
Overview Extensions Efficiency Conclusion

The security protocol verifier ProVerif
and its recent improvements: lemmas, induction, fast subsumption,

and much more

Bruno Blanchet

Inria, Paris, France
Bruno.Blanchet@inria.fr

joint work with Vincent Cheval and Véronique Cortier

May 2022

Bruno Blanchet (Inria) ProVerif May 2022 1 / 42

Overview Extensions Efficiency Conclusion

Cryptographic protocols

(1)

Cryptographic protocols
small programs designed to secure
communication (various security goals)
use cryptographic primitives (e.g. encryption,
hash function, . . .)

(1) by Fabio Lanari — Internet1.jpg by Rock1997 modified., CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=20995390

Bruno Blanchet (Inria) ProVerif May 2022 2 / 42

Overview Extensions Efficiency Conclusion

Models of protocols

Active attacker:
The attacker can intercept all messages sent on the network
He can compute messages
He can send messages on the network

Bruno Blanchet (Inria) ProVerif May 2022 3 / 42

Overview Extensions Efficiency Conclusion

The symbolic model

The symbolic model or “Dolev-Yao model” is due to Needham and Schroeder (1978) and
Dolev and Yao (1983).

Cryptographic primitives are blackboxes. senc
Messages are terms on these primitives. senc(Hello, k)
The attacker is restricted to compute only using these primitives.
⇒ perfect cryptography assumption

So the definitions of primitives specify what the attacker can do.
One can add equations between primitives.
Hypothesis: the only equalities are those given by these equations.

This model makes automatic proofs relatively easy.

Bruno Blanchet (Inria) ProVerif May 2022 4 / 42

Overview Extensions Efficiency Conclusion

Features of ProVerif

Fully automatic.
Works for unbounded number of sessions and message space.

⇒ undecidable problem
Handles a wide range of cryptographic primitives, defined by rewrite rules or equations.
Handles various security properties: secrecy, authentication, some equivalences.
Does not always terminate and is not complete. In practice:

Efficient: small examples verified in less than 0.1 s;
complex ones in a few minutes.
Very precise: no false attack in our tests on examples of the literature for secrecy and
authentication.

Bruno Blanchet (Inria) ProVerif May 2022 5 / 42

Overview Extensions Efficiency Conclusion

ProVerif, https://proverif.inria.fr/

Horn clauses

Resolution with selection

Non-derivable: the property is true Derivation

Derivability queries

Automatic translator

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authentication,
process equivalencesPrimitives: rewrite rules, equations

Attack: the property is false False attack: I don’t know
Bruno Blanchet (Inria) ProVerif May 2022 6 / 42

https://proverif.inria.fr/

Overview Extensions Efficiency Conclusion

Syntax of the process calculus
Pi calculus + cryptographic primitives
M, N ::= terms

x , y , z , . . . variable
a, b, c, s, . . . name
f (M1, . . . , Mn) constructor application

P, Q ::= processes
out(M, N); P output
in(M, x : T); P input
0 nil process
P | Q parallel composition
!P replication
new a : T ; P restriction
let x = g(M1, . . . , Mn) in P else Q destructor application
if M = N then P else Q conditional

Bruno Blanchet (Inria) ProVerif May 2022 7 / 42

Overview Extensions Efficiency Conclusion

Constructors and destructors

Two kinds of operations:
Constructors f are used to build terms: f (M1, . . . , Mn)

Example: Shared-key encryption senc(M, N)
fun senc(bitstring, key) : bitstring.

Destructors g manipulate terms: let x = g(M1, . . . , Mn) in P else Q
Destructors are defined by rewrite rules g(M1, . . . , Mn) → M.

Example: Decryption sdec(senc(m, k), k) → m
fun sdec(bitstring, key) : bitstring
reduc forall m : bitstring, k : key; sdec(senc(m, k), k) = m.

We represent in the same way public-key encryption, signatures, hash functions, . . .
Bruno Blanchet (Inria) ProVerif May 2022 8 / 42

Overview Extensions Efficiency Conclusion

Example: The Denning-Sacco protocol (simplified)

Message 1. A → B : {{k}skA}pkB k fresh
Message 2. B → A : {s}k

new skA : sskey; new skB : eskey; let pkA = spk(skA) in
let pkB = pk(skB) in out(c, pkA); out(c, pkB);

(A) ! in(c, x pkB : epkey); new k : key;
out(c, penc(sign(k, skA), x pkB));
in(c, x : bitstring); let s = sdec(x , k) in 0

(B) | ! in(c, y : bitstring); let y ′ = pdec(y , skB) in
let k = checksign(y ′, pkA) in out(c, senc(s, k))

Bruno Blanchet (Inria) ProVerif May 2022 9 / 42

Overview Extensions Efficiency Conclusion

The Horn clause representation

The first encoding of protocols in Horn clauses was given by Weidenbach (1999).

The main predicate used by the Horn clause representation of protocols is att:
att(M) means “the attacker may have M”.

We can model actions of the attacker and of the protocol participants thanks to this predicate.

Processes are automatically translated into Horn clauses (joint work with Mart́ın Abadi).

Bruno Blanchet (Inria) ProVerif May 2022 10 / 42

Overview Extensions Efficiency Conclusion

Coding of primitives

Constructors f (M1, . . . , Mn)
att(x1) ∧ . . . ∧ att(xn) → att(f (x1, . . . , xn))

Example: Shared-key encryption senc(m, k)
att(m) ∧ att(k) → att(senc(m, k))

Destructors g(M1, . . . , Mn) → M
att(M1) ∧ . . . ∧ att(Mn) → att(M)

Example: Shared-key decryption sdec(senc(m, k), k) → m
att(senc(m, k)) ∧ att(k) → att(m)

Bruno Blanchet (Inria) ProVerif May 2022 11 / 42

Overview Extensions Efficiency Conclusion

Coding of a protocol

If a principal A has received the messages M1, . . . , Mn and sends the message M,

att(M1) ∧ . . . ∧ att(Mn) → att(M).

Example
Upon receipt of a message of the form penc(sign(y , skA), pkB),
B replies with senc(s, y):

att(penc(sign(y , skA), pkB)) → att(senc(s, y))

The attacker sends penc(sign(y , skA), pkB) to B, and intercepts his reply senc(s, y).

Bruno Blanchet (Inria) ProVerif May 2022 12 / 42

Overview Extensions Efficiency Conclusion

Proof of secrecy

Theorem (Secrecy)
If att(M) cannot be derived from the clauses, then M is secret.

The term M cannot be built by an attacker.

The resolution algorithm will determine whether a given fact can be derived from the clauses.

Example
query attacker(s).

Bruno Blanchet (Inria) ProVerif May 2022 13 / 42

Overview Extensions Efficiency Conclusion

Resolution with free selection

R = H → F R ′ = F ′
1 ∧ H ′ → F ′

Hσ ∧ H ′σ → F ′σ
where σ is the most general unifier of F and F ′

1,
F and F ′

1 are selected.

The selection function selects:
a hypothesis not of the form att(x) if possible,
the conclusion otherwise.

Key idea: avoid resolving on facts att(x).

Resolve until a fixpoint is reached.
Keep clauses whose conclusion is selected.

Theorem
The obtained clauses derive the same facts as the initial clauses.

Bruno Blanchet (Inria) ProVerif May 2022 14 / 42

Overview Extensions Efficiency Conclusion

Other security properties (1)
Correspondence assertions (authentication):
If an event has been executed, then some other events must have been executed.

new skA : sskey; new skB : eskey; let pkA = spk(skA) in
let pkB = pk(skB) in out(c, pkA); out(c, pkB);

(A) ! in(c, x pkB : epkey); new k : key; event eA(pkA, x pkB, k);
out(c, penc(sign(k, skA), x pkB));
in(c, x : bitstring); let s = sdec(x , k) in 0

(B) | ! in(c, y : bitstring); let y ′ = pdec(y , skB) in
let k = checksign(y ′, pkA) in event eB(pkA, pkB, k);
out(c, senc(s, k))

query x : spkey, y : epkey, z : key; event(eB(x , y , z)) =⇒ event(eA(x , y , z))
Bruno Blanchet (Inria) ProVerif May 2022 15 / 42

Overview Extensions Efficiency Conclusion

Other security properties (2)

Process equivalences:
Strong secrecy: the attacker cannot distinguish when the value of the secret changes.
diff-equivalence: Equivalence between processes that differ only by terms they contain
(joint work with Mart́ın Abadi and Cédric Fournet)

In particular, proof of protocols relying on weak secrets.

Bruno Blanchet (Inria) ProVerif May 2022 16 / 42

Overview Extensions Efficiency Conclusion

Extensions

1 Natural numbers
2 Temporal correspondence queries
3 Precise actions
4 Axioms, Restrictions, Lemmas
5 Proofs by induction

Bruno Blanchet (Inria) ProVerif May 2022 17 / 42

Overview Extensions Efficiency Conclusion

Natural numbers
Type: nat
Allowed operations:

addition, subtraction between variable and natural number
less, less or equal, greater, greater or equal
predicate testing if a term is a natural number: is nat

f r ee k : key [pr i va te] . f r ee c e l l : channe l [pr i va te] .

(∗ outputs natural numbers from min to max encrypted with k ∗)
l e t Q(max : nat) =

i n (c e l l , i : nat) ; out (c , senc(i , k)) ;
i f i < max then out (c e l l , i+1) .

process in (c , (min : nat , max : nat)) ;
(out (c e l l , min) | !Q(max))

Implemented by constraints is nat(M), ¬is nat(M), and M ≥ N + n in clauses, where n is a
constant natural number, simplified using the Bellman-Ford algorithm.

Bruno Blanchet (Inria) ProVerif May 2022 18 / 42

Overview Extensions Efficiency Conclusion

Temporal correspondence queries

Type time for temporal variables.
Facts can be associated with a temporal variable: F@i .
event(ev)@n holds when event ev is executed at the n-th step of the trace.
Can compare temporal variables:

query i , j : t ime , x : b i t s t r i n g ;
event (A(x)) @i && event (B(x)) @j ==> i < j .

Encoded as special natural number constraints i < j and i ≤ j .

Bruno Blanchet (Inria) ProVerif May 2022 19 / 42

Overview Extensions Efficiency Conclusion

Precise actions: toy example

A B
senc(s, (k1, k2))

senc(k1, k)

senc(k2, k)

senc(y , k)

y

B acts as an oracle for decryption with the key k but only one time!
Bruno Blanchet (Inria) ProVerif May 2022 20 / 42

Overview Extensions Efficiency Conclusion

Precise actions: process and clauses

Process

f r ee s , k1 , k2 , k : b i t s t r i n g [pr i va te] .

l e t A =
out (c , senc(s , (k1 , k2))) ;
out (c , senc(k1 , k)) ;
out (c , senc(k2 , k)) .

l e t B =
i n (c , x : b i t s t r i n g) ;
out (c , sdec(x , k)) .

process A | B

Clauses

– for the process
– A:

att(senc(s, (k1, k2)))
att(senc(k1, k))
att(senc(k2, k))

– B:
att(senc(y , k)) → att(y)

– for the attacker
att(x) ∧ att(y) → att(senc(x , y))
att(senc(x , y)) ∧ att(y) → att(x)
att(x) ∧ att(y) → att((x , y))

Horn clauses can be applied
an arbitrary number of times

for arbitrary instantiations

Secrecy of s is proved when att(s) is not derivable from the clauses.
Bruno Blanchet (Inria) ProVerif May 2022 21 / 42

Overview Extensions Efficiency Conclusion

Precise actions: why does it fail?

Process

f r ee s , k1 , k2 , k : b i t s t r i n g [pr i va te] .

l e t A =
out (c , senc(s , (k1 , k2))) ;
out (c , senc(k1 , k)) ;
out (c , senc(k2 , k)) .

l e t B =
i n (c , x : b i t s t r i n g) ;
out (c , sdec(x , k)) .

process A | B

Clauses

– for the process
– A:

att(senc(s, (k1, k2)))
att(senc(k1, k))
att(senc(k2, k))

– B:
att(senc(y , k)) → att(y)

– for the attacker
att(x) ∧ att(y) → att(senc(x , y))
att(senc(x , y)) ∧ att(y) → att(x)
att(x) ∧ att(y) → att((x , y))

Horn clauses can be applied
an arbitrary number of times

for arbitrary instantiations

Secrecy of s is proved when att(s) is not derivable from the clauses.
Bruno Blanchet (Inria) ProVerif May 2022 21 / 42

Overview Extensions Efficiency Conclusion

Precise actions: why does it fail?

att(senc(k1, k)) att(senc(k2, k))

att(senc(y , k)) → att(y) att(senc(y , k)) → att(y)

att(x) ∧ att(y) → att((x , y))att(senc(s, (k1, k2)))

att(senc(x , y)) ∧ att(y) → att(x)

att(senc(k1, k)) att(senc(k2, k))

att(k1) att(k2)

att((k1, k2))att(senc(s, (k1, k2)))

att(s)
Bruno Blanchet (Inria) ProVerif May 2022 22 / 42

Overview Extensions Efficiency Conclusion

Precise actions: what to do?
Add a [precise] option to the problematic input.

f r ee s , k1 , k2 , k : b i t s t r i n g [pr i va te] .

l e t A =
out (c , senc(s , (k1 , k2))) ;
out (c , senc(k1 , k)) ;
out (c , senc(k2 , k)) .

l e t B =
i n (c , x : b i t s t r i n g) [precise] ;
out (c , sdec(x , k)) .

process A | B

Global setting: set preciseActions = true.
Adding [precise] options may increase the verification time or lead to non-termination.

Bruno Blanchet (Inria) ProVerif May 2022 23 / 42

Overview Extensions Efficiency Conclusion

Restrictions, axioms, lemmas

r e s t r i c t i o n R1 .
. . .
r e s t r i c t i o n Rn .

axiom A1 .
. . .
axiom Am .

lemma L1 .
. . .
lemma Lk .

query attacker (s) .

Restrictions “restrict” the traces considered in axioms,
lemmas, and queries.
query attacker(s) holds if no trace satisfying R1, . . . , Rn
reveals s.

1 ProVerif assumes that the axioms A1, . . . , Am hold.
2 ProVerif tries to prove the lemmas L1, . . . , Lk in order,

using all axioms and previously proved lemmas.
3 ProVerif tries to prove the query query attacker(s)

using all axioms and all lemmas.

Bruno Blanchet (Inria) ProVerif May 2022 24 / 42

Overview Extensions Efficiency Conclusion

Implementing precise actions

Option [precise] is encoded as an axiom internally.
l e t B =

i n (c , x : b i t s t r i n g) [precise] ;
out (c , sdec(x , k)) .

encoded as

event P r e c i s e (occu r r ence , b i t s t r i n g) .

axiom occ : occu r r ence , x1 , x2 : b i t s t r i n g ;
event (P r e c i s e (occ , x1)) && event (P r e c i s e (occ , x2)) ==> x1 = x2 .

l e t B = i n (c , x : b i t s t r i n g) ;
new occ [] : o c c u r r e n c e ;
event P r e c i s e (occ , x) ;
out (c , sdec(x , k)) .

Bruno Blanchet (Inria) ProVerif May 2022 25 / 42

Overview Extensions Efficiency Conclusion

Using restrictions, axioms, and lemmas (simplified)
Consider a lemma (or restriction or axiom)

∧
i Fi =⇒ ϕ.

H → C for all i , Fiσ ∈ H or Fiσ = C
H ∧ ϕσ → C

If for all i , Fiσ ∈ H or Fiσ = C , then the hypothesis of the lemma holds, so the conclusion of
the lemma holds. We add it to the hypothesis of the clause, generating clause H ∧ ϕσ → C .

Example
Axiom event(Precise(occ, x1)) ∧ event(Precise(occ, x2)) =⇒ x1 = x2.
event(Precise(occ, senc(k1, k)))∧event(Precise(occ, senc(k2, k)))→att(s)
transformed into
event(Precise(occ, senc(k1, k))) ∧ event(Precise(occ, senc(k2, k))) ∧

senc(k1, k) = senc(k2, k) → att(s)
Removed.

Bruno Blanchet (Inria) ProVerif May 2022 26 / 42

Overview Extensions Efficiency Conclusion

Proofs by induction

In order to prove a query, use that query itself as lemma on a strict prefix of the trace, by
induction on the length of the trace.
In a clause H → C , H happens strictly before C .
Consider the inductive lemma

∧
i Fi =⇒ ϕ.

ϕ holds before or at the same time as the latest Fi .

H → C for all i , Fiσ ∈ H
H ∧ ϕσ → C

If for all i , Fiσ ∈ H, then the hypothesis of the lemma holds strictly before C , so the
conclusion of the lemma holds strictly before C . We add it to the hypothesis of the
clause, generating clause H ∧ ϕσ → C .
Also works for a group of queries: proofs by mutual induction.

Bruno Blanchet (Inria) ProVerif May 2022 27 / 42

Overview Extensions Efficiency Conclusion

Proofs by induction: example

f r ee c e l l : channe l [pr i va te] .

query x : nat ;
mess (c e l l , x)==> i s n a t (x) .

l e t Q =
i n (c e l l , i : nat) ;
out (c , s enc (i , k)) ;
out (c e l l , i +1).

process out (c e l l , 0) | !Q

Clauses:
mess(cell , 0)
mess(cell , i) → mess(cell , i + 1)

ProVerif stops resolving on mess(cell , i)
because it would lead to an infinite loop.

The attacker is untyped: a priori, i may
not be a natural number.

The proof fails.

Bruno Blanchet (Inria) ProVerif May 2022 28 / 42

Overview Extensions Efficiency Conclusion

Proofs by induction: example solved

f r ee c e l l : channe l [pr i va te] .

set nounifIgnoreAFewTimes = auto.

query x : nat ;
mess (c e l l , x)==> i s n a t (x) [induction] .

l e t Q =
i n (c e l l , i : nat) ;
out (c , s enc (i , k)) ;
out (c e l l , i +1).

process out (c e l l , 0) | !Q

Clauses:
mess(cell , 0)
mess(cell , i) → mess(cell , i + 1)

Lemma mess(cell , x) =⇒ is nat(x)
transforms
mess(cell , i) → mess(cell , i + 1)
into
mess(cell , i)∧is nat(i) → mess(cell , i+1)

nounifIgnoreAFewTimes allows resolution
on mess(cell , i) once during verification.

The proof now succeeds.

Bruno Blanchet (Inria) ProVerif May 2022 29 / 42

Overview Extensions Efficiency Conclusion

Expressivity results

P Precise actions
I set nounifIgnoreAFewTimes = auto.

R set removeEventsForLemma = true.
Remove events used only for lemmas, when they become useless.

N Natural numbers
A Axioms, Lemmas

Bruno Blanchet (Inria) ProVerif May 2022 30 / 42

Overview Extensions Efficiency Conclusion

Expressivity results
Published protocols Unpublished protocols

Bruno Blanchet (Inria) ProVerif May 2022 31 / 42

Overview Extensions Efficiency Conclusion

Improved efficiency

A Subsumption

B Translation of processes into clauses

C Resolution

D Global redundancy

E Pre-treatment of processes

Bruno Blanchet (Inria) ProVerif May 2022 32 / 42

Overview Extensions Efficiency Conclusion

A Subsumption

H → C subsumes H ′ → C ′ when Cσ = C ′ and Hσ ⊆ H ′.

Every time a clause is generated by resolution,
check if it is not subsumed by an existing clause
remove all existing clauses that are subsumed by this new clause

More than 80% of total execution time!

Idea [Schulz13]: Feature vertex indexing

A feature is a function f on clauses such that
H → C subsumes H ′ → C ′ implies f (H → C) ≤ f (H ′ → C ′)

Clauses are organized in a trie indexed by feature values.

Bruno Blanchet (Inria) ProVerif May 2022 33 / 42

Overview Extensions Efficiency Conclusion

C Resolution

Resolution: One clause against many!

The selection function guarantees that always the same fact of a clause will be used.

Clauses are organized in a trie indexed by the symbol functions
of their selected fact (depth first exploration)
[Substitution tree indexing techniques]

Advantage:
Fewer unifications
We know quickly with which clauses we can perform resolution

Bruno Blanchet (Inria) ProVerif May 2022 34 / 42

Overview Extensions Efficiency Conclusion

D Global redundancy

A clause is redundant when it is obtained by resolving existing clauses whose conclusion is
selected.

1 Avoid testing redundancy when it is useless.
2 Simplified the test (e.g. subsumption is useless).

Bruno Blanchet (Inria) ProVerif May 2022 35 / 42

Overview Extensions Efficiency Conclusion

B Translation of processes into clauses

We evaluate an argument of a function only when it is still
needed in order to determine the result.

Example
M ∧ N: if M evaluates to false, we do not evaluate N.

Bruno Blanchet (Inria) ProVerif May 2022 36 / 42

Overview Extensions Efficiency Conclusion

E Pre-treatment of processes

ProVerif sometimes groups sequences of lets

let x1 = M1 in . . . let xn = Mn in P

to evaluate all of M1, . . . , Mn and then evaluate P when none of them fails.

Improves precision for equivalence proofs: avoids distinguishing which Mi fails.

We ensure that Mi is not evaluated when a previous Mj fails,
while keeping the improved precision.

Bruno Blanchet (Inria) ProVerif May 2022 37 / 42

Overview Extensions Efficiency Conclusion

Improved efficiency

A ProVerif 2.00

A Subsumption

B Translation of processes into clauses

C Resolution

D Global redundancy

E Pre-treatment of processes

Bruno Blanchet (Inria) ProVerif May 2022 38 / 42

Overview Extensions Efficiency Conclusion

Time gain (linear scale)

Bruno Blanchet (Inria) ProVerif May 2022 39 / 42

Overview Extensions Efficiency Conclusion

Time gain (log scale)

Bruno Blanchet (Inria) ProVerif May 2022 40 / 42

Overview Extensions Efficiency Conclusion

Memory gain (linear scale, Gb)

Bruno Blanchet (Inria) ProVerif May 2022 41 / 42

Overview Extensions Efficiency Conclusion

What’s next?

1 Integration of GSVerif
Precise actions of GSVerif much stronger than the one of ProVerif
New transformations?

2 Modulo AC / XOR / groups
The algorithm should remain mostly the same
Main issues : Efficiency and non-termination

3 Going beyond diff-equivalence
Trace equivalence

4 Whatever users need!
Paper to appear at IEEE Security and Privacy 2022
https://bblanche.gitlabpages.inria.fr/publications/BlanchetEtAlSP22.html

Bruno Blanchet (Inria) ProVerif May 2022 42 / 42

https://bblanche.gitlabpages.inria.fr/publications/BlanchetEtAlSP22.html

	Overview
	Extensions
	Efficiency
	Conclusion

