Composition Theorems for CryptoVerif and Application to TLS 1.3

Bruno Blanchet
INRIA Paris
Bruno.Blanchet@inria.fr

March 2018
Introduction

- **Composition** between
 - a key exchange protocol
 - a protocol that uses the key

- Results stated in the **CryptoVerif** framework:
 - computational model
 - formal framework for stating the composition theorem
 - prove bigger protocols in CryptoVerif
 - prove protocols with loops in CryptoVerif

Adapt and extend previous computational composition results by Brzuska, Fischlin et al. [CCS’11, CCS’14 and CCS’15]
Why TLS 1.3?

- **Important** protocol, in the final stages of development
- **Well designed** to allow composition
- Contains **loops**:
 - Unbounded number of handshakes and key updates
- **Variety of compositions**:
 - In most cases, the key exchange provides injective authentication
 - For 0-RTT data = data sent by the client to the server immediately after the message (ClientHello):
 - possible replay, so non-injective authentication
 - variant for the case of altered ClientHello
 - Simpler composition theorem for key updates

Fills a gap in the proof of TLS 1.3 Draft 18 by Bhargavan et al [S&P’17]

- The composition was stated only informally.
CryptoVerif is a semi-automatic prover that:

- works in the computational model.
- generates proofs by sequences of games.
- provides a generic method for specifying properties of cryptographic primitives which handles MACs (message authentication codes), symmetric encryption, public-key encryption, signatures, hash functions, Diffie-Hellman key agreements, ...
- works for N sessions (polynomial in the security parameter), with an active adversary.
- gives a bound on the probability of an attack (exact security).
Reminder on CryptoVerif

- CryptoVerif represents protocols using a process calculus.
- \(P, Q: \) processes
- \(C: \) context = process with one or several holes []
- Adversaries represented by evaluation contexts:

\[
C ::= \\
[] \quad \text{hole} \\
\text{newChannel } c; C \quad \text{channel restriction} \\
Q | C \quad \text{parallel composition} \\
C | Q \quad \text{parallel composition}
\]
Security properties proved by CryptoVerif

- **Indistinguishability:** $Q \approx^V Q'$ when an adversary with access to the variables V has a negligible probability of distinguishing Q from Q'.

- **Secrecy:** Q preserves the secrecy of x with public variables V when an adversary with access to the variables V has a negligible probability of distinguishing the values of x in several sessions from independent random values.

- **Correspondences:** If some events have been executed, then other events have been executed. Example:

 $$\text{event}(e_1(x)) \implies \text{event}(e_2(x))$$

Q satisfies the correspondence $corr$ with public variables V when an adversary with access to the variables V has a negligible probability of breaking $corr$.
The most basic composition theorem

\[S_1: \quad k \text{ (secret)} \]

\[S_2: \quad \text{new} \quad k : T \]

\[S_{\text{composed}}: \quad k \]

Bruno Blanchet (INRIA)
The most basic composition theorem

Theorem (Assumptions)

Let C be any context with one hole, without replications above the hole. Let M be a term of type T. Let

\[
S_1 = C[\text{let } k = M \text{ in } \overline{c_1}\langle\rangle; Q_1]
\]

\[
S_2 = c_2(); \text{new } k : T; \overline{c_3}\langle\rangle; Q_2
\]

where c_1, c_2, c_3 do not occur elsewhere in S_1, S_2; k is the only variable common to S_1 and S_2; S_1 and S_2 have no common channel, no common event, and no common table; and k does not occur in C and Q_1. Let c'_1 be a fresh channel. Let

\[
S_{\text{composed}} = C[\text{let } k = M \text{ in } \overline{c'_1}\langle\rangle; (Q_1 | Q_2)]
\]
The most basic composition theorem

Theorem (First conclusion)

\[S_1 = C[\text{let } k = M \text{ in } \overline{c_1}(); Q_1] \]
\[S_2 = c_2(); \text{new } k : T; \overline{c_3}(); Q_2 \]
\[S_{\text{composed}} = C[\text{let } k = M \text{ in } \overline{c_1}(); (Q_1 \mid Q_2)] \]

1. If \(S_1 \) preserves the secrecy of \(k \) with public variables \(V \) (\(k \notin V \)), then we can transfer security properties from \(S_2 \) to \(S_{\text{composed}} \).

Let \(S_{\text{composed}}^\circ \) be \(S_{\text{composed}} \) with the events of \(S_1 \) removed.

\[S_{\text{composed}}^\circ \approx_{V_1} C'[S_2] \]

for some evaluation context \(C' \) acceptable for \(S_2 \) without public variables and for any \(V_1 \subseteq V \cup (\text{var}(S_1) \setminus \{k\}) \).

\(C' \) is independent of \(Q_2 \).

Intuition: The secrecy of \(k \) allows us to replace \(k \) with a random key.
The most basic composition theorem

Theorem (Second conclusion)

\[
S_1 = C[\text{let } k = M \text{ in } \overline{c_1}\langle \rangle; Q_1]
\]

\[
S_2 = c_2(); \text{new } k : T; \overline{c_3}\langle \rangle; Q_2
\]

\[
S_{\text{composed}} = C[\text{let } k = M \text{ in } \overline{c_1}'\langle \rangle; (Q_1 \mid Q_2)]
\]

2. We can transfer security properties from \(S_1\) to \(S_{\text{composed}}\), provided they are proved with public variable \(k\).

\[
S_{\text{composed}} \approx^{V'} C''[S_1]
\]

for some evaluation context \(C''\) acceptable for \(S_1\) with public variable \(k\) and for any \(V' \subseteq \text{var}(S_{\text{composed}})\).

\(C''\) contains the events of \(S_2\).

\(C''\) is independent of \(C\) and \(Q_1\).
Main theorem

\(S_1: \)

\[\text{A} \quad \text{B} \]

\[k_A \quad k_B \]

\(S_2: \textbf{new} \ k : T \)

\[\text{A} \quad \text{B} \]

\(S_{\text{composed}}: \)

\[\text{A} \quad \text{B} \]

\[k_A \quad k_B \]

\((S_1 \text{ may run several sessions of } A \text{ and } B.\)
Consider:

\[S_2 = \text{c() \ldots c}_1(y : T) \ldots \text{event } e(M) \ldots \]

\[\text{insert } T(M') \ldots \text{get } T(z) \text{ such that} \ldots \]

We want to replicate \(S_2 \):

\[\text{!}\tilde{i} \leq \tilde{n} \text{ c() \ldots c}_1(y : T) \ldots \text{event } e(M) \ldots \]

\[\text{insert } T(M') \ldots \text{get } T(z) \text{ such that} \ldots \]
Replicating S_2

Consider:

$$S_2 = c(); \ldots c_1(y : T) \ldots \textbf{event } e(M) \ldots$$

$$\textbf{insert } T(M') \ldots \textbf{get } T(z) \textbf{ such that } \ldots$$

We want to replicate S_2:

$$!^{i \leq n} c(); \ldots c_1(y[i] : T) \ldots \textbf{event } e(M) \ldots$$

$$\textbf{insert } T(M') \ldots \textbf{get } T(z[i]) \textbf{ such that } \ldots$$

Variables implicitly with indices of replication.
Replicating S_2

Consider:

$$S_2 = c(); \ldots c_1(y : T) \ldots \textbf{event } e(M) \ldots$$

$$\textbf{insert } T(M') \ldots \textbf{get } T(z) \textbf{ suchthat } \ldots$$

We want to replicate S_2:

$$!^{\tilde{i} \leq \tilde{n}} c[\tilde{i}]() ; \ldots c_1[\tilde{i}](y[\tilde{i}] : T) \ldots \textbf{event } e(\tilde{i}, M) \ldots$$

$$\textbf{insert } T(\tilde{i}, M') \ldots \textbf{get } T(= \tilde{i}, z[\tilde{i}]) \textbf{ suchthat } \ldots$$

We could add indices to channels, events, and tables to distinguish the various sessions.
Replicating S_2

Consider:

\[
S_2 = c() \ldots c_1(y : T) \ldots \text{event } e(M) \ldots \\
\text{insert } T(M') \ldots \text{get } T(z) \text{ suchthat } \ldots
\]

We want to replicate S_2:

\[
!i \leq \tilde{n} \ c[\tilde{i}]() \ldots c_1[\tilde{i}](y[\tilde{i}] : T) \ldots \text{event } e(\tilde{i}, M) \ldots \\
\text{insert } T(\tilde{i}, M') \ldots \text{get } T(= \tilde{i}, z[\tilde{i}]) \text{ suchthat } \ldots
\]

Problem: this is not preserved by composition.
In the key exchange, partenered sessions exchange the same messages, but may not have the same replication indices.
Also in the composed system.
Replicating S_2

Consider:

\[S_2 = c(); \ldots c_1(y : T) \ldots \text{event } e(M) \ldots \]
\[\text{insert } T(M') \ldots \text{get } T(z) \text{ such that } \ldots \]

We want to replicate S_2:

\[!\overset{i \leq n}{\bar{c}[i]}(x : T_{\text{sid}}); \ldots c_1[\bar{i}](y[\bar{i}] : T) \ldots \text{event } e(x, M) \ldots \]
\[\text{insert } T(x, M') \ldots \text{get } T(= x, z[\bar{i}]) \text{ such that } \ldots \]

Partnered sessions can be determined by a session identifier computed from the messages in the protocol. The protocol that uses the key receives the session identifier in a variable x.
Replicating S_2

Consider:

\[S_2 = c(); P \]
\[P = \ldots c_1(y : T) \ldots \text{event } e(M) \ldots \]
\[\text{insert } T(M') \ldots \text{get } T(z) \text{ suchthat } \ldots \]

We replicate S_2:

\[S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, c', T_{\text{sid}}, S_2) = \{ \tilde{i} \leq \tilde{n} c'[\tilde{i}](x : T_{\text{sid}}); \]
\[\text{find } \tilde{u} = \tilde{i}' \leq \tilde{n} \text{ suchthat } \text{defined}(x[\tilde{i}'], x'[\tilde{i}']) \]
\[\land x = x[\tilde{i}'] \text{ then yield else} \]
\[\text{let } x' = \text{cst in } \text{AddIdxSid}(\tilde{i} \leq \tilde{n}, x : T_{\text{sid}}, P) \]
\[\text{AddIdxSid}(\tilde{i} \leq \tilde{n}, x : T_{\text{sid}}, P) = \ldots c_1[\tilde{i}](y[\tilde{i}] : T) \ldots \text{event } e(x, M) \ldots \]
\[\text{insert } T(x, M') \ldots \text{get } T(= x, z[\tilde{i}]) \text{ suchthat } \ldots \]

Never use the same session identifier twice.
Replicating S_2: transfer of security properties

Theorem

Let $Q! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, c', T_{sid}, Q)$ and $Q'_! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, c', T_{sid}, Q').$

1. If Q and Q' do not contain events and $Q \approx^V Q'$, then $Q! \approx^V Q'_!$.

2. If Q preserves the secrecy of y with public variables V, then so does $Q!$.

3. If Q satisfies $\text{event}(e_1(y)) \Longrightarrow \text{event}(e_2(y))$ with public variables V, then $Q!$ satisfies $\text{event}(e_1(x, y)) \Longrightarrow \text{event}(e_2(x, y))$ with public variables V.

(Add a variable session identifier at the beginning of each event.)
Main composition theorem

\(S_1 : \)

\(\text{AddReplMsg new } k : T \)

\(S_{\text{composed}} : \)

\((S_1 \text{ may run several sessions of } A \text{ and } B.) \)
Main composition theorem

Theorem (S$_1$ and S$_2!$)

\[
S_1 = C[\text{event } e_A(\text{sid}(\text{msg}_A), k_A, \tilde{i}); \text{let } k'_A = k_A \text{ in } c_A[i]\langle M_A\rangle; Q_{1A}, \\
\text{event } e_B(\text{sid}(\text{msg}_B), k_B); c_B[\tilde{i}']\langle M_B\rangle; Q_{1B}]
\]

\[
S_2 = c_1(); \textbf{new } k : T; \overline{c_2}\langle \rangle; (Q_{2A} \mid Q_{2B})
\]

\[
S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, c_1', T_{\text{sid}}, S_2)
\]

where

1. C, Q$_{1A}$, Q$_{1B}$, Q$_{2A}$, and Q$_{2B}$ make all their inputs and outputs on pairwise distinct channels with indices the current replication indices;
2. c$_A$, c$_B$, c$_1$, c$_1'$, c$_2$, k$_A$, e$_A$, e$_B$ do not occur elsewhere in S$_1$, S$_2!$;
3. S$_1$ and S$_2!$ have no common variable, channel, event, table;
4. S$_1$ and S$_2!$ do not contain \textbf{newChannel};
5. and there is no \textbf{defined} condition in S$_2$.
C is a context with two holes, with replications \(!^{i \leq \tilde{n}} \) above the first hole and \(!^{i' \leq \tilde{n}'} \) above the second hole

\[
S_1 = C[\text{event } e_A(\text{sid}(\text{msg}_A), k_A, i); \text{let } k'_A = k_A \text{ in } c_A[i]\langle M_A \rangle; Q_{1A}, \\
\text{event } e_B(\text{sid}(\text{msg}_B), k_B); c_B[i']\langle M_B \rangle; Q_{1B}] \\
S_2 = c_1(); \text{new } k : T; c_2\langle \rangle; (Q_{2A} | Q_{2B}) \\
S_2! = \text{AddReplSid}(i \leq \tilde{n}, c_1', T_{\text{sid}}, S_2)
\]

where

1. C, Q_{1A}, Q_{1B}, Q_{2A}, and Q_{2B} make all their inputs and outputs on pairwise distinct channels with indices the current replication indices;
2. c_A, c_B, c_1, c_1', c_2, k'_A, e_A, e_B do not occur elsewhere in S_1, S_2!;
3. S_1 and S_2! have no common variable, channel, event, table;
4. S_1 and S_2! do not contain \textbf{newChannel};
5. and there is no \textbf{defined} condition in S_2.
Main composition theorem

Theorem (S_1 and $S_2!$)

\[S_1 = C[\text{event } e_A(\text{sid}(\text{msg}_A), k_A, i); \text{let } k'_A = k_A \text{ in } c_A[i] \langle M_A \rangle; Q_{1A}, \]
\[\text{event } e_B(\text{sid}(\text{msg}_B), k_B); c_B[i'] \langle M_B \rangle; Q_{1B}] \]
\[S_2 = c_1(); \text{new } k : T; c_2(); (Q_{2A} \mid Q_{2B}) \]
\[S_2! = \text{AddReplSid}(i \leq \tilde{n}, c'_1, T_{\text{sid}}, S_2) \]

where

1. C, Q_{1A}, Q_{1B}, Q_{2A}, and Q_{2B} make all their inputs and outputs on pairwise distinct channels with indices the current replication indices;
2. c_A, c_B, c_1, c'_1, c_2, k'_A, e_A, e_B do not occur elsewhere in $S_1, S_2!$;
3. S_1 and $S_2!$ have no common variable, channel, event, table;
4. S_1 and $S_2!$ do not contain \textbf{newChannel};
5. and there is no \textbf{defined} condition in S_2.

Bruno Blanchet (INRIA)
Main composition theorem

Theorem (S_1 and $S_2!$)

\[S_1 = C[\text{event } e_A(\text{sid}(\tilde{msg}_A), k_A, \tilde{i}); \text{let } k'_A = k_A \text{ in } c_A[i]\langle M_A \rangle; Q_{1A},\]

\[\text{event } e_B(\text{sid}(\tilde{msg}_B), k_B); c_B[\tilde{i}']\langle M_B \rangle; Q_{1B}] \]

\[S_2 = c_1(); \text{new } k : T; c_2\langle \rangle; (Q_{2A} \mid Q_{2B}) \]

\[S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, c'_1, T_{sid}, S_2) \]

where

1. C, Q_{1A}, Q_{1B}, Q_{2A}, and Q_{2B} make all their inputs and outputs on pairwise distinct channels with indices the current replication indices;
2. $c_A, c_B, c_1, c'_1, c_2, k'_A, e_A, e_B$ do not occur elsewhere in $S_1, S_2!$;
3. S_1 and $S_2!$ have no common variable, channel, event, table;
4. S_1 and $S_2!$ do not contain newChannel;
5. and there is no defined condition in S_2.

sid is a function that takes a sequence of messages and returns a session identifier of type T_{sid}.

Bruno Blanchet (INRIA)
Theorem \((S_1, S_2)\)

\[
S_1 = C[\text{event } e_A(\text{sid}(\tilde{\text{msg}}_A), k_A, \tilde{i}); \text{let } k'_A = k_A \text{ in } c_A[\tilde{i}](M_A); Q_{1A},
\]

\[
\text{event } e_B(\text{sid}(\tilde{\text{msg}}_B), k_B); c_B[\tilde{i}'](M_B); Q_{1B}]
\]

\[
S_2 = c_1(); \text{new } k : T; c'_2(); (Q_{2A} \mid Q_{2B})
\]

\[
S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, c'_1, T_{\text{sid}}, S_2)
\]

where

1. \(C, Q_{1A}, Q_{1B}, Q_{2A},\) and \(Q_{2B}\) make all their inputs and outputs on pairwise distinct channels with indices the current replication indices;
2. \(c_A, c_B, c_1, c'_1, c_2, k'_A, e_A, e_B\) do not occur elsewhere in \(S_1, S_2!;\)
3. \(S_1\) and \(S_2!\) have no common variable, channel, event, table;
4. \(S_1\) and \(S_2!\) do not contain \textbf{newChannel};
5. and there is no \textbf{defined} condition in \(S_2.\)
Main composition theorem

Theorem \((S_1, S_2!) \)

\[
S_1 = C[event e_A(sid(msg_A), k_A, l); let k_A = k'_A in c_A[i](M_A); Q_1A, \\
\text{event } e_B(sid(msg_B), k_B); c_B[i'](M_B); Q_1B] \\
S_2 = c_1(); \text{new } k : T; c_2(); (Q_2A | Q_2B) \\
S_2! = \text{AddReplSid}(i \leq \tilde{n}, c_1', T_{\text{sid}}, S_2)
\]

where

1. \(C, Q_1A, Q_1B, Q_2A, \) and \(Q_2B \) make all their inputs and outputs on pairwise distinct channels with indices the current replication indices;
2. \(c_A, c_B, c_1, c_1', c_2, k_A, e_A, e_B \) do not occur elsewhere in \(S_1, S_2! \);
3. \(S_1 \) and \(S_2! \) have no common variable, channel, event, table;
4. \(S_1 \) and \(S_2! \) do not contain \text{newChannel};
5. and there is no defined condition in \(S_2 \).

\(\tilde{msg}_B \) is a sequence of variables input or output by \(C \) above the second hole.
Main composition theorem

Theorem (S_1 and $S_2!$)

\[S_1 = C[\text{event } e_A(\text{sid}(\tilde{\text{msg}}_A), k_A, \tilde{i}); \text{let } k'_A = k_A \text{ in } c_A[\tilde{i}]\langle M_A \rangle; Q_{1A}, \]
\[\text{event } e_B(\text{sid}(\tilde{\text{msg}}_B), k_B); \ c_B[\tilde{i}']\langle M_B \rangle; Q_{1B}] \]
\[S_2 = c_1(); \text{new } k : T; \ c_2\langle \rangle; (Q_{2A} | Q_{2B}) \]
\[S_2! = \text{AddReplSid}(\tilde{i} \leq \tilde{n}, c'_1, T_{\text{sid}}, S_2) \]

where

1. $C, Q_{1A}, Q_{1B}, Q_{2A},$ and Q_{2B} make all their inputs and outputs on pairwise distinct channels with indices the current replication indices;
2. $c_A, c_B, c_1, c'_1, c_2, k'_A, e_A, e_B$ do not occur elsewhere in $S_1, S_2!$;
3. S_1 and $S_2!$ have no common variable, channel, event, table;
4. S_1 and $S_2!$ do not contain newChannel;
5. and there is no defined condition in S_2.
Main composition theorem

Theorem \((S_{\text{composed}})\)

Let \(Q'_{2A} = \text{AddIdxSid}(\tilde{i} \leq \tilde{n}, x : T_{\text{sid}}, Q_{2A})\) and \(Q'_{2B} = \text{AddIdxSid}(\tilde{i}' \leq \tilde{n}', x : T_{\text{sid}}, Q_{2B})\). Let \(c'_A, c'_B\) be fresh channels. Let

\[
S_{\text{composed}} = C[\text{event } e_A(\text{sid}(\overline{\text{msg}_A}), k_A, \tilde{i}); c'_A[\tilde{i}][M_A];
(Q_{1A} \mid Q'_{2A}\{k_A/k, \text{sid}(\overline{\text{msg}_A})/x\})),
\]

\[
\text{event } e_B(\text{sid}(\overline{\text{msg}_B}), k_B); c'_B[\tilde{i}'][M_B];
(Q_{1B} \mid Q'_{2B}\{k_B/k, \text{sid}(\overline{\text{msg}_B})/x\}])
\]
Main composition theorem

Theorem (First conclusion)

1. If S_1 satisfies
 - secrecy of k'_A with public variables V ($V \subseteq \text{var}(S_1) \setminus \{k_A, k'_A\}$),
 - injective authentication of A to B:
 \[
 \text{inj-event}(e_B(sid, k)) \implies \text{inj-event}(e_A(sid, k, \tilde{i}))
 \]
 with public variables $V \cup \{k'_A\}$,
 - single e_A for each session identifier:
 \[
 \text{event}(e_A(sid, k_1, \tilde{i}_1)) \land \text{event}(e_A(sid, k_2, \tilde{i}_2)) \implies \tilde{i}_1 = \tilde{i}_2
 \]
 with public variables $V \cup \{k'_A\}$,

then we can transfer security properties from $S_2!$ to S_{composed}.

Let $S_{\text{composed}}^\circ$ be S_{composed} with the events of S_1 removed.

\[
S_{\text{composed}}^\circ \nRightarrow_f V_1, V_2 S_2!
\]

for some f, any $V_1 \subseteq V \cup (\text{var}(S_2) \setminus \{k\})$, and $V_2 = V_1 \cap \text{var}(S_2)$.
Main composition theorem

Theorem (Second conclusion)

We can transfer security properties from S_1 to S_{composed}, provided they are proved with public variables k'_A, k_B.

$$S_{\text{composed}} \approx_{0}^{V'} C'[S_1]$$

for some evaluation context C' acceptable for S_1 with public variables k'_A, k_B and any $V' \subseteq \text{var}(S_{\text{composed}}) \setminus \{k'_A\}$.

C' contains the events of $S_2!$.

C' is independent of Q_{1A} and Q_{1B}.
Further results in the paper

- **Exact security.**
- **New:** Shared hash oracles between the key exchange and the protocol that uses the key.
- **New:** Variant with non-injective authentication.
- **New:** Variant for modified ClientHello messages.
TLS 1.3: Structure of the composition

- Handshake without pre-shared key
 - cats
 - sats
 - ems
 - resumption_secret

- Handshake with pre-shared key
 - cats
 - sats
 - ems
 - cets

- Record protocol
 - updated ts
Security of the handshake without pre-shared key

- Mutual injective authentication.
- Key secrecy: the keys
 - *cats*, *ems*, *resumption_secret* client side,
 - *sats* server side

 are secret.
- Unique accept event for each session identifier.
Security of the handshake with pre-shared key

Same properties as for the initial handshake, but

- No compromise of PSK (*resumption_secret*).
 - Limitation of CryptoVerif: cannot prove forward secrecy wrt. to the compromise of PSK for PSK-DHE.

- Weaker properties for 0-RTT:
 - The keys *cets* client side are secret.
 - If the ClientHello message received by the server has been sent by the client, then we have non-injective authentication of client to server: this session matches a session of the client with same key *cets*.
 - Otherwise,
 - If the ClientHello message has been received before, then the key *cets* computed by the server is the same as in the previous session with the same ClientHello message.
 - Otherwise, the key *cets* computed by the server is secret, independent from other keys.
Security of the record protocol

The client and the server share a fresh random traffic secret.

- **Key secrecy**: The updated traffic secret is secret.
- **Message secrecy**: When the adversary provides two sets of plaintexts m_i and m'_i of the same padded length, it is unable to determine which set is encrypted, even when the updated traffic secret is leaked.
- **Injective message authentication**: Every time a message m is decrypted by the receiver with a counter c, the message m has been encrypted and sent by an honest sender with the same counter c.
Composition

Handshake without pre-shared key

cats sats ems resumption_secret

Handshake with pre-shared key

cats sats ems cets

Record protocol

updated ts
Composition

1. We compose the record protocol with itself recursively.
 - We obtain security of the record protocol with an unbounded number of key updates.

2. We replicate that record protocol.

3. We compose the handshake with pre-shared key with the obtained record protocol, with keys \textit{cats}, \textit{sats}, and with weaker properties \textit{cets}.

4. We replicate and compose the handshake with pre-shared key with itself recursively, with key \textit{resumption_secret}.
 - We obtain security for an unbounded number of handshakes with pre-shared key.

5. We compose the handshake without pre-shared key with the record protocol, with keys \textit{cats} and \textit{sats}.

6. We compose the obtained handshake without pre-shared key with the obtained handshake with pre-shared key, with key \textit{resumption_secret}.
 - We obtain security for TLS 1.3 draft 18.
Conclusion

- Composition theorems for CryptoVerif
 - computational
 - easy to apply when the protocol pieces are proved secure in CryptoVerif
 - flexible: hash oracles, injective and non-injective authentication

- Application to TLS 1.3
 - important protocol
 - would be out of scope of CryptoVerif without composition because of loops

- Applicable to other protocols
Future directions

- Composition theorems could be proved for other tools, such as EasyCrypt.
- We could automate the verification of the assumptions of our theorems and the computation of the composed protocol.
 - Automating the TLS case study would be more difficult (recursive composition).
- We could consider composition with a key exchange protocol that already uses the key.