Automatic Verification of Remote Electronic Voting Protocols

Cătălin Hrițcu
Saarland University, Saarbrücken, Germany
Joint work with: Michael Backes and Matteo Maffei
Did you know that...

- ... in Germany, in the latest parliamentary elections **18.7%** of the votes were cast by post?
Did you know that ...

- ... in Germany, in the latest parliamentary elections 18.7% of the votes were cast by post?
- this is a form of remote voting
Remote voting (by post)

• More convenient than supervised voting
 ▸ This should increase voter participation
Remote voting (by post)

- More convenient than supervised voting
 - This should increase voter participation

- Voting by post raises many **security concerns**
 - An autograph signature does not authenticate the voter
 - An envelope does not guarantee secrecy or integrity
 - The post is not always a secure channel
 - Extremely easy to sell your vote
 - You can coerce voters to vote as you like
Remote voting (by post)

• More convenient than supervised voting
 ‣ This should increase voter participation

• Voting by post raises many **security concerns**
 ‣ An autograph signature does not authenticate the voter
 ‣ An envelope does not guarantee secrecy or integrity
 ‣ The post is not always a secure channel
 ‣ Extremely easy to sell your vote
 ‣ You can coerce voters to vote as you like

• Still, this has been used in Germany for 50+ years
Remote **electronic** voting

- Seems even cheaper and even more convenient
- Promises better security (than voting by post at least)
 - the security properties can be cryptographically enforced
Remote **electronic** voting

- Seems even cheaper and even more convenient
- Promises better security (than voting by post at least)
 - the security properties can be cryptographically enforced

Different security risks
- Easier to launch large-scale attacks and erase evidence
- Clients are the weakest link: e.g. remotely exploitable software flaws, viruses, Internet worms, trojans, lack of physical security, social engineering attacks, etc.
- Network also vulnerable: e.g. voter demographic-based DDOS, cache poisoning DNS attacks, etc.
desired properties

accuracy eligibility democracy
inalterability non-reusability fault tolerance
completeness correctness scalability
fairness

universal verifiability receipt-freeness

individual verifiability

coercion-resistance
vote-privacy

no forced-abstention attacks

robustness
desired properties

- eligibility
- non-reusability
- inalterability
- completeness
- correctness
- fairness
- universal verifiability
- individual verifiability
- receipt-freeness
- coercion-resistance
- scalability
- availability
- vote-privacy
- fault tolerance
- robustness
- scalability
- accuracy
- democracy
- fault tolerance
- robustness
- availability
- vote-privacy
- no forced-abstention attacks

• Careful formalization and automatic verification of these properties important before widespread adoption.
eligibility

inalterability non-reusability

vote-privacy

no forced-abstention attacks

receipt-freeness

coercion-resistance

• Careful formalization and automatic verification of these properties important before widespread adoption
soundness

eligibility

inalterability non-reusability

vote-privacy
no forced-abstention attacks
receipt-freeness
coercion-resistance

• Careful formalization and automatic verification of these properties important before widespread adoption
• Careful formalization and automatic verification of these properties important before widespread adoption
What we did

• General technique for **modeling** remote electronic voting protocols (in the applied pi-calculus) and automatically verifying their security

• New **formal definitions of**
 ‣ soundness - trace property
 ‣ coercion-resistance - observational equivalence
 ‣ both definitions amenable to automation (e.g. ProVerif)

• Automatically verified the security of the JCJ protocol
What we did

• General technique for modeling remote electronic voting protocols (in the applied pi-calculus) and automatically verifying their security

• New formal definitions of
 ‣ soundness - trace property
 ‣ coercion-resistance - observational equivalence
 ‣ both definitions amenable to automation (e.g. ProVerif)

• Automatically verified the security of the JCJ protocol

• For all details see [Backes, Hriţcu & Maffei, CSF 2008]
The Big Picture
Hi, I'm Alice

Soundness (eligibility, non-reusability, inalterability)
Hi, I'm Alice

eligible(Alice)
Soundness (eligibility, non-reusability, inalterability)

Hi, I'm Alice

eligible(Alice)
Soundness (eligibility, non-reusability, inalterability)

Hi, I'm Alice

vote(Alice, pink)

eligible(Alice)
Soundness (eligibility, non-reusability, inalterability)

Hi, I'm Alice

eligible(Alice)

vote(Alice, pink)
Soundness (eligibility, non-reusability, inalterability)

Hi, I’m Alice

vote(Alice, pink)

eligible(Alice)
Hi, I’m Alice

eligible(Alice)

vote(Alice, pink)
Hi, I'm Alice

eligible(Alice)
vote(Alice, pink)
Soundness (eligibility, non-reusability, inalterability)

Hi, I'm Alice

eligible(Alice)

vote(Alice, pink)

tally(pink)
Soundness (eligibility, non-reusability, inalterability)

Hi, I'm Alice

Trace: t_1 eligible(Alice) t_2 vote(Alice, pink) t_3 tally(pink)
Soundness (eligibility, non-reusability, inalterability)

Hi, I’m Alice

Trace: \(t_1 \) eligible(Alice) \(t_2 \) vote(Alice, pink) \(t_3 \) tally(pink)
Soundness (eligibility, non-reusability, inalterability)

Trace: t_1 $\text{eligible}(\text{Alice})$ t_2 $\text{vote}(\text{Alice, pink})$ t_3 $\text{tally}(\text{pink})$

and the trace t_1 t_2 t_3 is also sound (injective matching)
Vote-privacy

Voters

Alice
Bob
Charlie
Vote-privacy

Voters
Alice
Bob
Charlie

Results
pink party |
blue party ||
Vote-privacy

Voters
Alice
Bob
Charlie

Results
pink party
blue party

“Detailed” results
Alice pink party
Bob blue party
Charlie blue party
Vote-privacy

Voters
Alice
Bob
Charlie

Results
pink party |
blue party ||

“Detailed” results
Alice pink party
Bob blue party
Charlie blue party

The votes are kept private, and only the total results for each party are disclosed.
Definition of vote-privacy

[Delaune, Kremer & Ryan; CSF ’06]
Definition of vote-privacy

∀ [S[]] indistinguishable from [S[]]

[Delaune, Kremer & Ryan; CSF ’06]
Definition of vote-privacy

[Delaune, Kremer & Ryan; CSF ’06]

\[S[\begin{array}{c} \text{pink} \\ \text{blue} \end{array}] \approx S[\begin{array}{c} \text{pink} \\ \text{blue} \end{array}] \]
Definition of vote-privacy

[Delaune, Kremer & Ryan; CSF ’06]
Definition of vote-privacy

[Delaune, Kremer & Ryan; CSF ’06]
Immunity to forced-abstention

\[S[] \approx S[] \]
Receipt-freeness

- Cryptographic setting [Benaloh & Tuinstra; STOC '94]
Receipt-freeness

- Cryptographic setting [Benaloh & Tuinstra; STOC '94]

- We adapted definition by [Delaune, Kremer & Ryan; CSF '06] to remote voting
Coercion-resistance

- Cryptographic setting [Juels, Catalano & Jakobsson; WPES 2005]
Coercion-resistance

- Cryptographic setting [Juels, Catalano & Jakobsson; WPES 2005]
Coercion-resistance

- Cryptographic setting [Juels, Catalano & Jakobsson; WPES 2005]

\[\Rightarrow \text{receipt-freeness (up to abstraction)} \]

- Proved: coercion-resistance \(\Rightarrow \) no forced-abstention \(\Rightarrow \) vote-privacy
Definitions of coercion-resistance

<table>
<thead>
<tr>
<th></th>
<th>JCJ-WPES’05</th>
<th>DKR-CSF’06</th>
<th>DKR-TR’08</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td>setting</td>
<td>remote voting</td>
<td>supervised voting</td>
<td>supervised voting</td>
<td>remote voting</td>
</tr>
<tr>
<td>automation</td>
<td>no (crypto)</td>
<td>no (adaptive simulation)</td>
<td>no ($\forall C. P \approx Q$)</td>
<td>yes (\approx)</td>
</tr>
<tr>
<td>vote-privacy</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>no simulation attacks</td>
<td>yes</td>
<td>n/a</td>
<td>n/a</td>
<td>yes</td>
</tr>
<tr>
<td>no forced-abstention</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>no randomization attacks (?)</td>
<td>yes (claimed not proved)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>receipt-freeness</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes (up to abstraction)</td>
</tr>
</tbody>
</table>
Analysis of JCJ

- first coercion-resistant protocol for remote voting [Juels, Catalano & Jakobsson; WPES ’05]
- forms the basis of many recent protocols (e.g. Civitas [Clarkson, Chong & Myers; S&P ’08])
- Analysis performed with ProVerif [Blanchet et. al.]
 - automatic protocol analyzer using Horn-clause resolution
 - we use our symbolic abstraction of zero-knowledge [Backes, Maffei & Unruh; S&P ’08]
 - analyzing observational equivalence required (re)writing the specification in the shape of a biprocess
 - verification of JCJ succeeds, which yields security guarantees for unbounded number of voters, sessions, etc.
Current and Future work

- Currently analyzing a model of Civitas
Current and Future work

• Currently analyzing a model of Civitas
• Defining and analyzing other properties
 ‣ Individual verifiability (trace property)
 ‣ Immunity to randomization attacks (privacy property)
Current and Future work

• Currently analyzing a model of Civitas
• Defining and analyzing other properties
 ‣ Individual verifiability (trace property)
 ‣ Immunity to randomization attacks (privacy property)
• Using type systems for trace properties
 ‣ e.g. type system for ZK [CCS ’08] [Fournet et. al., CSF ’07]
Current and Future work

• Currently analyzing a model of Civitas
• Defining and analyzing other properties
 ‣ Individual verifiability (trace property)
 ‣ Immunity to randomization attacks (privacy property)
• Using type systems for trace properties
 ‣ e.g. type system for ZK [CCS ’08] [Fournet et. al., CSF ’07]
• Different techniques for observational equivalence
 ‣ for instance using symbolic bisimulation [DKR, SecCo ’07]
Current and Future work

• Currently analyzing a model of Civitas

• Defining and analyzing other properties
 ‣ Individual verifiability (trace property)
 ‣ Immunity to randomization attacks (privacy property)

• Using type systems for trace properties
 ‣ e.g. type system for ZK [CCS ’08] [Fournet et. al., CSF ’07]

• Different techniques for observational equivalence
 ‣ for instance using symbolic bisimulation [DKR, SecCo ’07]

• More accurate protocol models
 ‣ The ultimate goal is to analyze implementations
Backup slides
Simplified JCJ protocol
Simplified JCJ protocol

Hi, I’m Alice

cred

(Private channel)

\{ cred, r_1 \}_{pk(kT)}
Hi, I'm Alice

cred

(/private channel)

{cred, r₁}pk(kT)

{cred, r₂}pk(kT), {pink}pk(kT), ZK
Hi, I’m Alice

cred

(Private channel)

\{ cred, r_1 \}_{pk(kT)}

\{ cred, r_2 \}_{pk(kT)}

\{ pink \}_{pk(kT)}

ZK
Hi, I’m Alice

cred

(pk(kT))

Simplified JCJ protocol

cred, r₁

(pk(kT))

cred, r₂

(pk(kT)), pink

(pk(kT)), ZK
Hi, I'm Alice

cred

(Private channel)

cred, r_1 \{ pk(kT) \}

cred, r_2 \{ pk(kT) \}

\{ pink \} \{ pk(kT) \}, ZK
Hi, I’m Alice

cred

(Private channel)

\{cred, r_1\}_{pk(kT)}

\{cred, r_2\}_{pk(kT)}, \{pink\}_{pk(kT)}, ZK

pink

Simplified JCJ protocol