Automatic, computational proof of EKE using CryptoVerif
(Work in progress)

Bruno Blanchet
blanchet@di.ens.fr
Joint work with David Pointcheval

CNRS, École Normale Supérieure, INRIA, Paris

May 2010
Motivation

- **EKE (Encrypted Key Exchange):**
 - A password-based key exchange protocol.
 - A non-trivial protocol.
 - It took some time before getting a proper computational proof of this protocol.

- **Our goal:**
 - Mechanize, and automate as far as possible, its proof using the automatic computational protocol verifier CryptoVerif.
 - This is an opportunity for several interesting extensions of CryptoVerif.

This work is still in progress.
We consider the variant of EKE of [Bresson, Chevassut, Pointcheval, CCS’03].

\[
\begin{array}{c|c}
\text{Client } U & \text{Server } S \\
\hline
\text{shared } pw \\
 X \leftarrow g^x & Y \leftarrow g^y \\
 U, X & S, Y^* \\
\end{array}
\]

\[
\begin{aligned}
 Y & \leftarrow D_{pw}(Y^*) \\
 K_U & \leftarrow Y^x \\
 Auth & \leftarrow H_1(U||S||X||Y||K_U) \\
 sk_U & \leftarrow H_0(U||S||X||Y||K_U) \\
 Auth & \rightarrow K_s \leftarrow X^y \\
\text{if } Auth = H_1(U||S||X||Y||K_S) & \text{ then } sk_S \leftarrow H_0(U||S||X||Y||K_S)
\end{aligned}
\]
The proof relies on the Computational Diffie-Hellman assumption and on the Ideal Cipher Model.

⇒ Model these assumptions in CryptoVerif.

The proof uses Shoup’s lemma:

- Insert an event and later prove that the probability of this event is negligible.

⇒ Implement this reasoning technique in CryptoVerif.

The probability of success of an attack must be precisely evaluated as a function of the size of the password space.

⇒ Optimize the computation of probabilities in CryptoVerif.
Computational Diffie-Hellman assumption

Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a, g^b, for random $a, b \in \mathbb{Z}_q$.
Computational Diffie-Hellman assumption in CryptoVerif

Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a, g^b, for random $a, b \in \mathbb{Z}_q$.

In CryptoVerif, this can be written

\[
!^{i \leq N} \text{new } a : Z; \text{new } b : Z; (OA() := \exp(g, a), OB() := \exp(g, b), \\
!^{i' \leq N'} \text{OCDH}(z : G) := z = \exp(g, \text{mult}(a, b))) \approx \\
!^{i \leq N} \text{new } a : Z; \text{new } b : Z; (OA() := \exp(g, a), OB() := \exp(g, b), \\
!^{i' \leq N'} \text{OCDH}(z : G) := \text{false})
\]
Computational Diffie-Hellman assumption in CryptoVerif

Consider a multiplicative cyclic group G of order q, with generator g. A probabilistic polynomial-time adversary has a negligible probability of computing g^{ab} from g, g^a, g^b, for random $a, b \in \mathbb{Z}_q$.

In CryptoVerif, this can be written

\[\约为 \]

\[\exists i \leq N \quad \text{new } a : Z ; \text{new } b : Z ; (OA() := \exp(g, a), OB() := \exp(g, b),
\]

\[\exists i' \leq N' \quad \text{OCDH}(z : G) := z = \exp(g, \text{mult}(a, b))) \]

Application: semantic security of hashed El Gamal in the random oracle model (A. Chaudhuri).
This model is **not sufficient** for EKE and other practical protocols.

- It assumes that a and b are chosen under the same replication.
- In practice, one participant chooses a, another chooses b, so these choices are made under different replications.
Computational Diffie-Hellman assumption in CryptoVerif

\begin{align*}
!^{i_a \leq N_a} \textbf{new} \ a : Z ; \ (OA() := \exp(g, a), Oa() := a, \\
!^{i_a \text{CDH} \leq n_a \text{CDH}} \text{OCDHa}(m : G, j \leq N_b) := m = \exp(g, \text{mult}(b[j], a))), \\
!^{i_b \leq N_b} \textbf{new} \ b : Z ; \ (OB() := \exp(g, b), Ob() := b, \\
!^{i_b \text{CDH} \leq n_b \text{CDH}} \text{OCDHb}(m : G, j \leq N_a) := m = \exp(g, \text{mult}(a[j], b))) \\
\approx \\
!^{i_a \leq N_a} \textbf{new} \ a : Z ; \ (OA() := \exp(g, a), Oa() := \textbf{let} \ ka = \text{mark} \ \textbf{in} \ a, \\
!^{i_a \text{CDH} \leq n_a \text{CDH}} \text{OCDHa}(m : G, j \leq N_b) := \\
\textbf{find} \ u \leq n_b \ \textbf{suchthat} \ \text{defined}(kb[u], b[u]) \land b[j] = b[u] \ \textbf{then} \\
m = \exp(g, \text{mult}(b[j], a)) \\
\textbf{else if} \ \text{defined}(ka) \ \textbf{then} \ m = \exp(g, \text{mult}(b[j], a)) \ \textbf{else} \ \text{false}, \\
!^{i_b \leq N_b} \textbf{new} \ b : Z ; \ (OB() := \exp(g, b), Ob() := \textbf{let} \ kb = \text{mark} \ \textbf{in} \ b, \\
!^{i_b \text{CDH} \leq n_b \text{CDH}} \text{OCDHb}(m : G, j \leq N_a) := (\text{symmetric of OCDHa}))
\end{align*}
Computational Diffie-Hellman assumption in CryptoVerif

\[\begin{align*}
!a & \leq Na \\
\text{new} \ & a : Z; (OA()) := \exp(g, a), Oa()[3] := a, \\
!aCDH & \leq naCDH \\
OCDHa(m : G, j \leq Nb)[\text{required}] := m = \exp(g, mult(b[j]), a) \\
!b & \leq Nb \\
\text{new} \ & b : Z; (OB()) := \exp(g, b), Ob()[3] := b, \\
!bCDH & \leq nbCDH \\
OCDHb(m : G, j \leq Na) := m = \exp(g, mult(a[j], b))
\end{align*}\]
Other declarations for Diffie-Hellman (1)

\(g : G \)
\(\text{exp}(G, Z) : G \)
\(\text{mult}(Z, Z) : Z \) commutative
\(\text{exp}(\text{exp}(z, a), b) = \text{exp}(z, \text{mult}(a, b)) \)
\((g^a)^b = g^{ab} \) and \((g^b)^a = g^{ba} \), equal by commutativity of \(\text{mult} \)

\((\text{exp}(g, x) = \text{exp}(g, y)) = (x = y) \)
\((\text{exp}'(g, x) = \text{exp}'(g, y)) = (x = y) \)

Injectivity

new \(x_1 : Z; \) new \(x_2 : Z; \) new \(x_3 : Z; \) new \(x_4 : Z; \)
\(\text{mult}(x_1, x_2) = \text{mult}(x_3, x_4) \)
\(\approx_{1/|Z|} \)
\((x_1 = x_3 \land x_2 = x_4) \lor (x_1 = x_4 \land x_2 = x_3) \)

Collision between products
Other declarations for Diffie-Hellman (2)

\[\!i \leq N \text{new } X : G; \quad OX() := X \]
\[\approx_0 [\text{manual}] \!i \leq N \text{new } x : Z; \quad OX() := \exp(g, x) \]

This equivalence is very general, apply it only manually.

\[\!i \leq N \text{new } X : G; (OX() := X, \!i' \leq N' OXm(m : Z)[\text{required}] := \exp(X, m)) \]
\[\approx_0 \]
\[\!i \leq N \text{new } x : Z; (OX() := \exp(g, x), \!i' \leq N' OXm(m : Z) := \exp(g, \text{mult}(x, m)) \]

This equivalence is a particular case applied only when \(X \) is inside \(\exp \), and good for automatic proofs.

\[\!i \leq N \text{new } x : Z; \quad OX() := \exp(g, x) \]
\[\approx_0 \!i \leq N \text{new } X : G; \quad OX() := X \]

And the same for \(\exp' \).
The implementation of the support for CDH required two extensions of CryptoVerif:

- An array index j occurs as argument of a function.
- The equality test $m = \exp(g, \mul(b, a))$ typically occurs inside the condition of a `find`.
 - This `find` comes from the transformation of a hash function in the Random Oracle Model.

After transformation, we obtain a `find` inside the condition of a `find`.

We added support for these constructs in CryptoVerif.
The Ideal Cipher Model

- For all keys, encryption and decryption are two inverse random permutations, independent of the key.
 - Some similarity with SPRP ciphers but, for the ideal cipher model, the key need not be random and secret.
- In CryptoVerif, we replace encryption and decryption with lookups in the previous computations of encryption/decryption:
 - If we find a matching previous encryption/decryption, we return the previous result.
 - Otherwise, we return a fresh random number.
 - We eliminate collisions between these random numbers to obtain permutations.
- **No extension** of CryptoVerif is needed to represent the Ideal Cipher Model.
Shoup’s lemma

Game 0

\[\uparrow \text{probability } p \]

Game \(n \)

\[\uparrow \Pr[\text{event } e \text{ in game } n + 1] \]

Game \(n + 1 \) \hspace{1cm} \text{event } e

\[\uparrow \text{probability } p' \]

Game \(n' \) \hspace{1cm} \text{event } e \text{ never executed}

\hspace{1cm} \text{no attack}

\[\Pr[\text{attack in game 0}] \leq \Pr[\text{dist. } 0/n] + \Pr[\text{dist. } n/n + 1] + \Pr[\text{dist. } n + 1/n'] \]

\[\leq \Pr[\text{dist. } 0/n] + \Pr[\text{dist. } n + 1/n'] + \Pr[\text{dist. } n + 1/n'] \]

\[\leq p + 2p' \]
Improved version with sets of traces

Game 0

\[\uparrow \quad p \quad \downarrow \]

Game \(n \)

\[\uparrow \quad p \quad e \quad \downarrow \]

Game \(n + 1 \)

\(\text{event } e \)

\[\uparrow \quad p \quad p' \quad \text{no event } e \quad \downarrow \quad \text{no attack} \]

Game \(n' \)

\(\text{event } e \text{ never executed} \)

\(\text{no attack} \)

\[
\text{Tr(attack in game 0)} \subseteq \text{Tr(dist. } 0/n) \cup \text{Tr(dist. } n/n + 1) + \text{Tr(dist. } n + 1/n')
\]

\[
\subseteq \text{Tr(dist. } 0/n) \cup \text{Tr(event } e \text{ in game } n + 1) \cup \text{Tr(dist. } n + 1/n')
\]

\[
\subseteq \text{Tr(dist. } 0/n) \cup \text{Tr(dist. } n + 1/n') \cup \text{Tr(dist. } n + 1/n')
\]

So \(\Pr[\text{attack in game 0}] \leq p + p' \).
Impact on EKE

- The proof of [Bresson et al, CCS’03] uses the standard Shoup lemma. Probability of an attack:

$$3 \times \frac{q_s}{N} + 8q_h \times \text{Succ}^{cdh}_G(t') + \text{collision terms}$$

- q_s interactions with the parties
- q_h hash queries
- dictionary size N

- With the previous remark and the same proof, we obtain instead:

$$\frac{q_s}{N} + q_h \times \text{Succ}^{cdh}_G(t') + \text{collision terms}$$

- The adversary can test one password per interaction with the parties.

This remark is general: it is not specific to EKE or to CryptoVerif, and can be used in any proof by sequences of games.
CryptoVerif takes as input:

- The **assumptions** on security primitives: CDH, Ideal Cipher Model, Random Oracle Model.
 - These assumptions are formalized in a library of primitives. The user does not have to redefine them.
- The **initial game** that represents the protocol EKE:
 - Code for the client
 - Code for the server
 - Code for sessions in which the adversary listens but does not modify messages (passive eavesdroppings)
 - Encryption, decryption, and hash oracles
- The **security properties** to prove:
 - Secrecy of the keys sk_U and sk_S
 - Authentication of the client to the server
- **Manual proof indications** (see next slide)
Manual proof indications

- The proof uses **two events** corresponding to the two cases in which the adversary can guess the password:
 - The adversary impersonates the server by encrypting a Y of its choice under the right password pw, and sending it to the client.
 - The adversary impersonates the client by sending a correct authenticator $Auth$ that it built to the server.
- The manual proof indications consist in **manually inserting these two events**.
 After that, one runs the automatic proof strategy of CryptoVerif.
- All manual commands are **checked** by CryptoVerif, so that an incorrect proof cannot be produced.
- CryptoVerif cannot guess where events should be inserted.
Missing step

One argument is still missing to complete the proof:

- The goal is to obtain a final game in which the password is not used at all.
- The encryptions/decryptions under the password pw are transformed into lookups that compare pw to keys used in other encryption/decryption queries.
- The result of some of these encryptions/decryptions becomes useless after some transformations.

However, CryptoVerif is currently unable to remove the corresponding lookups that compare with pw.
A possible solution

- **Move** the choice of the (random) result of encryption/decryption to the point at which it is used.
 - This point is typically another encryption/decryption query in which we compared with a previous query.

- After simplification, we end up with **finds** that have **several branches** that execute the same code up to variable names.

- **Merge these branches**, thus removing the test of the **find** which included the comparison with **pw**.
 - This merging is delicate because the code differs by the variable names, and there exist **finds** on these variables.
 - The branches of these **finds** must also be merged simultaneously.

This solution is still to verify and implement.
Final step

Assuming the previous step is implemented:

- We obtain a game in which the only uses of pw are:
 - Comparison between $\text{dec}(Y^*, pw)$ and an encryption query $c = \text{enc}(p, k)$ of the adversary: $c = Y^* \land k = pw$, in the client.
 - Comparison between $Y = \text{dec}(Y^*, pw)$ (obtained from $Y^* = \text{enc}(Y, pw)$) and a decryption query $p = \text{dec}(c, k)$ of the adversary: $p = Y \land k = pw$, in the server.

- We eliminate collisions between the password pw and other keys.
- The difference of probability can be evaluated in two ways:
 - $(q_E + q_D)/N$
 - The password is compared with keys k from q_E encryption queries and q_D decryption queries.
 - Dictionary size N.
 - $(N_U + N_S)/N$
Final step

Assuming the previous step is implemented:

- We obtain a game in which the only uses of \(pw \) are:
 - Comparison between \(\text{dec}(Y^*, pw) \) and an encryption query \(c = \text{enc}(p, k) \) of the adversary: \(c = Y^* \land k = pw \), in the client.
 - Comparison between \(Y = \text{dec}(Y^*, pw) \) (obtained from \(Y^* = \text{enc}(Y, pw) \)) and a decryption query \(p = \text{dec}(c, k) \) of the adversary: \(p = Y \land k = pw \), in the server.

- We eliminate collisions between the password \(pw \) and other keys.

- The difference of probability can be evaluated in two ways:
 - \((q_E + q_D)/N \)
 - \((N_U + N_S)/N \)
 - In the client, for each \(Y^* \), there is at most one encryption query with \(c = Y^* \) so the password is compared with one key for each session of the client.
 - Similar situation for the server.
 - \(N_U \) sessions of the client.
 - \(N_S \) sessions of the server.
 - Dictionary size \(N \).
Final step

Assuming the previous step is implemented:

- We obtain a game in which the only uses of \(pw \) are:
 - Comparison between \(dec(Y^*, pw) \) and an encryption query \(c = enc(p, k) \) of the adversary: \(c = Y^* \land k = pw \), in the client.
 - Comparison between \(Y = dec(Y^*, pw) \) (obtained from \(Y^* = enc(Y, pw) \)) and a decryption query \(p = dec(c, k) \) of the adversary: \(p = Y \land k = pw \), in the server.

- We eliminate collisions between the password \(pw \) and other keys.

- The difference of probability can be evaluated in two ways:
 - \(\frac{q_E + q_D}{N} \)
 - \(\frac{N_U + N_S}{N} \)

The second bound is the best: the adversary can make many encryption/decryption queries without interacting with the protocol.

- We extended CryptoVerif so that it can find the second bound.
- We give it the information that the encryption/decryption queries are non-interactive, so that it prefers the second bound.
Conclusion

The case study of EKE is interesting for itself, but it is even more interesting by the extensions it required in CryptoVerif:

- Treatment of the Computational Diffie-Hellman assumption.
- New manual game transformations, in particular for inserting events.
- Optimization of the computation of probabilities for Shoup’s lemma.
- Other optimizations of the computation of probabilities in CryptoVerif.

These extensions are of general interest.