Computationally Sound Mechanized Proofs for Basic and Public-key Kerberos

Bruno Blanchet1 Aaron D. Jaggard2 Andre Scedrov3 Joe-Kai Tsay3

1CNRS, \'{E}cole Normale Sup\'erieure, INRIA
2DIMACS, Rutgers University
3Department of Mathematics, University of Pennsylvania

June 2008
Verifying Kerberos in the computational model

 3 rounds, 4 participants, ...
- We study it using CryptoVerif, a mechanized prover for security protocols *sound in the computational model*.
 - CryptoVerif produces proofs by *sequences of games* as used by cryptographers.
 - It proves secrecy and correspondence properties.
 - It handles many cryptographic primitives.
 - It provides proofs valid for a polynomial number of sessions with an active adversary.
 - It provides a bound on the probability of an attack.
 - It works automatically or with little help from the user.
Properties proved

We consider both basic Kerberos and its public-key extension PKINIT.

We prove:

- **Authentication** properties
- **Secrecy** of keys (before they are used in the protocol)
- **Key usability**: when a key has been used for encryption, it is no longer secret (in the computational sense), but it may still be usable in future encryption.

We extend a previous notion of key usability by Datta et al (CSFW’06), and prove our new notion using CryptoVerif.
Conclusion

- We provide the first mechanized proof of an industrial security protocol at the computational level.
- Our model of Kerberos is still fairly abstract; it would be interesting for future work to model some more details of the specification.
- CryptoVerif is a prototype, but it can already prove non-trivial protocols.
- This case study suggested a number of improvements to CryptoVerif.

Paper published at AsiaCCS’08, available with the CryptoVerif scripts at http://www.cryptoverif.ens.fr/kerberos/

Details on CryptoVerif at http://www.cryptoverif.ens.fr/