[ãi], I′, E6,Q2, l
′
tok, τ

′
O) for i ≤ l, and pes

1 is a value so
replacecalls allows any environment in the threads it returns, so 〈envo

4,
peo

6, stacko, storeo
7〉 ∈ replacecalls(th ′′1 , I′, E6,Q2, l

′
tok, τ

′
O). We have

storeo
7 ∪ gettokens(I′,Ocall(th

s
1), l

′
tok)

⊆ storeo
7 ∪ gettokens(I,Ocall(th

s), ltok)[ltok(Oj [ã]) 7→ Invalid]

∪ {li 7→ Callable | γi = Once}
⊆ storeo[ltok(Oj [ã]) 7→ Invalid] ∪ {li 7→ Callable | γi = Once}
⊆ storeo

1[ltok(Oj [ã]) 7→ Invalid] ∪ {li 7→ Callable | γi = Once}
⊆ storeo

2 ∪ {li 7→ Callable | γi = Once}
⊆ storeo

5 ∪ {li 7→ Callable | γi = Once} = storeo
6 ,

so Property T2(a) holds with the function l′tok. Properties T2(b), T2(c),
T2(d) are preserved, so Property I6 holds.

Properties I7, I8, and I11 are also preserved. Properties I9, I10, I12
hold because they are kept inside Lemma 8.10. The oracles coming from
oraclelist(Q′) are removed from willbeavailable(CS) and added to O∞(I)∪
Ocall(CS). The oracle Oj [ã] is removed from O∞(I); it is also removed
from Ocall(CS) if there remains no occurrence of call(Oj [ã]) in the thread

117



ths
1. So Property O1 is preserved. The oracles coming from oraclelist(Q′)

are added to O∞(I) ∪ Ocall(CS) and to Ocall-repl(th
s
1) or Ocall(th

s
1) de-

pending on whether they are under replication or not. The oracle Oj [ã]
is removed from Ocall(th

s
1) if and only if it is removed from O∞(I) ∪

Ocall(CS). So Property O2 is preserved, which shows Property I13. We
have |CT′′| +Nsteps ≥ Nsteps, so Property I14 holds. The number of calls
to Oj increases by 1 and α increases by 1, so Property I15 is preserved.
For the oracles O′i[ãi] (i ≤ l), when O′i is under replication, O′i

[
[1,+∞[, ã

]
is added to I; Property I16 is obviously satisfied for these oracles because
the number of calls to these oracles is not negative. Property I16 for
the previously present oracles and Property I17 are preserved, because all
components of these inequalities are unchanged. So Ccs

1 ≡ CT′′ in this
case.

• If P4 = return(M1, . . . ,Mm′
j
)};Q′, the CryptoVerif process reduces in ex-

actly the same manner as above. The configuration CS′ is the configura-
tion CS in which we replace the current expression pes with (GvalT ′

j,1
(c1),

. . . ,GvalT ′
j,m′

j

(cm′
j
)), the set I with I′ def

= I \ {Oj [ã]}, and the set RI with

RI′ def
= RI ∪ {role[ã] | (µrole,Once) ∈ GgetMI(Q

′)} ∪ {role
[
[1,+∞[, ã

]
|

(µrole,Any) ∈ GgetMI(Q
′)}.

Let tho
4 be the current thread of C4. We have

tho
4 = 〈envo

4, return(GgetMI(Q
′), (GM(M1), . . . ,GM(Mm′

j
))),

stacko, storeo
4〉

→ 〈envo
4, (GM(M1), . . . ,GM(Mm′

j
)), stacko

1, storeo
4〉

where stacko
1

def
= (envo

4, return(GgetMI(Q
′), [·])) :: stacko

→∗ tho
5

def
= 〈envo

4, (GvalT ′
j,1
(c1), . . . ,GvalT ′

j,m′
j

(cm′
j
)), stacko

1, storeo
5〉

by Lemma 8.8 applied m′j times

where storeo
5 ⊇ storeo

4 and C4 →∗ C4[th 7→ tho
5] →∗ C5

def
= C4[th 7→ tho

6,

MI 7→ MI′] where tho
6

def
= 〈envo

4, (GvalT ′
j,1
(c1), . . . ,GvalT ′

j,m′
j

(cm′
j
)), stacko,

storeo
5〉 and MI′ def

= MI∪GgetMI(Q
′). Let CT′′ be the trace CT followed by

CT′ and extended until C5.

Let us now prove that Ccs
1 ≡ CT′′. By the form of Ccs

1 and C′′, Prop-
erties I1 and I2 hold. The set Q2 is the set Q from which we removed
the oracles Oj [ã] and Oloop[α + 1] and to which we added the new ora-
cles of oracledeflist(Q′). The set I′ is the set I from which we removed
Oj [ã]. We added the elements of oraclelist(Q′) to O(RI′). So Property I3
is preserved. Properties I4 to I10, I12, and I14 to I17 are proved as in the
case P4 = end. We added matching elements in MI′ and in RI′, so Prop-
erty I11 is preserved. The oracles coming from oraclelist(Q′) are removed
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from willbeavailable(CS) and added to O∞(RI). The oracle Oj [ã] is re-
moved from O∞(I); it is also removed from Ocall(CS) if there remains no
occurrence of call(Oj [ã]) in the thread ths

1. So Property O1 is preserved.
The oracle Oj [ã] is removed from Ocall(th

s
1) if and only if it is removed

from O∞(I) ∪ Ocall(CS), and the other oracle sets of Property O2 are
unchanged, so Property O2 is preserved, which proves Property I13. So
Ccs
1 ≡ CT′′ in this case.

Case 2.2. The current expression of CS is pes = call(Oj [_, ã]) (v1, . . . , vmj )
and CS cannot reduce, that is, the configuration CS makes a successful call to
Oj [_, ã], an oracle under replication. We prove this case by a reasoning similar
to the previous case.

We show that a copy of the oracle Oj [_, ã] is available in Q using Property
I16, as follows. By Property T2(a), peo = tagfunctionOj ,τ [envo

1, pmAny(Q)] (v1,

. . . , vmj
), with τ = τO(Oj [_, ã]) and O

[
[a′,+∞[, ã

]
∈ I for some a′. Let

CT′ be the extension of CT with one step. By definition of NOj
, we have

NOj
≥ Ncalls(Oj , τ,CT′) = Ncalls(Oj , τ,CT) + 1, so by Property I16, a′ ≤ NOj

,
so Oj [a

′, ã] ∈ O(I), so by Property I3, Q0 contains a process of the form
Oj [a

′, ã](x1[a
′, ã] : Tj,1, . . . , xmj [a

′, ã] : Tj,mj ) := PO.
Due to the call, the index a′ such that O

[
[a′,+∞[, ã

]
∈ I increases by 1 and

the number of calls to the closure with tag Oj , τ increases by 1, so Property I16
is preserved.

Case 2.3. The current expression of CS is pes = random (), that is, the
configuration CS samples a random boolean. By Property I6, the current ex-
pression of C is peo = random (). For b ∈ {true, false}, C →1/2 Cb where
Cb

def
= C[th 7→ 〈envo,Gvalbool(b), stacko, storeo〉]. Let CTb be the extension of the

trace CT until Cb.
The configuration CS cannot reduce, and simreturn(CS) = (repr(CS), oR,

(), ()). Let us denote s def
= repr(CS). The simulator configuration reduces in the

following way for a CryptoVerif value b ∈ {true, false}.

Ccs  ∗ E1, P
′
loop{α/i′}, T ,Q,Sloop(α), E

where E1
def
= E[xs[α] 7→ (s, oR, (), ()), s

′[α] 7→ s, o[α] 7→ oR,

i[α] 7→ (), args[α] 7→ ()]

 ∗ E1, P
R
loop{α/i′}, T ,Q,Sloop(α), E

 1/2 E2, return(simulateR(s
′[α], bR[α]), continue), T ,Q,Sloop(α), E

where E2
def
= E1[bR[α] 7→ b]

 ∗ Ccs
b

def
= E3, Ploop{α+ 1/i′}, T ,Q1,Sloop(α+ 1), E , Nsteps,CSb

where E3 ⊇ E2[s[α+ 1] 7→ repr(CSb)],

Q1
def
= Q \ {Qloop{α+ 1/i′}},

CSb
def
= CS[th 7→ 〈env s,Gvalbool(b), stack s, stores〉]
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We verify that Qloop{α + 1/i′} ∈ Q using Property I15, as follows. By defini-
tion of Nrand+calls, Nrand+calls ≥

(
Nrand(CTb) +

∑
O,τ Ncalls(O, τ,CTb)

)
+ 1 =(

Nrand(CT) +
∑
O,τ Ncalls(O, τ,CT)

)
+ 2 since CTb makes one more random

number generation than CT. So by Property I15, Nrand+calls ≥ α + 1. So
by Property I3, Qloop{α+ 1/i′} ∈ Q.

In this step, α becomes α + 1, the number of random number generations
in the trace increases by 1, the current thread is modified exactly in the same
manner on both sides, and the other threads, the oracle sets, the global store,
and the events are left unchanged, so it is easy to see that Ccs

true ≡ CTtrue and
Ccs
false ≡ CTfalse.

Case 2.4. The configuration CS does not reduce, and does not make a call
to an oracle nor sample a random boolean. In this case, simreturn(CS) =

(repr(CS), oS, (), ()). Let us denote s
def
= repr(CS). The simulator configuration

reduces in the following way.

Ccs  ∗ E1, P
′
loop{α/i′}, T ,Q,Sloop(α), E

where E1
def
= E[xs[α] 7→ (s, oS, (), ()), s

′[α] 7→ s, o[α] 7→ oS, i[α] 7→ (),

args[α] 7→ ()]

 E1, return(s
′[α], stop), T ,Q,Sloop(α), E

 E2, Preturn-loop(α), T ,Q,S1, E

where E2
def
= E1[r

′
α,r[ ] 7→ s, bα,r[ ] 7→ stop],

S1
def
= [x[ ], return(x[ ]), end]

 E2, r[ ]← r′α,r[ ]; end, T ,Q,S1, E
 E3, end, T ,Q,S1, E

where E3
def
= E2[r[ ] 7→ s]

 Ccs
1

def
= E3, end, T ,Q, [ ], E

This configuration cannot reduce. By Property I6, the OCaml configuration
C also cannot reduce. (If it could reduce, then the simulator configuration CS
would reduce by the same rule as the OCaml configuration.) Moreover, by
Property I12 of the invariant, events = Gev(E), so this case satisfies the second
point of Lemma 8.35.

Case 2.5. The current expression of CS is pes = tagfunctiont,τ [env , pm] v,
that is, CS calls a tagged closure. By Property T2(c), the tagged closures
present in the current thread are of the form tagfunctionrole,τ [env s

1, pm ′role[ã]]

for a given role role[ã], with envprim ⊆ env s
1. Such a closure corresponds to

the initialization of the role role[ã]. Since our programs are well-typed, and
these closures expect an argument of type unit , the current expression of CS is
pes = tagfunctionrole,τ [env s

1, pm ′role[ã]] ().
Let Qi, γi for i ≤ m be the oracles present in oracledeflist(Q(role)[ã]),
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and let ãi = ã or _, ã such that O′i[ãi] is the oracle associated to Qi, γi in
oraclelist(Q(role)[ã]).

By Property T2(a),

peo = tagfunctionrole,τ [envo
1, pmµrole

] () .

By Property T2(b), env s
1(token) = linit-tok(role[ã]) is a location. Let us denote l

this location. By Property T2(a), we have envo
1(token) = env s

1(token) = l. By
Property I5, l is in the domain of stores. By Property T2(a), l is also in the
domain of storeo.

Let x1[ ], . . . , xk[ ] be the free variables of the role role.
Let us denote

pes
e

def
= (call(O′1[ã1]), . . . , call(O′m[ãm]))

peo
e

def
= Gread(x1[ ]) in . . . in Gread(xk[ ]) in

(GO(Q1, γ1), . . . ,GO(Qm, γm))

The simulator reduces as follows:

ths = 〈env s, tagfunctionrole,τ [env s
1, pm ′role] (), stack s, stores〉

→ 〈env s
1,match () with pm ′role, stack s, stores〉

→ ths
1

def
= 〈env s

1, pes
1, stack s, stores〉

where pes
1

def
= if !token = Callable then (token := Invalid; pes

e)

else raise Bad_Call

and the OCaml side reduces as follows:

tho = 〈envo, tagfunctionrole,τ [envo
1, pmµrole

] (), stacko, storeo〉
→ 〈envo

1,match () with pmµrole
, stacko, storeo〉

→ tho
1

def
= 〈envo

1, peo
1, stacko, storeo〉

where peo
1

def
= if !token = Callable then (token := Invalid; peo

e)

else raise Bad_Call

• If stores(l) = Invalid, then by Property T2(a), storeo(l) = Invalid, so

ths
1 →∗ ths

2
def
= 〈env s

1, raise Bad_Call, stack s, stores〉

tho
1 →∗ tho

2
def
= 〈envo

1, raise Bad_Call, stack s, stores〉

Let CT1 be the extension of the trace CT until C[th 7→ tho
2], CS1

def
=

CS[th 7→ ths
2], stepss the number of steps of the trace CS →∗ CS1, and

Ccs
1

def
= E,P, T ,Q,S, E , steps − stepss,CS1. We have Ccs  + Ccs

1 .

Let us prove that Ccs
1 ≡ CT1. As the current expression is an exceptional

value, replacecalls allows any environment in its image. Moreover, the
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other elements of the configuration are the same and I did not change,
so Property I6 is preserved. The number of steps in the reduction is the
same on both sides, so Property I14 is preserved. All other properties of
Definition 8.32 are trivially inherited from Ccs ≡ CT.

• Otherwise, stores(l)=Callable. By Property T2(a), storeo(l)=Callable.

On the simulator side:

ths
1 →∗ ths

3
def
= 〈env s

1, pes
e, stack s, stores

1〉

where stores
1

def
= stores[l 7→ Invalid]

By Property I4, the variables x1[ ], . . . , xk[ ] are present in the environment
E. Let a′1, . . . , a′k be the values of these variables in the environment E.
By Property I9, globalstore(E, T ) ⊆ globalstoreo, so globalstoreo(fi) =

ser(Txi
, a′i) where (xi[ ], fi) ∈ Files for all i ≤ k. Let C1

def
= C[th 7→ tho

1].
We have

C1 →∗ C[th 7→ 〈envo
1, peo

e, stacko, storeo
1〉]

where storeo
1

def
= storeo[l 7→ Invalid]

→∗ C2
def
= C[th 7→ 〈envo

2, peo
2, stacko, storeo

2〉]

where peo
2

def
= (GO(Q1, γ1), . . . ,GO(Qm, γm)),

envo
2

def
= envo

1[Gvar(x1) 7→ GvalTx1
(a′1), . . . ,

Gvar(xk) 7→ GvalTxk
(a′k)],

storeo
2 ⊇ storeo

1

by Proposition 8.5 applied k times to show the correctness of the deseri-
alization primitives.

Let l1, . . . , lm be pairwise distinct locations that are not in Dom(storeo
2)

and τ1, . . . , τm be pairwise distinct fresh tags. By the same reasoning as
in Case 2.1, sub-case P4 = return(M1, . . . ,Mm′

j
);Q′, we have

C2 →∗ C3
def
= C[th 7→ 〈envo

2, peo
3, stacko, storeo

3〉]

where peo
3

def
= (tagfunctionO

′
1,τ1 [envo

c,1, pmγ1(Q1)], . . . ,

tagfunctionO
′
m,τm [envo

c,m, pmγm(Qm)]),

storeo
3

def
= storeo

2 ∪ {li 7→ Callable | i ≤ m, γi = Once}

where, for all i ≤ m, envo
c,i is envo

2 when γi is Any and envo
2[token 7→ li]

otherwise.

Let CT2 be an extension of the trace CT until C3. Let CS3
def
= CS[th 7→

ths
3]. Let stepss be the number of steps of CS →∗ CS3. Let Ccs

2
def
= E,P,

T ,Q,S, E , steps − stepss,CS3. We have Ccs  + Ccs
2 .
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Let us prove that Ccs
2 ≡ CT2. We define τ ′O as τO except that for all i ≤ m,

if γi = Any, then τ ′O(O
′
i[_, ã]) = τi. Properties I1, I2, I3, I4, I5, I7, I8, I9,

I10, I11, I12, I15, I17 hold because they hold for Ccs ≡ CT.
Let us prove Property I6. First, we prove Property T2 for the cur-
rent thread. For all i ≤ m, the free variables of Qi are contained in
{x1[ ], . . . , xk[ ]}, so envo

c,i ⊇ env(E,Qi). Moreover, by Properties T2(c)
and T2(a), envprim ⊆ envo

1, so envo
c,i ⊇ envo

2 ⊇ envo
1 ⊇ envprim. We

have role[ã] ∈ Rinit-closure(th
s). By Property O2, O∞(Rinit-closure(th

s)) is
included in O∞(I) ∪ Ocall(CS), and furthermore O∞(Rinit-closure(th

s)) is
disjoint from Ocall(thi) for all i ≤ n, so from Ocall(CS), so O∞({role[ã]})
is included in O∞(I). Hence, when O′i is not under replication (that is,
γi = Once), O′i[ãi] ∈ I, and when O′i is under replication, ãi = _, ã and
O′i
[
[1,+∞[, ã

]
∈ I. By Property I3, when O′i is not under replication,

Qi = Q(O′i[ãi]), and when O′i is under replication, Qi = Q(O′i[1, ã]).
By Property T2(a), there exist storeo

4 and ltok such that

〈envo, peo, stacko, storeo
4〉

∈ replacecalls(replaceinitpm(ths), I, E,Q, ltok, τO)

storeo
4 ∪ gettokens(I,Ocall(th

s), ltok) ⊆ storeo .

Since O∞(Rinit-closure(th
s)) is disjoint from Ocall(CS) as noticed above, the

oracles O′i[ãi] are not present in Ocall(CS). So we can define the injective
function l′tok

def
= ltok ∪ {O′i[ãi] 7→ li | i ≤ m, γi = Once}. By Lemma F.3,

Item 2, for all call(R) that occur in replaceinitpm(ths), correctclosure(R,
I, E,Q, l′tok, τ

′
O) ⊇ correctclosure(R, I, E,Q, ltok, τO), noticing that, when

i ≤ m and γi = Any, O′i[NO′
i
+ 1, ã] ∈ O∞(Rinit-closure(th

s)), so by Prop-
erty O2, O′i[NO′

i
+1, ã] /∈ Ocall-repl(th

s), so call(O′i[_, ã]) does not occur in
replaceinitpm(ths), so the transformation of τO into τ ′O does not affect the
computation of these correct closures. Moreover, tagfunctionO

′
i,τi [envo

c,i,
pmγi(Qi)] ∈ correctclosure(O′i[ãi], I, E,Q, l′tok, τ

′
O) for i ≤ m and pes

e is a
value so replacecalls allows any environment in the threads it returns, so
〈envo

2, peo
3, stacko, storeo

4[l 7→ Invalid]〉 ∈ replacecalls(replaceinitpm(ths
3),

I, E,Q, l′tok, τ
′
O). We have

storeo
4[l 7→ Invalid] ∪ gettokens(I,Ocall(th

s
3), l

′
tok)

⊆ storeo
4[l 7→ Invalid] ∪ gettokens(I,Ocall(th

s), ltok)

∪ {li 7→ Callable | γi = Once}
⊆ storeo[l 7→ Invalid] ∪ {li 7→ Callable | γi = Once}
⊆ storeo

1 ∪ {li 7→ Callable | γi = Once}
⊆ storeo

2 ∪ {li 7→ Callable | γi = Once} = storeo
3 ,

so Property T2(a) holds with the function l′tok. Properties T2(b), T2(c),
T2(d) are preserved, so Property I6 holds for the current thread. The other
threads and I, E,Q are unchanged, and as above, the transformation of
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τO into τ ′O does not affect the computation of correct closures in these
threads, so Property I6 holds for all threads.

The role role[ã] is removed from Rinit-closure(th
s), so the elements added to

Ocall(th
s) and Ocall-repl(th

s) are removed from O∞(Rinit-closure(th
s)), hence

Property I13 is preserved. There are more steps on the OCaml side than
on the CryptoVerif side, so Property I14 is preserved. For the oracles
O′i[ãi] (i ≤ l), when O′i is under replication, we have already shown that
O′i
[
[1,+∞[, ã

]
∈ I; Property I16 is obviously satisfied for these oracles

because the number of calls to these oracles is not negative. Property I16
is preserved for the other oracles, because all components of these inequal-
ities are unchanged.

Case 2.6. The current expression of CS is pes = addthread(program), that
is, we add a new thread to the current configuration. By Property T2(a),
the expression peo is addthread(program), and by Property T2(d), program
contains no closure, no tagged function, no event, no return except in parts
program(µrole), and in program(µrole) in arguments of addthread.

Suppose first that program is an attacker program: it does not contain
program(µrole) except in arguments of addthread. In this case,

CS→ CS1
def
= ([th1, . . . , thtj−1, 〈env s, (), stack s, stores〉, thtj+1, . . . , thn,

〈∅, program, [ ], ∅〉], globalstores, tj ),RI, I

C→ C1
def
= [th ′1, . . . , th

′
tj−1, 〈envo, (), stacko, storeo〉, thtj+1, . . . , thn,

〈∅, program, [ ], ∅〉], globalstoreo, tj ,MI, events

Let CT1 be the extension of the trace CT until C1 and Ccs
1

def
= E,P, T ,Q,S,

E , steps − 1,CS1. We have Ccs  Ccs
1 . Let us prove that Ccs

1 ≡ CT1. The
new thread contains no closures and no tagged functions. It contains no call
since program is an OCaml program (not a simulator program), so it satisfies
Property T2. The other properties are inherited from Ccs ≡ CT.

Otherwise, the program program is of the form

programprim;; program(µrole1);; . . . ;; program(µrolem);; program ′ ,

where program ′ does not contain program(µ) for any µ ∈ Mg. By Assump-
tion 6.1, for M def

= {µrole1 , . . . , µrolem}, we have M ⊆ Mg and ∀µ ∈ M,∃γ,
(µ, γ) ∈ MI. By Property I11, for each i ≤ m, if rolei is not under replication,
then the set RI contains rolei[ã] for some ã, and if rolei is under replication,
then the set RI contains rolei

[
[a′,+∞[, ã

]
for some a′, ã. By Property O1, the
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oracles present in RI are not in I. We can then define

ã1
def
= smallest(RI, role1), . . . , ãm

def
= smallest(RI, rolem)

RI′′ def
= {role1[ã1], . . . , rolem[ãm]}

RI′ def
= RI− RI′′ I′ def

= add(I,RI′′)

programb def
= programprim;; program ′(role1[ã1]);; . . . ;; program ′(rolem[ãm]);;

program ′

MI′ def
= {(µ,Once) | µ ∈M ∧ (µ,Once) ∈MI}

We have

CS→ CS2
def
= ([th1, . . . , thtj−1, 〈env s, (), stack s, stores〉, thtj+1, . . . , thn,

〈∅, programb, [ ], ∅〉], globalstores, tj ),RI′, I′

C→ C2
def
= [th ′1, . . . , th

′
tj−1, 〈envo, (), stacko, storeo〉, thtj+1, . . . , thn,

〈∅, program, [ ], ∅〉], globalstoreo, tj ,MI \MI′, events

Let CT2 be the extension of the trace CT until C2 and Ccs
2

def
= E,P, T ,Q,S,

E , steps − 1,CS2. We have Ccs  Ccs
2 . Let us prove that Ccs

2 ≡ CT2. The
oracles under replication added to I are the oracles O

[
[1,+∞[, ãi

]
such that

O[_, ãi] ∈ oraclelist(Q(rolei)[ãi]) for any i ≤ m. We define τ ′O as the extension
of τO that maps all the oracles O[_, ãi] to fresh distinct tags τ . Properties I1,
I2, I4, I8, I9, I10, I12, I14, and I15 are inherited from Ccs ≡ CT. By Property I3,
Q = {Qloop{a/i′} | α < a ≤ Nrand+calls} ∪ Q0 and Q0 ↔ RI, I. If rolei is under
replication, then by definition of smallest , rolei

[
[a′i,+∞[, ã′′i

]
∈ RI with ãi =

a′i, ã
′′
i . By definition of Nrolei , Nrolei ≥ Nexec(rolei,CT2) = Nexec(rolei,CT) + 1.

By Property I17, a′i ≤ Nrolei . Therefore, the set O(RI) contains the first oracles
of rolei[ãi] for i ≤ m. The set O(RI′) is the set O(RI) from which we remove
the first oracles of rolei[ãi] for i ≤ m and O(I′) is the set O(I) to which we
add these oracles. So Q0 ↔ RI′, I′ and Property I3 holds. There are no local
store locations in program, so Property I5 holds. For each thread thi of the
simulator except the new thread, let us show that Property I6 is preserved.
The only changes are that the current expression is replaced with () and that
I′ = add(I,RI′′), so we just have to show that Property T2(a) is preserved;
the other elements of Property I6 are obviously preserved. By Lemma F.3,
Item 2, the correct closures are preserved. By Property O2, the set Ocall(thi)
does not contain any of the oracles added to I, so the tokens are preserved.
Hence, Property T2(a) is preserved. Since program ′ already occurs in the initial
program, it does not contain closures. By Property T2(d), it does not contain
tagged functions, events, or returns, except in program(µrole) in arguments of
addthread, so Property T1 holds for the new thread, which implies Property I6.
By Property I7, program ′ does not contain any location l ∈ Locpriv except in
program(µrole) in arguments of addthread, so Property I7 holds. When rolei
is not under replication, we remove one copy of the module µrolei from the
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multiset MI, and correspondingly, we remove rolei[ãi] from RI. When rolei is
under replication, we add 1 to the first index of roles rolei[ãi] in RI, and MI is
not affected by this change. (The role rolei can still be called.) So Property I11
is preserved. The first oracles of role1[ã1], . . . , rolem[ãm] are transferred from
O∞(RI) to O∞(I), so Property O1 is preserved. More precisely, these oracles
are added to O∞(Rinit-function(thn+1)), where thn+1

def
= 〈∅, programb, [ ], ∅〉 is the

new thread, so Property O2 is preserved, which proves Property I13. For the
oracles O

[
[1,+∞[, ãi

]
added to I, Property I16 is obviously satisfied because

the number of calls to an oracle is not negative. Property I16 is preserved
for the previously present oracles, because all components of these inequalities
are unchanged. For the roles rolei

[
[a′i,+∞[, ã′′i

]
∈ RI, with ãi = a′i, ã

′′
i , we

have rolei
[
[a′i + 1,+∞[, ã′′i

]
∈ RI; the elements rolei[. . .] in RI with indices

that do not end with ã′′i are unchanged; and Nexec(rolei,CT) increases by 1, so
Property I17 is preserved for the roles role1, . . . , rolem. Property I17 is preserved
for the other roles, because all components of the inequalities are unchanged.
Therefore, Ccs

2 ≡ CT2.

Case 2.7. The current expression of CS is of the form pes = call(O[ã]) v
and CS reduces, that is, we call an oracle but the call fails. By reduction
rule (FailedCall1) or (FailedCall2),

ths → ths
1

def
= 〈env s, raise Bad_Call, stack s, stores〉,

and CS → CS1
def
= CS[th 7→ ths

1]. By Property T2(a), peo = c v′, where
c ∈ correctclosure(O[ã], I, E,Q, ltok, τO).

We suppose that the program is well typed, so the value v is a k-tuple
(v1, . . . , vk), where k is the number of arguments of oracle O. Let T1, . . . , Tk be
their CryptoVerif types. Let x1, . . . , xk be the CryptoVerif variables that are
the arguments of O. By Assumption 8.3, the value v′ does not contain closures
nor locations, so v′ = v.

Let us first suppose that the oracle O is under replication. In this case,
ã = _, ã′. There exists a′′ such that O

[
[a′′,+∞[, ã′

]
∈ I, because otherwise

we would have correctclosure(O[ã], I, E,Q, ltok, τO) = ∅. The closure c is of
the form tagfunctionO,τ [envo

1, pmAny(Q)]. Let CT′ be the extension of CT by
one step. By definition of NO, NO ≥ Ncalls(O, τ,CT′) = Ncalls(O, τ,CT) + 1.
Hence, by Property (I16), a′′ ≤ NO. Therefore, by definition of correctclosure,
Q = Q(O[a′′, ã′]). Since (FailedCall2) applies, there exists i such that ∀a ∈ Ti,
vi 6= GvalTi

(a). By Proposition 8.5, for any environment env , stack stack and
store store,

〈env , envprim(Gpred(Ti)) vi, stack , store〉
→∗ 〈env ′, false, stack , store ′〉 where store ′ ⊇ store
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So,

tho = 〈envo, tagfunctionO,τ [envo
1, pmAny(Q)] v, stacko, storeo〉

→∗ 〈envo
2, peo

2, stacko, storeo〉

where envo
2

def
= envo

1[Gvar(x1) 7→ v1, . . . ,Gvar(xk) 7→ vk],

peo
2

def
= if (Gpred(T1) Gvar(x1))&& . . . &&(Gpred(Tk) Gvar(xk))

then (Gfile(x1 [̃i]); . . . ;Gfile(xk [̃i]);G(P ))

else raise Bad_Call

→∗ tho
1

def
= 〈envo

2, raise Bad_Call, stacko, storeo
1〉

where storeo
1 ⊇ storeo by Proposition 8.5 applied k times.

If the oracle O is not under replication, then (FailedCall1) applies, so either
O[ã] 6∈ I and in this case by Property T2(a), storeo[ltok(O[ã])] = Invalid, or
there exists i such that ∀a ∈ Ti, vi 6= GvalTi(a), so we have a reduction similar
to the case in which O is under replication.

Let CT1 be an extension of the trace CT until C[th 7→ tho
1] and Ccs

1
def
= E,P,

T ,Q,S, E , steps−1,CS1. We have Ccs  Ccs
1 . Let us prove that Ccs

1 ≡ CT1. The
current expression is an exceptional value, so replacecalls allows any environment
in the current thread, and storeo

1 ⊇ storeo, so Property T2(a) is preserved for
the current thread. The OCaml side uses more reductions than the simulator
side, so Property I14 is preserved. There is one more oracle call, and α and I
are unchanged, so Properties I15 and I16 are preserved. The other properties
are inherited from Ccs ≡ CT.
Case 2.8. Let us finally deal with the remaining cases. Cases 2.1, 2.2, 2.3, 2.4
present all cases in which CS does not reduce. Case 2.6 covers the reduction
rule (Simulator add thread). So CS reduces using rule (Simulator toplevel). So
let us denote CS1 the configuration such that CS = Cs,RI, I→ CS1 = Cs1,RI, I.
Since the case of failed oracle calls is already handled in Case 2.7, Cs → Cs1 is
obtained by rules of the OCaml semantics, not by (FailedCall1) or (FailedCall2).

If pes = schedule(tj ′), then by Property T2(a), peo = schedule(tj ′), so Cs
and C reduce in the same way by (Toplevel schedule1) or (Toplevel schedule2)
for Cs and by (New toplevel schedule1) or (New toplevel schedule2) for C. Let
C1 be the configuration such that C → C1 and CT1 be the extension of the
trace CT until C1. Let Ccs

1
def
= E,P, T ,Q,S, E , steps−1,CS1. We have Ccs  Ccs

1

and Ccs
1 ≡ CT1.

In all other cases, Cs reduces by (Toplevel). By Property T2(a), the cur-
rent thread of the OCaml configuration has the same form as in the simulator
configuration: the semantic rules are parametric in the elements that are re-
placed by replaceinitpm and replacecalls, so the OCaml configuration C reduces
by (New toplevel), using a reduction th, globalstore −→p th ′, globalstore ′ ob-
tained by exactly the same semantic rules as on the simulator side. Let C1 be
the configuration such that C→ C1 and CT1 be the extension of the trace CT
until C1. Let Ccs

1
def
= E,P, T ,Q,S, E , steps − 1,CS1. We have Ccs  Ccs

1 and we
briefly show that Ccs

1 ≡ CT1.
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If the reduction touches a local store location l, then by Properties T2(a)
and T2(b), l cannot be in the image of ltok or linit-tok. Moreover, in all cases, the
reduction commutes with replaceinitpm and replacecalls, so Property I6 holds
for Ccs

1 and CT1. (Since calls to tagged closures are already handled in Case 2.5,
we do not consider this case here. This is important, because the reduction
would not commute with replaceinitpm in this case: replaceinitpm replaces the
pattern-matching inside the tagged closure before the call, but would not replace
it in the reduced configuration.) If the reduction touches the global store, that
is, it uses rule (Globalstore2), let l be the concerned location; by Property I7,
the location l is not in Locpriv, and in OCaml the same operation is carried out
on l. So in all cases, Properties I7, I8, I9, and I10 hold for Ccs

1 and CT1. The
oracle sets may only decrease, in case a subexpression is removed by reduction,
so Property I13 is preserved. The reduction is performed in one step on both
sides, so Property I14 is preserved. The other properties are inherited from
Ccs ≡ CT, so Ccs

1 ≡ CT1. �

G Proof of Proposition 8.36
Definition G.1 The relation CT cs

1 , . . . , CT
cs
n ≡t CTS1, . . . ,CTSn is verified

when the following properties hold:

1. All traces CT cs
1 , . . . , CT

cs
n start at C0(Q0, program0), and none of these

traces is a prefix of another of these traces.

2. The trace sets CTS1, . . . ,CTSn are pairwise disjoint, all traces in these
sets start at C0(Q0, program0), and none of these traces is a prefix of
another of these traces.

3. ∀i ≤ n,Pr[CT cs
i ] = Pr[CTSi].

4.
∑
i≤n Pr[CT

cs
i ] = 1.

5. For each trace CT cs
i , i ≤ n,

(a) either CT cs
i is complete, every trace CT ∈ CTSi is complete, and the

event list E of the last configuration of CT cs
i and the event list events

of the last configuration of CT verify events = Gev(E),
(b) or for every trace CT ∈ CTSi, the last configuration Ccs of CT cs

i

verifies Ccs ≡ CT.

The next lemma applies to any traces, so in particular to OCaml traces and
CryptoVerif traces.

Lemma G.2 Let CT1, . . . ,CTn be traces such that none of these traces is a
prefix of another of these traces. If CT1

′′, . . . ,CTn′
′′ are extensions of CTn

such that none of these traces is a prefix of another, then none of the traces
CT1, . . . ,CTn−1,CT1

′′, . . . ,CTn′
′′ is a prefix of another of these traces.
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In particular, this is true when, for all i ≤ n′, CTi′′ is the concatenation
of CTn and CTi′ where CT1

′, . . . ,CTn′
′ are traces that start at the last config-

uration of CTn such that none of these traces is a prefix of another of these
traces.

Proof Let us prove the first point. Consider two traces among CT1, . . . ,
CTn−1,CT1

′′, . . . ,CTn′
′′. If they are both among CT1, . . . ,CTn−1, they are not

prefix of one another by hypothesis. If they are both among CT1
′′, . . . ,CTn′

′′,
they are also not prefix of one another by hypothesis. Now consider CTi with
i ≤ n − 1 and CTj ′′ with j ≤ n′. If CTi was a prefix of CTj ′′, then either its
length is less or equal to the length of CTn, so CTi would be a prefix of CTn,
which is impossible by hypothesis, or its length is greater than the length of
CTn, so CTi would be an extension of CTn, that is, CTn would be a prefix
of CTi, which is also impossible by hypothesis. If CTj ′′ was a prefix of CTi,
then a fortiori CTn would be a prefix of CTi, which is impossible by hypoth-
esis. Hence, none of the traces CT1, . . . ,CTn−1,CT1

′′, . . . ,CTn′
′′ is a prefix of

another of these traces.
To show the second point, if CTi′′ was a prefix of CTj ′′, then CTi′ would

be a prefix of CTj ′, which is a contradiction. So we can apply the first point in
this case. �

Lemma G.3 Suppose that CT cs
1 , . . . , CT

cs
n ≡t CTS1, . . . ,CTSn. Either all

traces CT cs
1 , . . . , CT

cs
n are complete, or there exist CT cs

1
′, . . . , CT cs

n′
′ and CTS′1,

. . . ,CTS′n′ such that there are strictly more reduction steps in traces CT cs
1
′
, . . . ,

CT cs
n′
′ than in traces CT cs

1 , . . . , CT
cs
n and CT cs

1
′
, . . . , CT cs

n′
′ ≡t CTS′1, . . . ,CTS

′
n′ .

Proof Suppose that CT cs
1 , . . . , CT

cs
n ≡t CTS1, . . . ,CTSn and there is a trace

CT cs
i that is not complete. We can renumber the traces so that the last trace

CT cs
n is not complete.
By Property 5(b), the last configuration Ccs of the trace CT cs

n and all traces
CT ∈ CTSn verify Ccs ≡ CT. By Property 2, CT is a trace beginning at
C0(Q0, program0). Let us denote CTSn = {CT1, . . . ,CTm}. We can then apply
Lemma 8.35 to Ccs.

• Either there exist n′ configurations Ccs
1 , . . . , Ccs

n′ , n′ traces Ccs  +
p1 C

cs
1 ,

. . . , Ccs  +
pn′ Ccs

n′ such that none of these traces is a prefix of another,∑
i≤n pi = 1, and for each trace CTj , j ≤ m, there exist n′ pairwise

disjoint trace sets CTSj,1, . . . ,CTSj,n′ such that all traces in these sets
are extensions of CTj , none of these traces is a prefix of another, and for
each trace CT ∈ CTSj,i, Ccs

i
′ ≡ CT and Pr[CTSj,i] = pi · Pr[CTj ]. Let us

denote CTS′i
def
=
⋃
j≤m CTSj,i. Let us also denote Ccs

i
′ the extension of the

trace Ccs until Ccs
i , for i ≤ n′. There is at least one new reduction step, so

there are more reduction steps in CT cs
1 , . . . , CT

cs
n−1, CT

cs
1
′, . . . , CT cs

n′
′ than

in CT cs
1 , . . . , CT

cs
n . Let us prove that CT

cs
1 , . . . , CT

cs
n−1, CT

cs
1
′, . . . , CT cs

n′
′ ≡t

CTS1, . . . ,CTSn−1,CTS′1, . . . ,CTS
′
n′ . All traces CT cs

1 , . . . , CT
cs
n−1, CT

cs
1
′,

. . . , CT cs
n′
′ start at C0(Q0, program0) and by Lemma G.2, none of these
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traces is a prefix of another of these traces, so Property 1 is verified.
Similarly, by applying Lemma G.2 to each trace CTj for j ≤ m, Property 2
is verified. By Property 3 on the initial traces, ∀i ≤ n,Pr[Ccs

i ] = Pr[CTSi].
We have that Pr[CTS′i] =

∑
j≤m Pr[CTSj,i] because all the sets CTSj,i are

disjoint. So,

Pr[CTS′i] =
∑
j≤m

pi · Pr[CTj ] = pi · Pr[CTSn] , so

Pr[CT cs
i
′] = pi · Pr[CT cs

n ] = Pr[CTS′i] ,

Property 3 is verified. By Property 4 on the initial traces, we have∑
i≤n Pr[CT

cs
i ] = 1. We have that∑
i≤n′

Pr[CT cs
i
′
] =

∑
i≤n′

pi · Pr[CT cs
n ] = Pr[CT cs

n ] , so∑
i≤n−1

Pr[CT cs
i ] +

∑
i≤n′

Pr[CT cs
i
′] =

∑
i≤n

Pr[CT cs
i ] = 1 .

So Property 4 is verified. We inherit Property 5 for the n−1 first elements.
For all i ≤ n′, for all traces CT ∈ CTS′i, we have Ccs

i
′ ≡ CT, and Ccs

i
′ is

the last configuration of CT cs
i
′. So Property 5(b) is verified for all the

new elements. Hence Property 5 is verified. Therefore, CT cs
1 , . . . , CT

cs
n−1,

CT cs
1
′, . . . , CT cs

n′
′ ≡t CTS1, . . . ,CTSn−1,CTS′1, . . . ,CTS

′
n′ .

• Otherwise, each trace CT ∈ CTSn is complete, Ccs →∗ Ccs
1 , Ccs

1 cannot
reduce, and the event list E of Ccs

1 and the event list events of the last
configuration of CT satisfy events = Gev(E). Let CT cs

n
′ be the extension

of the trace CT cs
n until Ccs

1 . The trace CT cs
n
′ contains more steps than

CT cs
n , so there are more reduction steps in CT cs

1 , . . . , CT
cs
n−1, CT

cs
n
′ than in

CT cs
1 , . . . , CT

cs
n . Let us prove that CT cs

1 , . . . , CT
cs
n−1, CT

cs
n
′ ≡t CTS1, . . . ,

CTSn. By Lemma G.2, no traces in CT cs
1 , . . . , CT

cs
n−1, CT

cs
n
′ are prefixes of

one another, so Property 1 is verified. Property 2 is inherited. We have
that Pr[CT cs

n
′] = Pr[CT cs

n ], so Properties 3 and 4 are verified. The trace
CT cs

n
′ is complete, every trace CT ∈ CTSn is complete, and the event list

events of the last configuration of traces in CTSn and the event list E of
Ccs
1 verify events = Gev(E), so Property 5(a) holds for the last elements.

Other elements inherit Property 5, so Property 5 holds. Therefore, CT cs
1 ,

. . . , CT cs
n−1, CT

cs
n
′ ≡t CTS1, . . . ,CTSn. �

Proof (of Proposition 8.36) By Lemma 8.34, we have a trace CT 0 = C0(Q0,
program0)  

∗ Ccs where Ccs ≡ CT0 and CT0 = C0(Q0, program0). We
prove easily that CT 0 ≡t {CT0}. The number of steps in complete traces
from configuration C0(Q0, program0) is finite. Let us consider traces such that
CT cs

1 , . . . , CT
cs
n ≡t CTS1, . . . ,CTSn with the maximum number of reduction

steps. By Lemma G.3, the traces CT cs
1 , . . . , CT

cs
n are complete. (Otherwise,

we could extend them.) Since the sum of their probabilities is 1, these are all
complete traces starting at C0(Q0, program0). The proposition follows. �
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H Index of Notations
Q ↔ RI, I Correspondence between processes in Q and oracles in RI, I 71
RI− role[ã] The set RI without role role[ã] 59
RI− RI′ The set RI without all roles in RI′ 59
I−O[ã] The set I without oracle O[ã] 59
→p Semantic reduction 16
 Reduction of intermediate CryptoVerif semantics 66
·̃ list of ·, where · is either i or a 10
env ⊕ env ′ Add bindings of env to env ′ 26
≈v Value equivalence between configurations 39
≈vth Value equivalence between threads 39
⇓ CryptoVerif term evaluation 13
≡ Relation between CryptoVerif and OCaml traces 76
γ Boolean indicating whether the oracle or role can be called only

once or not. Either Once or Any. 37
µ OCaml module 34
µprim OCaml module for cryptographic primitives 21
µrole Translation of role 40
τ Fresh tag for every closure 36
τO Function that maps oracles to a closure tag τ 72
a CryptoVerif constant 13
add(I,RI) Add first oracles present in RI in I 60
addthread Add thread to thread list 25
almostunif (A, b)

Probability of b ∈ A according to an almost-uniform distribution 8
Any Can be called any number of times 37
C OCaml configuration (after Section 7, the instrumented one) 31
C CryptoVerif semantic configuration 13
C0(program)Initial OCaml configuration for program 34
C[th 7→ th, globalstore 7→ globalstore,MI 7→MI, events 7→ events]

Modified OCaml configuration 54
Ccs Intermediate semantic configuration 66
Cevents(C) Event list of configuration C 53
Cglobalstore(C)

Global store of configuration C 53
Ci(Q0) Initial CryptoVerif configuration for Q0 17
Cm OCaml minimal evaluation context 27
Cme OCaml minimal expression evaluation context 27
Cmp OCaml minimal program evaluation context 27
Cpe(C) Current program or expression of configuration C 53
Cth(C) Current thread of configuration C 53
call(O[ã]), call(O[_, ã])

Values representing calls to oracles in the simulator 60
Callable Oracle is callable 42
CI OCaml instrumented configuration 37
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continue CryptoVerif loop continues. An alias of true. 11
CS Simulator configuration 58
CT OCaml trace 36
CT CryptoVerif trace 18
CTS OCaml trace set 36
CT S CryptoVerif trace set 18
D Distinguisher on event lists 19
E CryptoVerif environment 13
e OCaml expression 23
E CryptoVerif event list 13
env OCaml environment 25
env(E, ·) Minimal environment for describing · where · = P,M or Q 53
envprim Environment after evaluation of µprim 49
ev Event 11
events OCaml event list 36
f CryptoVerif function symbol 10
Files Association set between files and variables to save 20
function[env , pm]

OCaml closure 25
fv Free variables 52
G Translation function for oracle bodies 42
Gdeser(T ) Deserialization of type T 21
Gev Translation function for events 49
Gf Translation function for CryptoVerif functions 21
Gfile Write a variable into a file 42
GgetMI(Q) Set of modules in Q 41
GM Translation function for terms 41
GO Translation function for oracles 42
Gpred(T )(v) Return whether value v corresponds to a value of type T 21
Grandom(T ) OCaml function for generating random values of type T 21
Gread Read a variable from a file 44
Gser(T ) Serialization of type T 21
GT(T ) OCaml type corresponding to CryptoVerif type T 21
Gtbl OCaml value of a table row 52
Gtblel Serialized OCaml value of a table row 52
GvalT (a) OCaml value corresponding to the CryptoVerif value a : T 49
Gvar Translation function for variables 40
gettokens Function that returns part of the store corresponding to tokens 73
globalstore OCaml global store 33
globalstore(E, T )

Global store corresponding to E and T 53
globalstore0 Initial global store 34
i CrypvoVerif replication index 10
I Set containing available oracles with their replication indices 58
initval l Default value for location l in global store 34
interface(µ) Interface of module µ 34
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interfaceprim Interface of µprim 48
Invalid Oracle or role cannot be called again 42
L OCaml reduction label 26
l OCaml store location 23
ltok Function that maps an oracle not under replication to its token 72
letrec[env , {x1 7→ function pm1, . . . , xn 7→ function pmn} in xi]

OCaml closure for recursive functions 25
Locg Locations allowed only in global store 33
Loc` Locations allowed only in local store 33
Locpriv Global locations reserved for private use 46
M CryptoVerif term 10
Mg Set of generated modules 37
MI Module set 37
N Bound on replication 10
NO Bound on replication under oracle O 56
Nrand+calls Maximum number of oracle calls and random generations 56
Nrole Bound on replication under role role 56
Nsteps Maximum number of reduction steps of program0 56
noinstrCI Remove instrumentation 40
O CryptoVerif oracle 10
O1, . . . , On Oracle names present in Q0 58
o1, . . . , on CryptoVerif constants representing oracles in Q0 58
oR CryptoVerif constant for random choice 58
oS CryptoVerif constant for end of program 58
O Function that returns the oracles present in its argument 71
O∞ Same as O, but ignoring replication bounds 68
Ocall Set of oracles not under replication appearing in argument 68
Ocall-repl Set of oracles under replication appearing in argument 68
Ostart Oracle called at the beginning 17
Once Can be called only once 37
oracledeflist(Q)

List of oracles in Q, no instantiation of replication indices 41
oraclelist(Q)List of names and replication indices of oracles in Q 59
oracledefset(Q)

Set of oracles in Q, indices in replications instantiated 16
P CryptoVerif oracle body 10
Ploop Oracle body of Qstart(Q0, program0) 64
Preturn-loop(α)

The process in the loop between two steps, in the simulator 64
pat OCaml pattern 23
pe OCaml program or expression 27
pm OCaml pattern matching 24
pmγ(Q) Translation of Q 44
pm ′role[ã] Pattern matching corresponding to role role 62
Pr[·] Probability of a trace or trace set 18
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Pr[C :(CV) D]
Probability that a CryptoVerif trace beginning at C verifies D 19

Pr[C :(ML) D]
Probability that an OCaml trace beginning at C verifies D 66

Pr[Ccs :( ) D]
Probability that a trace beginning at Ccs using  verifies D 67

prim OCaml primitive 23
program OCaml program 24
programprim Program of module µprim 48
program(µ) Program of module µ 34
program0 OCaml program that interacts with the translation of Q0 48
program ′(role[ã])

Simulator program corresponding to role role 62
Q CryptoVerif set of callable oracle definitions 13
Q(O[ã]) Element of Q corresponding to O[ã] 71
Q CryptoVerif oracle definition 10
Q[ã] Process Q where elements of ã are substituted for elements of ĩ 60
Q{a/i} Process Q where a is substituted for i 16
Q(role) Oracle definition corresponding to role role 20
Q0 The CryptoVerif process we consider 48
Qadv(Q0, program0)

CryptoVerif adversary that simulates program0 48
Qc(Q0, program0)

Stepping oracle of Qadv(Q0, program0) 55
Qloop Oloop[i

′](s : TCS) := Ploop 64
Qstart(Q0, program0)

Starting oracle of Qadv(Q0, program0) 55
S CryptoVerif call stack 13
Rinit-function Set of roles whose modules are not evaluated yet 68
Rinit-closure Set of roles whose modules are evaluated but whose init

function has not been called yet 68
Sloop(α) The contents of the call stack, in the simulator 64
random` Random element in list 42
replacecalls Replace calls to oracles with corresponding closures 73
replaceinitpm

Replace simulator role initializations with OCaml ones 72
repr(CS) Function returning the bitstring representation of CS 58
return Return list of new roles 39
returnoracles(O[ã])

Oracles returned by the return statements of O[ã] 60
RI Set containing available roles with their replication indices 58
RI0 Initial role set 64
role CryptoVerif role 19
s0(Q0, program0)

Representation of initial simulator configuration 64
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schedule Schedule another thread 25
ser(T, a) Serialization of CryptoVerif value a 50
simreturn(CS)

Return value of simulator 62
simulateML CryptoVerif function that simulates OCaml code 58
simulateendOFunction that integrates the fact that an oracle terminated

with end into the simulator configuration 63
simulateR Function that integrates the result of a random choice into the

simulator configuration 64
simulateretO Function that integrates the return values of an oracle into the

simulator configuration 63
smallest(RI, role)

Smallest indices for role role in RI 59
stack OCaml call stack 27
steps Number of remaining steps 66
stop CryptoVerif loop stops. An alias of false. 11
store OCaml store 31
T CryptoVerif type 9
t Closure tag containing the oracle corresponding to the closure 36
T CryptoVerif set of tables 13
T0 Initial table set 17
TCS CryptoVerif type that is the image of repr 58
TM Type of term M 41
To CryptoVerif type containing constants for oracle names,

random and stop 58
Tables Association set between files and tables 20
tagfunctiont pm

Tagged function 36
tagfunctiont,τ [env , pm]

Tagged closure 36
Tbl CryptoVerif table 10
tj Thread number 33
th OCaml thread 31
ths0 Thread that only evaluates µprim 49
token Boolean reference indicating whether an oracle can be called 42
TT Trace for a single thread 49
v OCaml value 25
willbeavailable

Set of oracles that can eventually become available 68
x Variable 10
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