
Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Dealing with Key Compromise in CryptoVerif

Bruno Blanchet

INRIA Paris
Bruno.Blanchet@inria.fr

January 2023

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 1 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Outline

1 Introduction to CryptoVerif

2 Basic treatment of compromise

3 Extended proof of secrecy
4 New commands and game transformations

focus
success simplify
guess

5 Applications

6 Conclusion

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 2 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

The computational model

The computational model has been developped at the beginning of the
1980’s by Goldwasser, Micali, Rivest, Yao, and others.

Messages are bitstrings. 01100100

Cryptographic primitives are functions on bitstrings.

enc(011, 100100) = 111

The attacker is any probabilistic polynomial-time Turing machine.

The security assumptions on primitives specify what the attacker
cannot do.

This model is more realistic than the symbolic model, but proofs are
more difficult to mechanize.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 3 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Proofs by sequences of games

Proofs in the computational model are typically proofs by sequences of
games [Shoup, Bellare&Rogaway]:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is 0 for this game.)

Game 0

Protocol
to prove

←→
p1

negligible

Game 1 ←→
p2

negligible

. . .
←→
pn

negligible

Game n

Property
obvious

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 4 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

CryptoVerif, http://cryptoverif.inria.fr/

CryptoVerif is a mechanized prover that:

generates proofs by sequences of games.

proves secrecy, correspondence, and indistinguishability properties.

provides a generic method for specifying properties of
cryptographic primitives which handles MACs (message
authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions,
Diffie-Hellman key agreements, . . .

works for N sessions (polynomial in the security parameter), with an
active adversary.

gives a bound on the probability of an attack (exact security).

has automatic and interactive modes.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 5 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Input and output of the tool

1 Prepare the input file containing

the specification of the protocol to study (initial game),
the security assumptions on the cryptographic primitives,
the security properties to prove.

2 Run CryptoVerif
3 CryptoVerif outputs

the sequence of games that leads to the proof,
a succinct explanation of the transformations performed between
games,
an upper bound of the probability of success of an attack.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 6 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Basic treatment of key compromise

Include the compromise in the specification of the cryptographic
primitives themselves. Example: INT-CTXT with corruption.

1 new k : key ; (
2 !i≤n Oenc(x : cleartext) := new r : enc seed ; return(enc r(x , k , r)) |
3 !i

′≤n′ Odec(y : ciphertext) := return(dec(y , k)) |
4 Ocorrupt() := return(k))
5 ≈Advintctxt(time,n,n′,maxlength(x),maxlength(y))

6 new k : key ; (
7 !i≤n Oenc(x : cleartext) := new r : enc seed ;
8 let z : ciphertext = enc r(x , k, r) in return(z) |
9 !i

′≤n′ Odec(y : ciphertext) :=
10 if defined(corrupt) then return(dec(y , k)) else
11 find j ≤ n suchthat defined(x [j ], z [j ]) ∧ z [j ] = y
12 then return(injbot(x [j ])) else return(bottom) |
13 Ocorrupt() := let corrupt : bool = true in return(k)).

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 7 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Applications

INT-CTXT encryption in WireGuard [EuroS&P’19]

one-wayness [Crypto’06]

UF-CMA signatures in

TLS 1.3 [S&P’17],
Signal [EuroS&P’17],
fixed ARINC823 public key protocol [CSF’17]

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 8 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Limitations

Works for computational assumptions, not for decisional
assumptions.

Does not work when the compromised “key” is used as argument in
a sequence of key derivations using hash functions.

E.g., pre-shared key in TLS 1.3 and WireGuard.

Does not allow proving in CryptoVerif properties with compromise of
keys from assumptions without key compromise.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 9 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

How to overcome these limitations?

Two steps:
1 Prove an authentication property, assuming the key is not

compromised until the end of the session.

We can remove the compromise.
If the key is compromised after the end of the session, the property
will be preserved (because it is an authentication property).

2 Use that property to prove other properties, including secrecy, in the
presence of key compromise.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 10 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Proving secrecy

Suppose:

1 x is defined by an assignment x [i ] = z [M],

2 we want to prove the secrecy of x .

Old approach [TDSC’08]:

Show that z and all variables computed using z are secret
that is, they are not used in tests and output messages.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 11 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Proving secrecy

Suppose:

1 x is defined by an assignment x [i ] = z [M],

2 we want to prove the secrecy of x .

New approach:

Show that the cells of z that are stored in x cannot be the same as
those that are leaked (used in tests and output messages).

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 11 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Proving secrecy

Suppose:

1 x is defined by an assignment x [i ] = z [M],

2 we want to prove the secrecy of x .

New approach:

Show that the cells of z that are stored in x cannot be the same as
those that are leaked (used in tests and output messages).

Advantages:

Allows proving secrecy for a part of array z .

Especially useful in the presence of key compromise.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 11 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Proving secrecy: details

Suppose:

1 x is defined by an assignment x [i ] = z [M],

2 we want to prove the secrecy of x .

Sketch of the procedure:

Collect

facts that hold at the definition of x ,
facts that hold when z leaks, that is, is used in a test or output,
possible through assignments to other variables,
equality of indices of z in both cases.

Derive a contradiction (possibly up to elimination of collisions).

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 12 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Proving secrecy: toy example

!i≤n in(c[i ], ());new k : key ; out(c[i ], ());

in(d [i ], compr : bool);

if compr then

out(d [i ], µ1k)

else

let s : key = µ2k in µ3out(d [i ], ())

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 13 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

focus

focus q1, . . . , qm tells CryptoVerif to prove only the properties
q1, . . . , qm, as a first step.

The other properties to prove are (temporarily) ignored.

Allows more transformations:

events that do not occur in q1, . . . , qm can be removed;
only q1, . . . , qm are considered in the transformation success
simplify.

When q1, . . . , qm are proved, CryptoVerif automatically goes back to
before the focus command to prove the remaining properties.
Usage:

For key compromise, prove the authentication property first.

More generally, when different properties require different proofs.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 14 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

success simplify

success simplify combines success and simplify:

success collects information known to be true when the adversary
breaks at least one of the desired properties.

simplify removes parts of the game that contradict this information
and replaces them with event abort adv loses.

When these parts of the game are executed, the adversary cannot break
any of the security properties to prove, so they can be safely removed.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 15 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

success simplify: canonical example

Suppose the active queries are event(ei )⇒ false for events ei executed
by event abort ei .

Let Fµ be facts that hold at program point µ.

Let µj for j ∈ J be the program points of events ei .

If for all j ∈ J, Fµ ∪Fµj yields a contradiction (possibly up to elimination
of collisions), then success simplify replaces the code at µ with
event abort adv loses.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 16 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

success simplify: example

The left- and right-hand sides of the definition of INT-CTXT with
corruption can be distinguished from the following game only when event
disting is executed.

new k : key ; (
!i≤n Oenc(x : cleartext) := new r : enc seed ;
let z : ciphertext = enc r(x , k , r) in return(z) |

!i
′≤n′ Odec(y : ciphertext) :=
if defined(corrupt) then return(dec(y , k)) else
find j ≤ n suchthat defined(x [j ], z [j ]) ∧ z [j ] = y
then return(injbot(x [j ])) else
if dec(y , k) <> bottom then µevent abort disting
else return(bottom) |

Ocorrupt() := let corrupt : bool = true in µ1return(k)).

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 17 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

success simplify: example

new k : key ; (
!i≤n Oenc(x : cleartext) := new r : enc seed ;
let z : ciphertext = enc r(x , k , r) in return(z) |

!i
′≤n′ Odec(y : ciphertext) :=
if defined(corrupt) then return(dec(y , k)) else
find j ≤ n suchthat defined(x [j ], z [j ]) ∧ z [j ] = y
then return(injbot(x [j ])) else
if dec(y , k) <> bottom then µevent abort disting
else return(bottom) |

Ocorrupt() := let corrupt : bool = true in µ1return(k)).

Fµ ∪Fµ1 yields a contradiction, so success simplify replaces the code at
µ1 with event abort adv loses.

In the transformed game, k is never corrupted, so we can apply the
standard ciphertext integrity assumption without corruption to bound the
probability of disting and conclude.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 17 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: guess the tested session

Guess a replication index: transform

!i≤n in(c , x : T );P

into
!i≤n in(c , x : T ); if i = itested then P ′ else P ′′

1 P ′ is the tested session. P ′ is obtained from P by
replacing event e(M) with event e(M); event e′(M).
replacing let x = M in with let x = M in let x ′ = x in when x is
used in (one-session) secrecy queries.

2 P ′′ represents the other sessions. P ′′ is obtained from P by
replacing let x = M in with let x = M in let x ′′ = x in when x is
used in secrecy queries.

The same event e (resp. definition of the same variable x) cannot occur
both under the modified replication !i≤n and elsewhere in the game.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 18 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: guess the tested session

Update of queries: prove queries in the tested session.

secret x [one session] ⇝ secret x ′ [one session]
secret x ⇝ secret x ′ public vars x ′′

event(e(M)) ∧ ψ ⇒ ϕ ⇝ event(e ′(M)) ∧ ψ ⇒ ϕ

Does not work for injective correspondences! (see next)

Probabilities multiplied by n for modified queries.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 19 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: injective correspondences

We cannot modify correspondence queries with injective events:

Counter-example:

∀i : [1, n], x : T ′; event(e1(i , x))∧inj-event(e2(x))⇒ inj-event(e3())

with events

e3 e1(i1, x1) e1(i2, x2) e2(x1) e2(x2)

The query is false, but it is true if we restrict ourselves to one value
of i (the index of the tested session), because we consider

e1(i1, x1), e2(x1) and e3 for i = i1 and
e1(i2, x2), e2(x2) and e3 for i = i2.

Solution:
1 Show that the non-injective version of the correspondence implies

the injective version, in the current game.
2 Continue with the non-injective version of the correspondence.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 20 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: example

B → A: {na}pkA
A→ B: na

Role of B:

!iB≤nB in(c3[iB ], ());new na : nonce; out(c4[iB ], enc(pad(na), pkA));

in(c5[iB ],= na); event eB(na)

Show the correspondence

∀x : nonce; event(eB(x))⇒ event(eA(x))

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 21 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: example (continued)

Apply the IND-CCA2 assumption on encryption

replaces the encryption of na with the encryption of a 0 block Zb,

adapts the decryption accordingly in A.

Role of B:

!iB≤nB in(c3[iB ], ());new na : nonce; out(c4[iB ], enc(Zb, pkA));

in(c5[iB ],= na); event eB(na)

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 22 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: example (continued)

guess iB .

Role of B:

!iB≤nB in(c3[iB ], ());

if iB = iBtested then

new na : nonce; out(c4[iB ], enc(Zb, pkA));

in(c5[iB ],= na); event eB(na); event e
′
B(na)

else

new na : nonce; out(c4[iB ], enc(Zb, pkA));

in(c5[iB ],= na); event eB(na)

Show the correspondence ∀x : nonce; event(e ′B(x))⇒ event(eA(x))

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 23 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: example (continued)

SArename na: distinguish whether the nonce na has been generated in
the tested session or not.

Role of B:

!iB≤nB in(c3[iB ], ());

if iB = iBtested then

new na3 : nonce; out(c4[iB ], enc(Zb, pkA));

in(c5[iB ],= na3); event e
′
B(na3)

else

new na2 : nonce; out(c4[iB ], enc(Zb, pkA));

in(c5[iB ],= na2); event eB(na2)

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 24 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: example (continued)

Insert a find just before e ′B that tests whether eA(na3) has been executed.

Role of B:

!iB≤nB in(c3[iB ], ());

if iB = iBtested then

new na3 : nonce; out(c4[iB ], enc(Zb, pkA)); in(c5[iB ],= na3);

find j ≤ nA suchthat defined(eAex [j ]) then event e ′B(na3)

else event abort bad

else

new na2 : nonce; out(c4[iB ], enc(Zb, pkA));

in(c5[iB ],= na2); event eB(na2)

∀x : nonce; event(e ′B(x))⇒ event(eA(x)) is proved.
event(bad)⇒ false remains to be proved.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 25 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: example (continued)

success simplify removes the output of na3 in A. (When na3 is sent,
eA(na3) has been executed, so bad will not be executed.)

A dependency analysis on na3 shows that the adversary has no
information on na3:

the input in(c5[iB ],= na3) has little probability of succeeding;

the code that follows it can be removed;

that removes event bad and concludes the proof.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 26 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

guess: other variants

Extension to guessing a sequence of replication indices

Guess the value of a variable

when its type is not too large;
loses a factor equal to the cardinal of the type.

Guess the branch taken in a test.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 27 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

General strategy

1 Insert events ei executed when some authentication properties are
broken (and the key is not compromised).

2 focus on proving event(ei )⇒ false.

3 success simplify removes the compromise of the key.

4 We prove queries event(ei )⇒ false.

5 We go back to before focus and prove the other properties
(implicitly using the authentication properties already proved).

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 28 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Applications

Forward secrecy with respect to the compromise of the pre-shared
key in TLS 1.3 and WireGuard.

PRF-ODH with compromise of Diffie-Hellman exponents, illustrated
on Noise NK.

Forward secrecy for OEKE.

Grouping compromise scenarios in WireGuard, by guessing which
branch is taken.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 29 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Conclusion

We implemented several extensions of CryptoVerif:

1 Improvement of the proof of secrecy.

2 New commands: focus, success simplify, guess.

useful for dealing with the compromise of keys, but that have more
general applications.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 30 / 31



Introduction to CryptoVerif Basic Secrecy New commands Applications Conclusion

Work in progress and future work

1 CV2EC

2 CV2F*
3 papers on

collecting information in games,
crypto transformation.

Bruno Blanchet (INRIA) Compromise in CryptoVerif January 2023 31 / 31


	Introduction to CryptoVerif
	Basic
	Secrecy
	New commands
	Applications
	Conclusion

