
CV2EC : Getting the Best of Both Worlds

Bruno Blanchet1 Pierre Boutry1 Christian Doczkal2

Benjamin Grégoire1 Pierre-Yves Strub3

Inria1 MPI-SP2 École Polytechnique3

June 16, 2022

Joint Hubert Comon Retirement Workshop - TECAP Workshop

Overview

Why translate from CryptoVerif (CV) to EasyCrypt(EC)?

+ CryptoVerif works well protocol-level verification

+ CryptoVerif is highly automated

− CryptoVerif requires “non-standard” formulations of assumptions

− CryptoVerif cannot do complex reductions (e.g. hybrid proofs)

+ EasyCrypt can express arbitrary reductions

− EasyCrypt proofs are more verbose and less automatic

Solution: CV2EC

Automatically translate the “non-standard” assumption of CV to EC, and
(manually) reduce them to “standard” security assumptions.

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 2 / 12

Overview

Why translate from CryptoVerif (CV) to EasyCrypt(EC)?

+ CryptoVerif works well protocol-level verification

+ CryptoVerif is highly automated

− CryptoVerif requires “non-standard” formulations of assumptions

− CryptoVerif cannot do complex reductions (e.g. hybrid proofs)

+ EasyCrypt can express arbitrary reductions

− EasyCrypt proofs are more verbose and less automatic

Solution: CV2EC

Automatically translate the “non-standard” assumption of CV to EC, and
(manually) reduce them to “standard” security assumptions.

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 2 / 12

CryptoVerif vs EasyCrypt

CryptoVerif EasyCrypt

Based on π-calculus Based on pWHILE + Hoare logic

Single-use oracles + replication Multi-call oracle procedures

all variables are global
(arrays indexed by replication
indices)

global memory + local variables

Games in “Real/Ideal” style Can express arbitrary games

Adversary implicit Adversary explicit

Running Example: Real/Ideal formulation of IND-CCA2 assumption
(Adversary tries to distinguish honest encryption oracle from
encryption of constant message).

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 3 / 12

CryptoVerif vs EasyCrypt

CryptoVerif EasyCrypt

Based on π-calculus Based on pWHILE + Hoare logic

Single-use oracles + replication Multi-call oracle procedures

all variables are global
(arrays indexed by replication
indices)

global memory + local variables

Games in “Real/Ideal” style Can express arbitrary games

Adversary implicit Adversary explicit

Running Example: Real/Ideal formulation of IND-CCA2 assumption
(Adversary tries to distinguish honest encryption oracle from
encryption of constant message).

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 3 / 12

IND-CCA2 Game in EasyCrypt

module Game (O : Oracle_i, A : Adversary) = {
proc main() = {

O.init();
r <@ A(O).guess();
return r;

}}.

module type Oracle = {
proc init() : unit
proc pk () : pkey
proc enc (_ : plaintext) : ciphertext
proc dec (_ : ciphertext) : plaintext option

}.

module type Adversary (O : Oracle) = {
proc guess () : bool {O.pk O.enc O.dec}

}.

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 4 / 12

Real Game in EasyCrypt
module Real : Oracle_i = {
var pk : pkey
var sk : skey

proc init() : unit = {
ks <$ dkeyseed;
pk <- pkgen ks;
sk <- skgen ks;

}

proc pk () = { return pk; }

proc enc (m : plaintext) : ciphertext = {
es <$ dencseed;
return enc(m, pk, es);

}

proc dec (c : ciphertext) : plaintext option = {
return dec(c, sk);

}
}.

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 5 / 12

Ideal Game in EasyCrypt

module Ideal : Oracle_i = {
...
var log : (ciphertext * plaintext) list

proc init() : unit = {
...
log <- []; }

proc enc (m : plaintext) : ciphertext = {
es <$ dencseed;
c <- enc(m0, pk, es); (* encrypt constant message *)
log <- (c, m) :: log; (* log provided message *)
return c; }

proc dec (c : ciphertext) : plaintext option = {
m <- assoc log c;
if (m = None) { m <- dec(c, sk); }
return m; }

}.

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 6 / 12

IND-CCA2 Assumption in CryptoVerif (Real Game)

s <-R keyseed; (
Opk() := return(pkgen(s))

| foreach i <= N do es <-R enc_seed;
Oenc(m:plaintext) := return(enc(m, pkgen(s),es))

| foreach i2 <= N2 do
Odec(c:ciphertext) := return(dec(c, skgen(s))))

sample secret keyseed s

provide one copy of the Opk() oracle

provide N copies of the Oenc(m) oracle (each with some enc seed)

provide N2 copies of the Odec(c) oracle

All queries are answered faithfully

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 7 / 12

IND-CCA2 Assumption in CryptoVerif (Ideal Game)

s <-R keyseed; (
Opk() := return(pkgen(s))

| foreach i <= N do es <-R enc_seed;
Oenc(m:plaintext) :=

c_enc:ciphertext <- enc(zero(m), pkgen(s), es);
return(c_enc)

| foreach i2 <= N2 do
Odec(c:ciphertext) :=
find j <= N suchthat
defined(c_enc[j],m[j]) && c = c_enc[j]

then return(injbot(m[j]))
else return(dec(c, skgen(s))))

same replication/oracle signature as real game

Oenc(m) encrypts zero(m) (zero message of length |m|)

Odec(c) checks whether there is some j such that
the j-th copy of Oenc was called and has returned c.

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 8 / 12

Differences

CryptoVerif EasyCrypt

implicit logging using find explicit log using mutable list

sampling of keyseed triggered by
adversary (before calling any oracles)

keyseed sampled by game
(before calling adversary)

sampling of encseed triggered by
adversary before calling Oenc

encseed sampled by
encryption oracle

Translation yields an EC game encoding CV semantics

Proving the reduction is done manually
▶ Eager/Lazy arguments to move sampling
▶ replace “find” with explicit logs (for now)

Pure EC developments: reduce real/ideal EC games
to standard assumptions (hybrid arguments, etc.)

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 9 / 12

Extraction of Odec() Oracle
(* extra argument i2 corresponding to replication index *)
proc p_Odec(i2 : int, c : ciphertext) = {
(* check that i2 is fresh and within bounds *)
if (1 <= i2 <= b_N2 /\ i2 \notin m_Odec) {

(* ensure s has been sampled *)
s <@ get_s();
(* find encryption calls that returned c *)
j_list <- List.filter

(fun j => (j \in v_c1 /\ j \in m_Oenc) /\
(c = (oget v_c1.[j]))) [1..n];

if (j_list = []) {
aout <- (dec c (skgen s));

} else {
j <$ drat j_list;
aout <- (injbot (oget m_Oenc.[j]));

}
}
return aout; }

This is not the IND-CCA2 game in EC!

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 10 / 12

Extraction of Odec() Oracle
(* extra argument i2 corresponding to replication index *)
proc p_Odec(i2 : int, c : ciphertext) = {
(* check that i2 is fresh and within bounds *)
if (1 <= i2 <= b_N2 /\ i2 \notin m_Odec) {

(* ensure s has been sampled *)
s <@ get_s();
(* find encryption calls that returned c *)
j_list <- List.filter

(fun j => (j \in v_c1 /\ j \in m_Oenc) /\
(c = (oget v_c1.[j]))) [1..n];

if (j_list = []) {
aout <- (dec c (skgen s));

} else {
j <$ drat j_list;
aout <- (injbot (oget m_Oenc.[j]));

}
}
return aout; }

This is not the IND-CCA2 game in EC!

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 10 / 12

Differences

CryptoVerif EasyCrypt

implicit logging using find explicit log using mutable list

sampling of keyseed triggered by
adversary (before calling any oracles)

keyseed sampled by game
(before calling adversary)

sampling of encseed triggered by
adversary before calling Oenc

encseed sampled by
encryption oracle

Translation yields an EC game encoding CV semantics

Proving the reduction is done manually
▶ Eager/Lazy arguments to move sampling
▶ replace “find” with explicit logs (for now)

Pure EC developments: reduce real/ideal EC games
to standard assumptions (hybrid arguments, etc.)

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 11 / 12

Case Studies

IND-CCA2:

✓ reduction to single challenge query
✓ match EC game with CV output

Computational Diffie–Hellmann (CDH) for Nominal Groups:

✓ random self-reducibility (from many inputs to one)
✓ match EC game with CV output

Gap Diffie–Hellmann (GDH) for Nominal Groups:

✓ random self-reducibility (from many inputs to one)
✓ match EC game with CV output

Outsider-CCA for Authenticated KEMs:

✓ reduction from n users and many encap/decap queries to
2 users and single challenge query.

✓ use explicit logs (not find) in CV games
✓ extend translation to handle CV tables (logs)
X match EC game with CV output

Bruno Blanchet (Inria) CV2EC : Getting the Best of Both Worlds June 16, 2022 12 / 12

