Automatically Verified Mechanized Proof of One-Encryption Key Exchange

Bruno Blanchet
blanchet@di.ens.fr

INRIA, École Normale Supérieure, CNRS, Paris

June 2012
Motivation

- **OEKE (One-Encryption Key Exchange) [Bresson, Chevassut, Pointcheval, CCS’03]:**
 - Variant of EKE (Encrypted Key Exchange)
 - A password-based key exchange protocol.
 - A non-trivial protocol.
 - It took some time before getting a computational proof of this protocol.

- **Our goal:**
 - Mechanize, and automate as far as possible, its proof using CryptoVerif.
 - This is an opportunity for several interesting extensions of CryptoVerif.
CryptoVerif

CryptoVerif is an automatic prover:

- in the computational model.
- proves secrecy and correspondence (authentication) properties.
- provides a generic method for specifying properties of cryptographic primitives.
- works for N sessions (polynomial in the security parameter), with an active adversary.
- gives a bound on the probability of an attack (exact security).
- possibility to guide the prover (manual mode).
OEKE

<table>
<thead>
<tr>
<th>Client U</th>
<th>Server S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leftarrow R [1, q - 1]$</td>
<td>$y \leftarrow R [1, q - 1]$</td>
</tr>
<tr>
<td>$X \leftarrow g^x$</td>
<td>$Y \leftarrow g^y$</td>
</tr>
<tr>
<td>$Y \leftarrow D_{pw}(Y^*)$</td>
<td>$Y^* \leftarrow E_{pw}(Y)$</td>
</tr>
<tr>
<td>$K_U \leftarrow Y^x$</td>
<td></td>
</tr>
<tr>
<td>$Auth \leftarrow H_1(U</td>
<td></td>
</tr>
<tr>
<td>$sk_U \leftarrow H_0(U</td>
<td></td>
</tr>
</tbody>
</table>

if $Auth = H_1(U||S||X||Y||K_S)$ then

Bruno Blanchet (INRIA, ENS, CNRS)
Result (1)

Using CryptoVerif with user guidance, we prove that OEKE is secure.

Assumptions:

- \mathcal{H}_0 and \mathcal{H}_1 are random oracles,
- \mathcal{E}, \mathcal{D} is an ideal cipher,
- g is a generator of a group G of order q that satisfies the computational Diffie-Hellman assumption.

Static corruptions; no dynamic corruptions.
The client is authenticated to the server up to probability
\[
\frac{N_S + N_U}{N} + (2q_{h0} + 3q_{h1}) \times \text{Succ}_{G}^{\text{cdh}}(t') + \text{collision terms}
\]

The session key is secret up to probability
\[
\frac{N_S + N_U}{N} + (4q_{h0} + 6q_{h1}) \times \text{Succ}_{G}^{\text{cdh}}(t') + \text{collision terms}
\]

- dictionary size \(N \)
- \(N_U \) client instances, \(N_S \) server instances under active attack
- \(q_{h0} \) hash queries to \(\mathcal{H}_0 \), \(q_{h1} \) hash queries to \(\mathcal{H}_1 \)
Result (3)

- The first term
 \[\frac{N_S + N_U}{N} \]
 is optimal: the adversary can test one password per session of the client or of the server.

- Improved probability bounds with respect to [Bresson, Chevassut, Pointcheval, CCS’03]
Contributions

- Improved model of random oracle, ideal cipher
- Model of the computational Diffie-Hellman assumption
- Shoup’s lemma:
 - Insert an event and later prove that the probability of this event is negligible.
 - Improved computation of probabilities
- New game transformations:
 - Delay random choices
 - Merge array variables
 - Merge branches of tests
- Improved computation of probabilities of collisions, especially useful with passwords.
Proofs by sequences of games

Proofs in the computational model are typically proofs by sequences of games [Shoup, Bellare&Rogaway]:

- The first game is the real protocol.
- One goes from one game to the next by syntactic transformations or by applying the definition of security of a cryptographic primitive. The difference of probability between consecutive games is negligible.
- The last game is “ideal”: the security property is obvious from the form of the game. (The advantage of the adversary is 0 for this game.)
Events, probabilities

- $C[G] = \text{game } G \text{ interacting with an adversary (evaluation context) } C$.
- $\Pr[C[G] : e]$ is the probability that $C[G]$ executes event e.
- More generally, a **distinguisher** D takes as input a sequence of events E and returns true or false.

Definition

$\Pr[C[G] : D]$ is the probability that $C[G]$ executes a sequence of events E such that $D(E) = \text{true}$.

Example

$\Pr[C[G] : e_1 \lor e_2]$ is the probability that $C[G]$ executes e_1 or e_2.
Indistinguishability

C is acceptable for G with public variables V when C is allowed to read directly the variables of G that are in V.

Definition (Indistinguishability)

We write $G \approx^V_p G'$ when, for all evaluation contexts C acceptable for G and G' with public variables V and all distinguishers D,

Intuition: the probability that an adversary distinguishes G from G' is at most p.
Computational Diffie-Hellman assumption

Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a, g^b, for random $a, b \in \mathbb{Z}_q$.
Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a, g^b, for random $a, b \in \mathbb{Z}_q$.

In CryptoVerif, this can be written

\[
\text{foreach } i \leq n \text{ do } a \leftarrow Z; b \leftarrow Z; (OA() := g^a, OB() := g^b, \\
\text{foreach } i' \leq n' \text{ do } OCDH(z : G) := z = g^{ab})
\]

\[
\approx
\]

\[
\text{foreach } i \leq n \text{ do } a \leftarrow Z; b \leftarrow Z; (OA() := g^a, OB() := g^b, \\
\text{foreach } i' \leq n' \text{ do } OCDH(z : G) := false)
\]

g^a actually written $\exp(g, a)$; g^{ab} written $\exp(g, \text{mult}(a, b))$
The previous model is sufficient for proving basic schemes.

- Example: semantic security of hashed El Gamal in the random oracle model (A. Chaudhuri).

This model is **not sufficient** for OEKE and other practical protocols.

- It assumes that a and b are chosen one after the other under the same **foreach**.

- In practice, one participant chooses a, another chooses b, so these choices are made under different **foreachs** in processes in parallel.
Extending the formalization of CDH in CryptoVerif

\[
\text{foreach } ia \leq na \text{ do } a \leftarrow Z; (OA()) := g^a, Oa() := a,
\]
\[
\text{foreach } iaCDH \leq naCDH \text{ do } OCDHa(m : G, j \leq nb) := m = g^{b[j].a},
\]
\[
\text{foreach } ib \leq nb \text{ do } b \leftarrow Z; (OB()) := g^b, Ob() := b,
\]
\[
\text{foreach } ibCDH \leq nbCDH \text{ do } OCDHb(m : G, j \leq na) := m = g^{a[j].b} \approx
\]
\[
\text{foreach } ia \leq na \text{ do } a \leftarrow Z; (OA()) := g^a, Oa() := a,
\]
\[
\text{foreach } iaCDH \leq naCDH \text{ do } OCDHa(m : G, j \leq nb) :=
\]
\[
\text{if } Ob[j] \text{ or } Oa \text{ has been called then } m = g^{b[j].a} \text{ else } false,
\]
\[
\text{foreach } ib \leq nb \text{ do } b \leftarrow Z; (OB()) := g^b, Ob() := b,
\]
\[
\text{foreach } ibCDH \leq nbCDH \text{ do } OCDHb (\text{symmetric of } OCDHa))
\]
Extending the formalization of CDH in CryptoVerif

foreach $ia \leq na$ do $a \leftarrow Z; (OA()) := g^a, Oa() := a,$

foreach $iaCDH \leq naCDH$ do $OCDHa(m : G, j \leq nb) := m = g^{b[j].a}),$

foreach $ib \leq nb$ do $b \leftarrow Z; (OB()) := g^b, Ob() := b,$

foreach $ibCDH \leq nbCDH$ do $OCDHb(m : G, j \leq na) := m = g^{a[j].b})$

≈

foreach $ia \leq na$ do $a \leftarrow Z; (OA()) := g^a, Oa() := ka \leftarrow mark; a,$

foreach $iaCDH \leq naCDH$ do $OCDHa(m : G, j \leq nb) :=$

find $u \leq nb$ such that defined($kb[u], b[u]) \land b[j] = b[u]$ then

$m = g^{b[j].a}$

else if defined($ka)$ then $m = g^{b[j].a}$ else false),

foreach $ib \leq nb$ do $b \leftarrow Z; (OB()) := g^b, Ob() := kb \leftarrow mark; b,$

foreach $ibCDH \leq nbCDH$ do $OCDHb$ (symmetric of $OCDHa)$)
Extending the formalization of CDH in CryptoVerif

\[
\text{foreach } ia \leq na \text{ do } a \xleftarrow{\text{R}} Z; (OA()) := g^a, Oa() := a,
\]

\[
\text{foreach } ia \text{CDH} \leq na \text{CDH} \text{ do } OCDHa(m : G, j \leq nb) := m = g^{b[j].a}),
\]

\[
\text{foreach } ib \leq nb \text{ do } b \xleftarrow{\text{R}} Z; (OB()) := g^b, Ob() := b,
\]

\[
\text{foreach } ib \text{CDH} \leq nb \text{CDH} \text{ do } OCDHb(m : G, j \leq na) := m = g^{a[j].b})
\]

\[
\sim (\#OCDHa+\#OCDHb) \times \max(1,e^2 \#Oa) \times \max(1,e^2 \#Ob) \times pCDH(time + (na+nb+\#OCDHa+\#OCDHb) \times time(exp))
\]

\[
\text{foreach } ia \leq na \text{ do } a \xleftarrow{\text{R}} Z; (OA()) := g^a, Oa() := ka \xleftarrow{\text{mark}} a,
\]

\[
\text{foreach } ia \text{CDH} \leq na \text{CDH} \text{ do } OCDHa(m : G, j \leq nb) :=
\]

\[
\text{find } u \leq nb \text{ suchthat defined}(kb[u], b[u]) \land b[j] = b[u] \text{ then }
\]

\[
m = g^{b[j].a}
\]

\[
\text{else if defined}(ka) \text{ then } m = g^{b[j].a} \text{ else false),}
\]

\[
\text{foreach } ib \leq nb \text{ do }
\]
Extensions for CDH

The implementation of the support for CDH required two extensions of CryptoVerif:

- An array index \(j \) occurs as argument of a function.
 - extend the language of equivalences used for specifying assumptions on primitives.
- The equality test \(m = g^{ab} \) typically occurs inside the condition of a \textbf{find}.
 - This \textbf{find} comes from the transformation of a hash function in the Random Oracle Model.

\[
h(g^{ab})
\]
becomes

\[
\text{find } u \leq n \text{ such that defined}(x[u], r[u]) \land x[u] = g^{ab} \text{ then } r[u] \text{ else } \ldots
\]

After transformation, we obtain a \textbf{find} inside the condition of a \textbf{find}.
Shoup’s lemma

Goal: bound $\Pr[C[G_0]:e_0]$.

G_0 \uparrow probability p
G_n \uparrow $\Pr[C[G_{n+1}]:e]$
G_{n+1} event e
$G_{n'}$ \uparrow probability p'

$\Pr[C[G_0]:e_0] \leq p + \Pr[C[G_{n+1}]:e] + p'$

$\leq p + p' + p'$

$\leq p + 2p'$
Improved version of Shoup’s lemma

Goal: bound $\Pr[C[G_0] : e_0]$.

- G_0 with probability p
- G_n differ only when e is executed
- G_{n+1} event e
- $G_{n'}$ events e_0 and e never executed

\[
\Pr[C[G_0] : e_0] \leq p + \Pr[C[G_n] : e_0] \\
\leq p + \Pr[C[G_{n+1}] : e_0 \lor e] \\
\leq p + p' + \Pr[C[G_{n'}] : e_0 \lor e] \\
\leq p + p'
\]
Improved Shoup’s lemma

Lemma

Let C be a context acceptable for G and G' with public variables V.

1. **Improved Shoup’s lemma:**
 If G' differs from G only when G' executes event e, then
 \[
 \Pr[C[G] : D] \leq \Pr[C[G'] : D \lor e].
 \]

2. If $G \approx^V_p G'$, then
 \[
 \Pr[C[G] : D] \leq p(C, t_D) + \Pr[C[G'] : D].
 \]

3. \[
 \Pr[C[G] : D \lor D'] \leq \Pr[C[G] : D] + \Pr[C[G] : D'].
 \]

We also gain a factor 2 for the probability of events in proofs of secrecy, using a similar technique.
Impact on OEKE

We apply our improved computation of probabilities to the manual proof of [Bresson, Chevassut, Pointcheval, CCS’03].

- dictionary size N
- N_U client instances under active attack
- N_S server instances under active attack
- N_P sessions under passive attack
- q_h hash queries
Impact on OEKE: semantic security

- Standard computation of probabilities:

\[\text{Adv}_{G_0}^{\text{ake}}(C) \leq \frac{4N_S + 2N_U}{N} + 8q_h \times \text{Succ}_{G_0}^{\text{cdh}}(t') + \text{collision terms} \]

- Improved computation of probabilities:

\[\text{Adv}_{G_0}^{\text{ake}}(C) \leq \frac{N_S + N_U}{N} + q_h \times \text{Succ}_{G}^{\text{cdh}}(t') + \text{collision terms} \]

- The adversary can test one password per session with the parties.
Impact on OEKE: one-way authentication

- Standard computation of probabilities:
 \[\text{Adv}^{c_{\text{auth}}}_{G_0}(C) \leq \frac{2NS + NU}{N} + 3qh \times \text{Succ}^{\text{cdh}}_{G}(t') + \text{collision terms} \]

- Improved computation of probabilities:
 \[\text{Adv}^{c_{\text{auth}}}_{G_0}(C) \leq \frac{NS + NU}{N} + qh \times \text{Succ}^{\text{cdh}}_{G}(t') + \text{collision terms} \]

- The adversary can test one password per session with the parties.

These remarks are general: it is not specific to OEKE or to CryptoVerif, and can be used in any proof by sequences of games.
CryptoVerif takes as input:

- The **assumptions** on security primitives: CDH, Ideal Cipher Model, Random Oracle Model.
 - These assumptions are formalized in a library of primitives. The user does not have to redefine them.
- The **initial game** that represents the protocol OEKE:
 - Code for the client
 - Code for the server
 - Code for sessions in which the adversary listens but does not modify messages (passive eavesdroppings)
 - Encryption, decryption, and hash oracles
- The **security properties** to prove:
 - Secrecy of the keys sk_U and sk_S
 - Authentication of the client to the server
- **Manual proof indications** (see next slide)
Manual proof indications (sketch)

1. Insert two events for Shoup’s lemma, corresponding to cases in which the adversary breaks the protocol.

 - CryptoVerif cannot guess where events should be inserted.

2. **Automatic proof strategy** of CryptoVerif.

 - Applies in particular the computational Diffie-Hellman assumption.

3. Reorganize random number generations and merge branches of tests to **eliminate uses of the password**.

All manual commands are **checked** by CryptoVerif, so that an incorrect proof cannot be produced.
The case study of OEKE is interesting for itself, but it is even more interesting by the extensions it required in CryptoVerif:

- Treatment of the **Computational Diffie-Hellman** assumption.
- New **manual game transformations**, in particular for inserting events and merging branches of tests.
- Optimization of the **computation of probabilities for Shoup’s lemma**.
- Other optimizations of the computation of probabilities in CryptoVerif.

These extensions are of general interest.