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Communications over a secure network

secure network

B (Bob)A (Alice)
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Communications over an insecure network

insecure network

B (Bob)A (Alice)

C (attacker)

A talks to B on an insecure network
⇒ need for cryptography in order to make communications secure

for instance, encrypt messages to preserve secrets.
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Cryptographic primitives

Definition (Cryptographic primitives)

Basic cryptographic algorithms, used as building blocks for protocols,
e.g. encryption and signatures.
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Cryptographic primitives

Definition (Cryptographic primitives)

Basic cryptographic algorithms, used as building blocks for protocols,
e.g. encryption and signatures.

Public-key encryption

encryption decryption

public key private key
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Cryptographic primitives

Definition (Cryptographic primitives)

Basic cryptographic algorithms, used as building blocks for protocols,
e.g. encryption and signatures.

Signatures

signature ok?
signature verification

private key public key
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Example

Denning-Sacco key distribution protocol [Denning, Sacco, 1981]
(simplified)

k fresh

B (Bob)A (Alice)

{s}k

{{k}skA
}pkB

The goal of the protocol is that the key k should be a secret key, shared
between A and B . So s should remain secret.
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The attack

The (well-known) attack against this protocol.

as A (Alice)
A (Alice)

k fresh {{k}skA
}pkC

{s}k

B (Bob)

{{k}skA
}pkB

C (attacker)

The attacker C impersonates A and obtains the secret s.
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The corrected protocol

k fresh

{s}k

A (Alice) B (Bob)

{{A,B , k}skA
}pkB

Now C cannot impersonate A because in the previous attack, the first
message is {{A,C , k}skA

}pkB
, which is not accepted by B .
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Examples

Many protocols exist, for various goals:

secure channels: SSH (Secure SHell);
SSL (Secure Socket Layer), renamed TLS (Transport Layer Security);
IPsec

e-voting

contract signing

certified email

wifi (WEP/WPA/WPA2)

banking

mobile phones

. . .
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Why verify security protocols ?

The verification of security protocols has been and is still a very active
research area.

Their design is error prone.

Security errors not detected by testing:
appear only in the presence of an
attacker.

Errors can have serious consequences.
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Models of protocols

Active attacker:

The attacker can intercept all messages sent on the network

He can compute messages

He can send messages on the network
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Models of protocols: the symbolic model

The symbolic model or “Dolev-Yao model” is due to Needham and
Schroeder (1978) and Dolev and Yao (1983).

Cryptographic primitives are blackboxes. sencrypt

Messages are terms on these primitives. sencrypt(Hello, k)

The attacker is restricted to compute only using these primitives.
⇒ perfect cryptography assumption

So the definitions of primitives specify what the attacker can do.
One can add equations between primitives.
Hypothesis: the only equalities are those given by these equations.

This model makes automatic proofs relatively easy.
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Models of protocols: the computational model

The computational model has been developped at the beginning of the
1980’s by Goldwasser, Micali, Rivest, Yao, and others.

Messages are bitstrings. 01100100

Cryptographic primitives are functions on bitstrings.

sencrypt(011, 100100) = 111

The attacker is any probabilistic polynomial-time Turing machine.

The security assumptions on primitives specify what the attacker
cannot do.

This model is much more realistic than the symbolic model, but proofs are
mostly manual.
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Models of protocols: side channels

The computational model is still just a model, which does not exactly
match reality.

In particular, it ignores side channels:

timing

power consumption

noise

physical attacks against smart cards

which can give additional information.
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Security properties: trace and equivalence properties

Trace properties: properties that can be defined on a trace.

Symbolic model: they hold when they are true for all traces.
Computational model: they hold when they are true except for a set of
traces of negligible probability.

Equivalence (or indistinguishability) properties: the attacker cannot
distinguish two protocols (with overwhelming probability)

Give compositional proofs.
Hard to prove in the symbolic model.
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Security properties: secrecy

The attacker cannot obtain information on the secrets.

Symbolic model:

(syntactic) secrecy: the attacker cannot obtain the secret (trace
property)
strong secrecy: the attacker cannot distinguish when the value of the
secret changes (equivalence property)

Computational model: the attacker can distinguish the secret from a
random number only with negligible probability (equivalence property)

Bruno Blanchet (Inria) VeriCrypt December 2021 16 / 50



Introduction Symbolic Model Computational Model Conclusion

Security properties: authentication

If A thinks she is talking to B , then B thinks he is talking to A, with the
same protocol parameters.

Symbolic model: formalized using correspondence assertions of the
form “if some event has been executed, then some other events have
been executed” (trace property).

Computational model: matching conversations or session identifiers,
which essentially require that the messages exchanged by A and B are
the same up to negligible probability (trace property).
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Verifying protocols in the symbolic model

Main idea (for most verifiers):

Compute the knowledge of the attacker.

Difficulty: security protocols are infinite state.

The attacker can create messages of unbounded size.

Unbounded number of sessions of the protocol.
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Verifying protocols in the symbolic model

Solutions:

Bound the state space arbitrarily:
Trace properties: exhaustive exploration (model-checking: FDR,
SATMC, . . . );
find attacks but not prove security.

Bound the number of sessions:

Trace properties: insecurity is NP-complete (with reasonable
assumptions).
OFMC, Cl-AtSe
Equivalence properties: AKISS, APTE, DeepSec, SAT-Equiv, SPEC

Unbounded case:
the problem is undecidable.
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Solutions to undecidability

To solve an undecidable problem, we can

Use approximations, abstraction.

Not always terminate.

Rely on user interaction or annotations.

Consider a decidable subclass.
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Solutions to undecidability

Not always terminate

Logics (BAN, PCL, . . . )

Abstraction

Typing (Cryptyc)

Maude-NPA (narrowing)
Strong tagging scheme

User help

Decidable subclass

Horn clauses (ProVerif)

Scyther, CPSA (strand spaces)

Control-flow analysis

Tree automata (TA4SP)

Tamarin

Theorem proving (Isabelle)
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ProVerif, https://proverif.inria.fr/

False attack: I don’t know

Horn clauses

Resolution with selection

Non-derivable: the property is true Derivation

Derivability queries

Automatic translator

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authentication,
process equivalencesPrimitives: rewrite rules, equations

Attack: the property is false
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Features of ProVerif

Fully automatic.

Works for unbounded number of sessions and message space.

Handles a wide range of cryptographic primitives, defined by rewrite
rules or equations.

Handles various security properties: secrecy, authentication, some
equivalences.

Does not always terminate and is not complete. In practice:

Efficient: small examples verified in less than 0.1 s;
complex ones in a few minutes.
Very precise: no false attack in our tests on examples of the literature
for secrecy and authentication.
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Syntax of the process calculus

Pi calculus + cryptographic primitives

M,N ::= terms
x , y , z , . . . variable
a, b, c , s, . . . name
f (M1, . . . ,Mn) constructor application

P ,Q ::= processes
out(M,N);P output
in(M, x : T );P input
0 nil process
P | Q parallel composition
!P replication
new a : T ;P restriction
let x = g(M1, . . . ,Mn) in P else Q destructor application
if M = N then P else Q conditional
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Constructors and destructors

Two kinds of operations:

Constructors f are used to build terms
f (M1, . . . ,Mn)

Example: Shared-key encryption sencrypt(M ,N)

fun sencrypt(bitstring, key) : bitstring.

Destructors g manipulate terms
let x = g(M1, . . . ,Mn) in P else Q

Destructors are defined by rewrite rules g(M1, . . . ,Mn)→ M.

Example: Decryption sdecrypt(sencrypt(m, k), k)→ m

fun sdecrypt(bitstring, key) : bitstring
reduc forall m : bitstring, k : key; sdecrypt(sencrypt(m, k), k) = m.

We represent in the same way public-key encryption, signatures, hash
functions, . . .
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Example: The Denning-Sacco protocol (simplified)

Message 1. A→ B : {{k}skA
}pkB

k fresh
Message 2. B → A : {s}k

new skA : sskey;new skB : eskey; let pkA = spk(skA) in

let pkB = pk(skB) in out(c , pkA); out(c , pkB);

(A) ! in(c , x pkB : epkey);new k : key;

out(c , pencrypt(sign(k , skA), x pkB));

in(c , x : bitstring); let s = sdecrypt(x , k) in 0

(B) | ! in(c , y : bitstring); let y ′ = pdecrypt(y , skB) in

let k = checksign(y ′, pkA) in out(c , sencrypt(s, k))
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The Horn clause representation

The first encoding of protocols in Horn clauses was given by Weidenbach
(1999).

The main predicate used by the Horn clause representation of protocols is
attacker:

attacker(M) means “the attacker may have M”.

We can model actions of the attacker and of the protocol participants
thanks to this predicate.

Processes are automatically translated into Horn clauses (joint work with
Mart́ın Abadi).
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Coding of primitives

Constructors f (M1, . . . ,Mn)
attacker(x1) ∧ . . . ∧ attacker(xn)→ attacker(f (x1, . . . , xn))

Example: Shared-key encryption sencrypt(m, k)

attacker(m) ∧ attacker(k)→ attacker(sencrypt(m, k))

Destructors g(M1, . . . ,Mn)→ M

attacker(M1) ∧ . . . ∧ attacker(Mn)→ attacker(M)

Example: Shared-key decryption sdecrypt(sencrypt(m, k), k)→ m

attacker(sencrypt(m, k)) ∧ attacker(k)→ attacker(m)
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Coding of a protocol

If a principal A has received the messages M1, . . . ,Mn and sends the
message M,

attacker(M1) ∧ . . . ∧ attacker(Mn)→ attacker(M).

Example

Upon receipt of a message of the form pencrypt(sign(y , skA), pkB),
B replies with sencrypt(s, y):

attacker(pencrypt(sign(y , skA), pkB))→ attacker(sencrypt(s, y))

The attacker sends pencrypt(sign(y , skA), pkB) to B , and intercepts his
reply sencrypt(s, y).
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Proof of secrecy

Theorem (Secrecy)

If attacker(M) cannot be derived from the clauses, then M is secret.

The term M cannot be built by an attacker.

The resolution algorithm will determine whether a given fact can be
derived from the clauses.

Example

query attacker(s).

Bruno Blanchet (Inria) VeriCrypt December 2021 30 / 50



Introduction Symbolic Model Computational Model Conclusion

Resolution with free selection

R = H → F R ′ = F ′

1 ∧ H ′ → F ′

σH ∧ σH ′ → σF ′

where σ is the most general unifier of F and F ′

1,
F and F ′

1 are selected.

The selection function selects:

a hypothesis not of the form attacker(x) if possible,

the conclusion otherwise.

Key idea: avoid resolving on facts attacker(x).

Resolve until a fixpoint is reached.
Keep clauses whose conclusion is selected.

Theorem

The obtained clauses derive the same facts as the initial clauses.
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Other security properties (1)

Correspondence assertions:
If an event has been executed, then some other events must have been
executed.

new skA : sskey;new skB : eskey; let pkA = spk(skA) in

let pkB = pk(skB) in out(c , pkA); out(c , pkB);

(A) ! in(c , x pkB : epkey);new k : key; event eA(pkA, x pkB , k);

out(c , pencrypt(sign(k , skA), x pkB));

in(c , x : bitstring); let s = sdecrypt(x , k) in 0

(B) | ! in(c , y : bitstring); let y ′ = pdecrypt(y , skB) in

let k = checksign(y ′, pkA) in event eB(pkA, pkB , k);

out(c , sencrypt(s, k))

query x : spkey, y : epkey, z : key; event(eB(x , y , z)) =⇒ event(eA(x , y , z))
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Other security properties (2)

Process equivalences

Strong secrecy

Equivalences between processes that differ only by terms they contain
(joint work with Mart́ın Abadi and Cédric Fournet)

In particular, proof of protocols relying on weak secrets.

Bruno Blanchet (Inria) VeriCrypt December 2021 33 / 50



Introduction Symbolic Model Computational Model Conclusion

Sound approximations

Main approximation = repetitions of actions are ignored:
the clauses can be applied any number of times.

In out(M,N).P , the Horn clause model considers that P can always
be executed.

These approximations can cause (rare) false attacks.

We have built an algorithm that reconstructs attacks from derivations
from Horn clauses, when the derivation corresponds to an attack (with
Xavier Allamigeon).
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Results (1)

Tested on many protocols of the literature.

More ambitious case studies:

Certified email (with Mart́ın Abadi)
JFK (with Mart́ın Abadi and Cédric Fournet)
Plutus (with Avik Chaudhuri)
Signal (with Karthikeyan Bhargavan and Nadim Kobeissi)
TLS 1.3 (with Karthikeyan Bhargavan and Nadim Kobeissi)
ARINC823 avionic protocols

Case studies by others:

E-voting protocols (Delaune, Kremer, and Ryan; Backes et al)
Zero-knowledge protocols, DAA (Backes et al)
Shared authorisation data in TCG TPM (Chen and Ryan)
Electronic cash (Luo et al)
Google 2-step and FIDO U2F (Jacomme and Kremer)
Noise (Kobeissi, Nicolas, and Bhargavan)
. . .
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Results (2)

Extensions and tools:

Extension to XOR and (improved) Diffie-Hellman (Küsters and
Truderung)
Web service verifier TulaFale (Microsoft Research).
Support for state (StatVerif, GSVerif)
Support for sets (AIF-Omega, Set-pi)
Unlinkability and anonymity (Ukano)
Verification of implementations (FS2PV, Spi2Java).
. . .
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Verifying protocols in the computational model

1 Linking the symbolic and the computational models

2 Adapting techniques from the symbolic model

3 Direct computational proofs
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Linking the symbolic and the computational models

Computational soundness theorems:

Secure in the
symbolic model

⇒
secure in the

computational model

modulo additional assumptions.

Approach pioneered by Abadi & Rogaway [2000]; many works since
then.
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Linking the symbolic and the computational models:
application

Indirect approach to automating computational proofs:

1. Automatic symbolic
protocol verifier

↓
2. Computational

proof in the soundness proof in the

symbolic model −−−−−−→ computational model
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Various approaches

Trace mapping [Micciancio & Warinschi 2004], followed by others

Computational trace 7→ symbolic trace

up to negligible probability.

computational soundness for trace properties (authentication), for
public-key encryption, signatures, hash functions, . . .
computational soundness for observational equivalence [Comon-Lundh
& Cortier 2008]
modular computational soundness proofs.

Backes-Pfitzmann-Waidner library

UC-based approach [Canetti & Herzog 2006]
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Advantages and limitations

+ symbolic proofs easier to automate

+ reuse of existing symbolic verifiers

− additional hypotheses:

− strong cryptographic primitives
− length-hiding encryption or modify the symbolic model
− honest keys
− no key cycles

Going through the symbolic model is a detour
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Adapting techniques from the symbolic model

Some symbolic techniques can also be adapted to the computational
model:

Logics: computational PCL, CIL, Bana-Comon

Type systems: computationally sound type system

Well-typed ⇒ secure in the computational model
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The Bana-Comon logic

Usually:

in symbolic models, we specify what the attacker can do,
e.g. apply encryption, decryption, signatures, . . .

in computational models, we specify what the attacker cannot do,
e.g. cannot distinguish two ciphertexts, cannot forge signatures, . . .

⇒ difficult to get computational soundness.

Main idea of the Bana-Comon logic: design a new symbolic model, in
which we specify what the attacker cannot do (through axioms).

We get a computational proof using symbolic methods.

Limitation: number of sessions bounded independently of the security
parameter.

Tool Squirrel https://squirrel-prover.github.io/
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Direct computational proofs

Proofs in the computational model are typically proofs by sequences of
games [Shoup, Bellare & Rogaway]:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is 0 for this game.)

Game 0

Protocol
to prove

←→
p1

negligible

Game 1 ←→
p2

negligible

. . .
←→
pn

negligible

Game n

Property
obvious
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Mechanizing proofs by sequences of games (1)

CryptoVerif, https://cryptoverif.inria.fr

generates proofs by sequences of games.

proves secrecy, correspondence, and indistinguishability properties.

provides a generic method for specifying properties of
many cryptographic primitives.

works for N sessions (polynomial in the security parameter), with an
active attacker.

gives a bound on the probability of an attack (exact security).

automatic and user-guided modes.

VeriCrypt’20 tutorial at https://cryptoverif.inria.fr/tutorial

Similar tool by Ts̆ahhirov and Laud [2007], using a different game
representation (dependency graph).
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CryptoVerif: Case studies

Many small protocols of the literature.

Full domain hash signature (with David Pointcheval)
Encryption schemes of Bellare-Rogaway’93 (with David Pointcheval)

Kerberos V, with and without PKINIT (with Aaron D. Jaggard, Andre
Scedrov, and Joe-Kai Tsay)

OEKE (variant of Encrypted Key Exchange)

A part of an F# implementation of the TLS transport protocol
(Microsoft Research and MSR-INRIA)

SSH Transport Layer Protocol (with David Cadé)

ARINC823 avionic protocols

Signal (with Nadim Kobeissi and Karthikeyan Bhargavan)

TLS 1.3 draft 18 (with Karthikeyan Bhargavan and Nadim Kobeissi)

WireGuard (with Benjamin Lipp and Karthikeyan Bhargavan)
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Mechanizing proofs by sequences of games (2)

EasyCrypt, https://github.com/EasyCrypt/easycrypt

The user gives the games and a proof of their indistinguishability.
The tool verifies this proof.

Can do more subtle reasoning than CryptoVerif, but is less automated.

Better suited for proving primitives than CryptoVerif.
The automation of CryptoVerif helps for protocols.

Successor of CertiCrypt
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EasyCrypt: Case studies

Cramer-Shoup, hashed ElGamal

MEE-CBC

ChaChaPoly

ZAEP

RSA–PSS Provably Secure against Non-random Faults

One-round authenticated key exchange protocols (Naxos, Nets, . . . )

Pairing-based cryptography

SHA-3

Amazon Web Services Key Management Service

. . .
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Other computational tools

FCF (Foundational Cryptography Framework): library over Coq

CryptHOL: framework over Isabelle

Specialized tools:

AutoG&P: pairing-based schemes
ZooCrypt: padding-based public-key encryption schemes
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Conclusion

Very active research area

Many different tools:
symbolic tools

+ mature

+ easier to use than computational tools

+ find attacks and security proofs

− may miss computational attacks

computational tools

− more delicate to use

− require more guidance from the user

+ provide stronger security proofs

− do not find attacks

Collaborations between tools
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