
Dijkstra Monads for All

An Everest All Hands Pitch

Kenji Maillard
Danel Ahman Robert Atkey Guido Martı́nez

Ca ̆tălin Hriţcu Éric Tanter Exequiel Rivas

ICFP'19 paper @ https://arxiv.org/abs/1903.01237

https://arxiv.org/abs/1903.01237

Dijkstra Monads

2

D t w
retD : x:a → D a (retW x)

bindD : #w:W a → #f:(a→W b) → ... → D b (bindW w f)

actD : ... → D a (actW ...)

weakenD : w1:W a → w2:W a{w1≤w2} → D a w1 → D a w2

M t W t

+ Dijkstra monad laws (bindD-retD, retD-bindD, bindD-bindD,
weakenD-bindD, weakenD-refl, weakenD-trans)

retW : x:a → W a

bindW : W a → (a→W b) → W b

actW : ... → W a

(≤) : w1:W a → w2:W a → Type0

+ Monad laws + ≤ is a preorder
+ bindW monotonic

θ+ Monad
laws

+ Monad
morphism
laws

retM

bindM

actM

Short-term benefits for

•big step towards effect definition mechanism
that is general, sound, and usable

–like DM4Free, aiming for soundness by construction

•more expressive, can do more effects than DM4Free:

–IO (ongoing case study: small web server by Cezar, Exe, ...)

–nondeterminism (... later probabilities, continuations?)

•more flexible than DM4Free:

–nondeterminism: angelic θ vs demonic θ

–IO: context-free W vs. history-dependent W (ghost state)

•ready to merge in F* master soon (Guido)

3

Long-term benefits

1. Better understanding of Dijkstra monads

•Formal definition of Dijkstra monads (including laws!)

•In Coq we can abstract over Dijkstra monads,
which gives us a form of effect polymorphism

–Kenji used the spec. monad laws to verify map and fold

•In F* effect polymorphism is interesting direction

–F* effects are not first class (by design)

–spec. monad laws might be automatable via SMT or tactics

–bonded effect polymorphism already interesting
•e.g. all effects with the same W (Pure, Div, Ghost)

4

Long-term benefits

2. Better understanding of DM4Free

•DM4Free is just a special case of DM4All

–for any monad transformer T:

M=T(Id), W=T((_→Prop)→Prop), canonical θ

•SM: lang. for defining correct monad transformers

–subsumes DM language from DM4Free

–currently in Coq, could be ported to F*

•Make F* effect definitions usable and sound:

–Currently F* ignores all laws, let's enforce them!

–either manually (with SMT) or get them from SM

5

Long-term benefits

3. Better understanding of specification monads
• they are ordered monads with monotonic bind

+ conjunction seems to account for recording
conditional guards or effect-specific asserts (Guido, Kenji)

• general recipe for obtaining specification monads
– apply monad transformers (from SM) to

various base specification monads:

– not just weakest-pre and pre+post, but also
strongest-post (as expressive as weakest-liberal-pre)

• optimize wps: use strongest-post? wlps? (Guido)

• monotonic state: from "Prop" to "S -> Prop"? (Danel, Kenji, ...)

• quantitative spec. monads (cost, probabilities -- Kenji)

6

Long-term benefits

4. Better understanding Dijkstra monad actions

•algebraic operations are simple (get, put)

•handlers more complicated

–experiment 1: exception catching (Danel)

–experiment 2: fixpoints / general recursion (Bob, Kenji)
•independent validation for F*'s semantic termination check

–more work needed for the general story (Danel, ...)

7

Long-term benefits

5. Showing that Dijkstra Monads not F*-specific

•we implemented them as just a library in Coq

–subsuming Hoare Type Theory, Ynot, etc.

•maybe F* v(2+n) will be just a library on top of Lean

–would be great, many more steps needed though:
e.g. there's more to F* effects than just Dijkstra monads
e.g. SMT encoding, extensional equality, ...

6. Strong foundations for further research

•effect hiding / observational purity

•relational verification (Friday @ 9am)

8

9

