From a Concurrency Course to Automatic Verification of Process Equivalences

Bruno Blanchet

INRIA, École Normale Supérieure, CNRS
Bruno.Blanchet@ens.fr

February 2011
Concurrence 2

Communication par canal et Pi-calcul

Jean-Jacques.Levy@inria.fr
INRIA – Rocquencourt

tel: +33-1-39-63-56-89
http://pauillac.inria.fr/~levy

Plan

1. Mémoire partagée
2. Réseaux de Petri
3. CSP, CCS, Meije, ACP
4. Pi-calcul (définitions)
5. Pi-calcul (exemples)
6. Pi-calcul polyadique
7. Pi-calcul asynchrone
Concurrence 3

Pi-calcul

Pict

Pi-calcul d'ordre supérieur

Jean-Jacques.Levy@inria.fr
INRIA – Rocquencourt
tel: +33-1-39-63-56-89
http://pauillac.inria.fr/~levy

Plan

1. Codage de l'arithmétique
2. Codage λ-calcul
3. Codage des structures de données (listes, arbres)
4. Typage des canaux
5. Pi-calcul asynchrone
6. Machines,Expériences,Equivalences
Concurrence

Bisimulations

Pict

Pi-calcul d’ordre supérieur

Jean-Jacques.Levy@inria.fr
INRIA – Rocquencourt

tel: +33-1-39-63-56-89
http://pauillac.inria.fr/~levy

Plan

1. Machines, Expériences, Equivalences
2. Pi-calcul avec abstractions
3. Pi-calcul d’ordre supérieur
2001-2002: ProVerif: automatic security protocol verifier

- Protocol: Pi calculus + cryptography
- Properties to prove: Strong secrecy

Automatic translator

- Horn clauses
- Derivability queries

Resolution with selection

- The property is true
- Potential attack

(also owes much to Martín Abadi)
ProVerif initially verified only properties on behaviors (traces) of protocols (secrecy of keys, correspondences).

Many important properties can be formalized as process equivalences, not as properties on behaviors:

- secrecy of a boolean x in $P(x)$: $P(\text{true}) \approx P(\text{false})$
- the process P implements an ideal specification Q: $P \approx Q$

Equivalences are usually proved by difficult, long manual proofs.

Much research on this topic, using in particular bisimulation techniques (e.g., Boreale et al).
Goal: extend tools designed for proving properties of behaviors (here ProVerif) to the proof of process equivalences.

- We focus on equivalences between processes that differ only by the terms they contain, e.g., $P(\text{true}) \approx P(\text{false})$.

Many interesting equivalences fall into this category.

- Biprocesses represent pairs of processes that differ only by the terms they contain.

 $P(\text{true})$ and $P(\text{false})$ are variants of a biprocess $P(\text{diff[true, false]})$.

 The variants give a different interpretation to diff[true, false], true for the first variant, false for the second one.
We introduce a new operational semantics for biprocesses:

A biprocess reduces when both variants reduce in the same way and after reduction, they still differ only by terms (so can be written using `diff`).

We establish $P(\text{true}) \approx P(\text{false})$ by reasoning on behaviors of $P(\text{diff}[\text{true}, \text{false}])$:

If, for all reachable configurations, both variants reduce in the same way, then we have equivalence.

(extends to cryptography an idea by Pottier and Simonet)
The process calculus

Extension of the pi-calculus with function symbols for cryptographic primitives.

\[M, N ::= \]
\[x, y, z \]
\[a, b, c, k, s \]
\[f(M_1, \ldots, M_n) \]

\[D ::= \]
\[M \]
\[\text{eval } h(D_1, \ldots, D_n) \]

\[P, Q, R ::= \]
\[M(x).P \]
\[\overline{M}(\langle N \rangle).P \]
\[\text{let } x = D \text{ in } P \text{ else } Q \]
\[0 \quad P \mid Q \quad !P \quad (\nu a)P \]
Representation of cryptographic primitives

Two possible representations:

- **When success/failure is visible**: destructors with rewrite rules

 constructor \(sencrypt \)

 destructor \(sdecrypt(sencrypt(x, y), y) \rightarrow x \)

 The *else* clause of the term evaluation is executed when no rewrite rule of some destructor applies.

- **When success/failure is not visible**: equations

 \[sdecrypt(sencrypt(x, y), y) = x \]

 \[sencrypt(sdecrypt(x, y), y) = x \]
Semantics

$D \Downarrow M$ when the term evaluation D evaluates to M.
Uses rewrite rules of destructors and equations.

\equiv transforms processes so that reduction rules can be applied.

Main reduction rules:

$$
\overline{N}(M).Q \mid N'(x).P \rightarrow Q \mid P\{M/x\}
$$
if $\Sigma \vdash N = N'$

(let $x = D$ in P else Q) \rightarrow $P\{M/x\}$
if $D \Downarrow M$

(let $x = D$ in P else Q) \rightarrow Q
if there is no M such that $D \Downarrow M$
Two processes P and Q are **observationally equivalent** ($P \approx Q$) when the adversary cannot distinguish them.

A **biprocess** P is a process with diff.

$\text{fst}(P) =$ the process obtained by replacing $\text{diff}[M, M']$ with M.

$\text{snd}(P) =$ the process obtained by replacing $\text{diff}[M, M']$ with M'.

P satisfies observational equivalence when $\text{fst}(P) \approx \text{snd}(P)$.
Semantics of biprocesses

A biprocess reduces when both variants of the process reduce in the same way.

\[
\overline{N}(M).Q \mid N'(x).P \rightarrow Q \mid P\{M/x\} \quad \text{(Red I/O)}
\]

if \(\Sigma \vdash \text{fst}(N) = \text{fst}(N') \) and \(\Sigma \vdash \text{snd}(N) = \text{snd}(N') \)

\[
\text{let } x = D \text{ in } P \text{ else } Q \rightarrow P\{\text{diff}[M_1, M_2]/x\} \quad \text{(Red Fun 1)}
\]

if \(\text{fst}(D) \Downarrow M_1 \) and \(\text{snd}(D) \Downarrow M_2 \)

\[
\text{let } x = D \text{ in } P \text{ else } Q \rightarrow Q \quad \text{(Red Fun 2)}
\]

if there is no \(M_1 \) such that \(\text{fst}(D) \Downarrow M_1 \) and there is no \(M_2 \) such that \(\text{snd}(D) \Downarrow M_2 \)
Let P_0 be a closed biprocess.

If for all configurations P reachable from P_0 (in the presence of an adversary), both variants of P reduce in the same way, then P_0 satisfies observational equivalence.
Proof of observational equivalence using biprocesses

Let P_0 be a closed biprocess.

If for all configurations P reachable from P_0 (in the presence of an adversary), both variants of P reduce in the same way, then P_0 satisfies observational equivalence.

An adversary is represented by a plain evaluation context (evaluation context without diff), so:

If, for all plain evaluation contexts C and reductions $C[P_0] \rightarrow^ P$, both variants of P reduce in the same way, then P_0 satisfies observational equivalence.*
Let P_0 be a closed biprocess.

Suppose that, for all plain evaluation contexts C and reductions $C[P_0] \rightarrow^* P$,

1. the (Red I/O) rules apply in the same way on both variants.

 if $P \equiv C'[\overline{N}(M).Q | N'(x).R]$, then
 $\Sigma \vdash \text{fst}(N) = \text{fst}(N')$ if and only if $\Sigma \vdash \text{snd}(N) = \text{snd}(N')$.

2. the (Red Fun) rules apply in the same way on both variants.

 if $P \equiv C'[\text{let } x = D \text{ in } Q \text{ else } R]$, then
 there exists M_1 such that $\text{fst}(D) \Downarrow M_1$
 if and only if
 there exists M_2 such that $\text{snd}(D) \Downarrow M_2$.

Then P_0 satisfies observational equivalence.
Thanks Jean-Jacques for all that you taught me!

- **pi-calculus** ⇒ influence on the design of ProVerif
- **equivalences** ⇒ automatic proof of observational equivalences
 Application, e.g., to the proof of resistance to dictionary attacks

Implementation and papers at

http://www.proverif.ens.fr/